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Chapter 1

Introduction

The main goal of this manuscript is to advance descriptive inner model theoretic
methods to the level of the Largest Suslin Axiom (LSA), which is a descriptive set
theoretic axiom asserting that there is a largest Suslin cardinal and that the largest
Suslin cardinal is a member of the Solovay sequence. The underlying theory is
Woodin’s AD+. For all illustrative purposes, we can ignore the “+” and assume AD.
The effect of the “+” is that if we also additionally assume that V = L(℘(R)) then
the fragment of V coded by the Suslin, co-Suslin sets of reals is Σ1 elementary in V .
The Solovay sequence is a closed-in-Θ sequence (θα : α ≤ Ω) such that

1. θ0 = sup{β : ∃f : ℘(ω)→ β(f is an OD surjection)},

2. if θα < Θ then θα+1 = sup{β : ∃f : ℘(θα)→ β(f is an OD surjection)},

3. for limit λ ≤ Ω, θλ = supα<λ θα.

We can now state LSA more precisely. LSA is the conjunction of the following axioms:

1. AD+.

2. For some ordinal α, Θ = θα+1 and θα is the largest Suslin cardinal < Θ.

By a result of Woodin, LSA implies that ADR fails. The aforementioned result of
Woodin says that under AD+, ADR implies that Θ = θα for some limit ordinal α.

Suppose there is a transitive model of LSA containing the reals and ordinals, call
it M . Because the Wadge order is well-founded, we can find a Γ ⊆ ℘(R)M such that

1. ℘(R) ∩ L(Γ,R) = Γ,

2. L(Γ,R) � LSA and

9



10 CHAPTER 1. INTRODUCTION

3. for any Γ∗ ⊆ Γ, if Γ∗ has the above two properties then Γ∗ = Γ.

We then say that L(Γ,R) is the minimal model of LSA. The terminology makes
sense: for instance, if Γ# exists then it is easy to see that L(Γ,R) is the hull of R
and a class club of indiscernibles. What is controversial is our use of “the”. There
could be two models of AD+ whose sets of reals are not Wadge compatible, making
the coexistence of two incompatible “minimal models” of LSA possible. However,
we will show (see the proof of Theorem 10.3.1) that L(Γ,R) is contained in both of
these models, provided they exist.

In this manuscript, we establish three kinds of results that can be stated without
mentioning the technical technology developed to prove them. The first set of results
deals with the minimal model of LSA. Assume V is the minimal model of LSA. Then
the following holds.

(A) (Theorem 7.2.2) HOD � GCH.
(B) (Theorem 10.2.1) The Mouse Set Conjecture holds.

The second set of results contains a single result which shows the consistency of
LSA relative to large cardinals. We will show the following.

(C) (Corollary 10.3.1) Suppose the theory ZFC + “there is a Woodin cardinal that is
a limit of Woodin cardinals” is consistent. Then so is LSA.

The third type of results establishes the existence of the minimal model of LSA
assuming combinatorial principles or forcing axioms. The following set of results
belong to this group.

(D) (Corollary 12.0.23) Assume PFA. Then there is a transitiveM such that R, Ord ⊆
M and M � LSA.

The precursors of these results already exist in print. The first author demon-
strated versions of (A), (B), and (C) for the theory ADR + “Θ is a regular cardinal”.
The second author proved the version of (D) for the same theory. The interested
reader should consult [10], [11] and [31]. The reason to prove such results is to
demonstrate that the underlying technical theory is robust and can be used in a
wide range of situations.

A few words on the goal of inner model theory and its descriptive set theoretic
counterpart, descriptive inner model theory, are perhaps in order. However, what
follows is not a historical exposition. A more accessible introduction can be found
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in [13].
As is well known, the main goal of the two aforementioned subjects is the con-

struction of canonical inner models for large cardinals. The meaning of “canonical”
must be clarified. While there may be other approaches, the current interpretation
of “canonical model” is a model that is a mouse, i.e., a model constructed from a
sequence of extenders ~E. Thus, mice have the form Lα[ ~E]. To avoid coding extra in-

formation into mice, ~E must satisfy several conditions. Iterability of mice guarantees
that mice are canonical. For instance, given two mice M and N , either RM ⊆ RN
or RN ⊆ RM and the constructibility order of RM and RN are compatible.

Among the reasons that one might like to build canonical models for set theory,
one that stands out is the following. Inner model theory and its more modern sister,
descriptive inner model theory, have been used to establish lower bounds for various
set theoretic statements. It has been the most successful tool for attacking the PFA
Conjecture.

Conjecture 1.0.1 (The PFA Conjecture) The following theories are equiconsis-
tent.

1. PFA.

2. ZFC +“There is a supercompact cardinal”.

It is a well known theorem of Baumgartner that the consistency of clause 2 implies
the consistency of clause 1. As for the converse, inner model theoretic methods have
been used since late 60s to establish partial results. The current best known result
is (D) stated above. While there can be other methods free of inner model theory
that settle the PFA Conjecture (see for instance [32]), it is hard to conceive another
method that will solve the descriptive counterpart of the PFA Conjecture. Below
uB stands for the set of universally Baire sets. Recall that these are exactly those
sets of reals whose continuous preimages in compact Hausdorff spaces have the Baire
property.

Conjecture 1.0.2 Assume PFA. There is Γ ⊆ uB such that L(Γ,R) � LSA and if
H = HODL(Γ,R) and Θ = ΘL(Γ,R), then V HΘ � “there is a superstrong cardinal”.

The advantage of Conjecture 1.0.2 is that instead of postulating the existence of a
model with a large cardinal it specifies the model that should satisfy the large cardinal
axioms. To prove Conjecture 1.0.2, we need to analyze the model H = HODL(Γ,R),
and the technical aspect of this manuscript does exactly that but for the minimal
model of LSA. While the analysis of the model H = HODL(Γ,R) without extra
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minimality assumptions on L(Γ,R) alone will not solve Conjecture 1.0.2, it is an
essential step towards its resolution. The additional step is to develop the theory
behind the core model induction without any minimality assumptions. The core
model induction is the technique that allows us to prove results like (D) and its
variations. Completing these two steps without minimality assumptions is the main
objective of descriptive inner model theory.

What the analysis of H yields is that it is a hod mouse. These are models
constructed from extender sequences and also from iteration strategies, so they are
of the form Lα[ ~E, ~Σ]. The iteration strategies coded in ~Σ are iteration strategies for
(initial segments of) the model itself. Hod mice just like mice satisfy GCH. Thus,
statement (A) is just a direct corollary of the analysis of H.

The first author developed theory of hod mice assuming that the minimal model
of ADR + “Θ is regular” doesn’t exist (see [10]). The next nice closure point is LSA,
and developing the theory of hod mice assuming that the minimal model of LSA
doesn’t exist is the technical part of this manuscript. The main new problem that
we need to deal with here is the notion of “short tree strategy mice”.

Let us explain what this is. The analysis of the model H goes by inductive
characterization of sets of reals of various Wadge ranks. Suppose (θα : α ≤ Ω) is the
Solovay sequence. What one shows is that for each α < Ω a set of reals of Wadge
rank θα codes an iteration strategy Σ for some countable hod mouse P . It then
follows (non-trivially) that the direct limit of all Σ-iterates of P is H|θα.

What we said is true except in one case. When θα is the largest Suslin cardinal
below θα+1, any set of Wadge rank θα cannot code an iteration strategy for a hod
mouse. Fix an α such that θα is the largest Suslin cardinal below θα+1. Let Σ be the
strategy for some hod mouse P such that the Wadge rank of Σ is θα+1. What can
be shown is that P satisfies the following two conditions.

(i) P has a largest Woodin cardinal denoted by δP .
(ii) Working in P , let κP be the least < δP-strong cardinal. Then in P , κP is not
δP-strong and κP is a limit of Woodin cardinals.

Define the short tree component, Σstc, of Σ as follows.

1. dom(Σstc) = dom(Σ)

2. Suppose ~T ∈ dom(Σ) and b = Σ(~T ). Then Σstc(~T ) = b provided π
~T (δP) >

δ(~T ). Otherwise, Σstc(~T ) =M~T
b .

The short tree component of a strategy is not an unfamiliar object at least to
those familiar with the core model induction. For instance, let P be Mω|(δ+ω)Mω
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whereMω is the minimal proper class mouse with infinitely many Woodin cardinals
and δ is its least Woodin cardinal. Let Λ be the canonical strategy of P , the one
induced by the strategy of Mω. Then Λstc ∈ L(R), and (i) if T is a short tree on P
then Λstc(T ) is the unique branch b of T such that Q(b, T ) exists and (ii) if T is a
maximal tree on P then Λstc(T ) = (Lpω(M(T )))L(R).

Getting back to our discussion, the set of reals of Wadge rank θα, at least in the
minimal model of LSA, is Σstc. This fact forces us to consider mice relative to Σstc,
and this is a rather complicated matter. The basic issue is that we cannot close
mice under Σstc using the usual procedure for feeding in a strategy. For instance,
suppose we are performing a construction producing mice relative to Σstc. Suppose
our method of feeding Σstc is the most naive one. At stage β we consider the least
tree T such that Σstc(T ) has not been told to the model. Suppose T is maximal,
so we must not tell the model any branch of T . It could be the case that later on
in the construction while taking fine structural cores, T collapses to a short tree.
Thus we have π : N → M, T ∈ M ∩ rng(π), N is a core of M and π is the core
embedding. By elementarity, π−1(T ) doesn’t have a branch indexed in N . However,
π−1(T ) is short and hence it must have a branch indexed in N . A large portion
of this manuscript deals with this issue. We present a solution to this problem in
Section 3.8.

Why do we need minimality assumptions? The reason is that the theory of
hod mice has been developed using examples. In many models of AD+, we have
been able to identify patterns that led to a successful theory. Without a minimality
assumption, it is hard to understand every pattern that could exist. Of course,
one hopes that after understanding enough patterns and special cases, we can lay
down a complete theory without minimality assumptions. There has been a recent
success in this direction. In an unpublished work, John Steel has proven a general
comparison theorem for hod mice without any minimality assumptions. However,
Steel’s comparison argument, to the authors’ best knowledge, does not shed light on
how to construct hod mice whose strategies have the desired Wadge rank, at least
for now.

Nevertheless, there is a method for constructing hod mice whose strategies have
a desired Wadge rank, a method that doesn’t assume any minimality assumptions.
The following conjecture is at the heart of it.

Conjecture 1.0.3 Assume there is no mouse with a superstrong cardinal. Suppose
δ is a Woodin cardinal and λ > δ is an inaccessible cardinal. Suppose further that
Vλ has an iteration strategy Σ that acts on trees that are based on Vδ, and that Σ has
a unique extension in V Coll(ω,δ). Suppose also that A ⊆ R is a universally Baire set.
Let N be the mouse constructed by the fully backgrounded construction of Vδ and let
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g ⊆ Coll(ω, δ) be generic. Then in V [g], the strategy of N induced by the extension
of Σ has Wadge rank at least the Wadge rank of Ag where Ag is the extension of A
to V [g].

In fact, in a sense even at stages where we do have a successful theory of hod mice,
proving Conjecture 1.0.3 plays a fundamental role. Unfortunately, all known proofs
of Conjecture 1.0.3 use minimality hypotheses.

Chapters 2-8 develop the basic theory of hod mice for AD+ models up to the
minimal model of LSA; a consequence of this analysis is (A). The last four chapters
focus on applications. Chapter 11 proves that �κ,2 holds in HOD of AD+ models up
to the minimal model of LSA for all HOD-cardinals κ. Our main use of this chapter
is Chapter 12, where a proof of (D) is given. Chapter 9 develops the basic theory of
condensing sets, which is needed in constructions of hod mice in various situations.
Chapter 10 uses the material in developed in the previous chapters to prove (B) and
(C). The last chapter (Chapter 12) proves (D) by constructing a hybrid version of
Kc. This chapter uses methods developed in the previous chapters and [31].

The history of the manuscript is as follows. The first author started the technical
portion of this work sometime in 2007-2008. Later, sometime in 2008-2009, John
Steel joined the project. Some of the material presented in this manuscript goes
back to this time. However, to the first author’s best knowledge, there were several
gaps in the proofs from this period. In particular, the notion of short tree strategy
mouse was not defined correctly. The definition of short tree strategy mouse given
in this manuscript is due to the first author (see Definition 3.8.5). This notion was
introduced during Spring of 2012. Many of the ideas that appeared in Chapter 4-7
go back to 2007-2012 period. Several important ideas came after Spring 2012. It
is truly difficult to say what idea came when, and it is best to leave such matters
alone. The material in Chapter 8 (due to first author) was proved in the Fall 2015.
The material in Chapter 11 (due to the second author) was proved in 2014-2015; as
mentioned above, it is used in arguments in Chapter 12 and has potential applica-
tions elsewhere. The material in Chapter 9 has precursor in the first author’s work
[11] that proves a version of (D) under an additional large cardinal hypothesis for
ADR + “Θ is a regular cardinal”; it then was adapted by the second author in [31]
to prove the version of (D) for ADR + “Θ is a regular cardinal”. Though the termi-
nology has been changed somewhat, the material in Chapter 9 is a straightforward
adaptation of the aforementioned papers. Chapter 10 is due to the first author and
was done mostly in the Fall of 2015. Chapter 12 is joint work of the two authors and
was done in the Fall of 2015 when the authors visited the Isaac Newton Institute for
Mathematical Sciences.
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Chapter 2

Hybrid J -structures

The main goal of this chapter is to prepare some terminology to be used for the rest
of this manuscript. One important notion introduced in this chapter is that of the
un-dropping game (see Definition 2.7.3). We will use it in the next chapter to prove
a comparison theorem for hod mice (see Corollary 4.6.10).

2.1 Layered hybrid J -structures

In what follows, given a transitive set (or structure) M we will use o(M) to denote
the ordinal height of M . Also, given a set X, we let trc(X) be the transitive closure
of X. We also let trcX = (trc(X ∪ {X}), X,∈).

Definition 2.1.1 (Definition 1.1 of [10]) Given a function f , we say f is amenable
if the domain of f consists of transitive structures and for some formula φ and for
all a = (M,A,∈) ∈ dom(f)

1. f(a) ⊆ o(a) and 0 ∈ f(a),

2. letting β = sup f(a), β < o(a) is the unique ordinal γ such that a � φ[γ],1

3. whenever η < sup f(a), f(a) ∩ η ∈M .

We let φf be the formula φ above.

1We seem to need this condition in order to develop fine structure of models of the form J ~E,f

where f is a shifted amenable function. These are introduced below.
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We say f is a shift of an amenable function or a shifted amenable function if for
all a = (M,A,∈) ∈ dom(f), f(a) ⊆ Ord, f(a) ⊆ [min(f(a)),min(f(a)) + o(a)),
and there is an amenable function g such that (i) dom(f) = dom(g) and (ii) for all
a ∈ dom(f) and γ < o(a), f(a) = {min(f(a)) + γ : γ ∈ g(a)}. Notice that if f is
a shift of an amenable function then it uniquely determines g. We say that g is the
amenable component of f .

Jumping ahead, we remark that iteration strategies and mouse operators provide
an ample source of amenable functions. For instance, let M = M#

1 and let Σ be
its canonical iteration strategy. We define f as follows. Let first dom(f) be the set
of structures of the form Jω(T ) where T is a normal iteration tree on M of limit
length and is according to Σ. Next, define f(Jω(T )) = b where b = Σ(T ). Then f is
amenable. We will refer to such an f as an amenable function given by an iteration
strategy. The reason we define the domain of f to be the set of Jω(T ) instead of just
the set of trcT is that the later may not satisfy clause 2 of Definition 2.1.1.

Recall that a transitive structure M = (M,A) is called amenable if for every
X ∈ M , A ∩ X ∈ M . Following [35], we say M is a J -structure over X if M =
(J A

α (X), B) = (
∣∣J A

α (X)
∣∣ , A,B) is an amenable structure. Keeping the notation,

we also say M is an acceptable J -structure if for all β < α and for all τ < ωβ, if
℘(τ) ∩ J A

β+1 6⊆ J A
β then there is a surjection f : τ → ωβ in J A

β+1. Finally, we say X
is self-wellordered if there is a wellordering of X in J1(X). We are now in a position
to introduce the hybrid J -structures.

Definition 2.1.2 (Hybrid J -structures) We say M = (J A,f
α (X), B) is a hybrid

J -structure over a self-well-ordered set X with indexing scheme φ(x) if M is an
acceptable J -structure such that in M, f is a shift of an amenable function with
amenable component g such that

1. for all a ∈ M, a ∈ dom(f) if and only if in M, there is β such that a is the
unique transitive structure b = (M,A,∈) ∈ J A,f

β (X) such that

J A,f
β � “ZFC + φ[b]”

and if γ is such that b � φg[γ] then β + γ ≤ α and M � “cf(γ) is not a
measurable cardinal”, and

2. for all a ∈ M, if a ∈ dom(f) then min(f(a)) is the least ordinal β satisfying
clause 1 above.

Suppose M is a hybrid J -structure with an indexing scheme φ. We will often
say that “M is indexed according to φ” or that “M is φ-indexed”. The following is
an easy but important lemma. We leave its straightforward proof to the reader.
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Lemma 2.1.3 If a is as in clause 1 of Definition 2.1.2 then f(a) is indexed at β+γ
where β = min(f(a)) and γ is such that a � φg[γ].

Remark 2.1.4 Notice that it follows from clause 1 of Definition 2.1.2 that the func-
tion a→ min(f(a)) is injective on dom(f).

Hod mice are a special blend of layered hybrid J -structures introduced below. Be-
fore introducing them we establish some notation. Suppose thatM = (J A,f

α (X), B)
is a hybrid J -structure over X and ξ ≤ α. Then we letM||ξ beM cutoff at ξ, i.e.,
we keep the predicate indexed at ξ. We letM|ξ beM||ξ without the last predicate.
Also, recall that if β < α then we write JMβ instead of J A,f

β and, we say N is an (a
proper) initial segment of M and write N EM (N /M) if there is β ≤ α (β < α)
such that N = JMβ .

Definition 2.1.5 (Layered hybrid J -structure) We say M = (J A,f
α (X), B) is

a layered hybrid J -structure over self-well-ordered set X with indexing scheme φ(x, y)
if M is an acceptable J -structure over X such that in M, f is a function with
domain YM ⊆ {Q : Q /M} such that for all Q ∈ YM, f(Q) is a shift of an
amenable function with amenable component gQ such that

1. for all a ∈ M, a ∈ dom(f(Q)) if and only if in M, there is β such that a is
the unique transitive structure b = (M,A,∈) ∈ J A,f

β (X) such that

J A,f
β � “ZFC + φ[Q, b]”

and if ξ is such that b � φgQ [ξ] then β + ξ ≤ α, and

2. for all a ∈ M, if a ∈ dom(f(Q)) then min(f(Q)(a)) is the least ordinal β
satisfying clause 1 above.

Suppose M is a layered hybrid J -structure with an indexing scheme φ. We will
often say that “M is indexed according to φ” or that “M is φ-indexed”.

We will often omit φ when discussing a particular layered hybrid J -structure. If
M is a layered hybrid J -structure then we let fM and YM be as in Definition 2.1.5.
We again have that for each Q ∈ YM, the function a→ min(fM(Q)(a)) is injective
on dom(f(Q)).

Notice that hybrid J -structures can be viewed as a special case of layered hybrid
J -structures. Because of this, in the sequel we will only establish terminology for
layered hybrid J -structures though we might use the same terminology for hybrid
J -structures.
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Typically, when discussing hybrid J -structures, X will be an iterable structure
and f will be the predicate coding its strategy.2 As mentioned above, hod mice are
a special type of layered hybrid J -structures: the f predicate of a hod mouse codes
a strategy for its layers. When the A predicate of a layered hybrid J -structure is
a coherent sequence of extenders then the resulting model is called a hybrid layered
premouse.

Definition 2.1.6 (Layered hybrid premouse) Suppose M = J ~E,f (X) is a φ-
indexed layered hybrid J -structure over self-well-ordered set X. M is called a φ-
indexed layered hybrid premouse (lhp) if ~E is a fine extender sequence as in Definition

2.4 of [28] with one exception described below. We write ~EM for ~E etc.
Suppose κ is a limit of cutpoint cardinals of M such that there is an extender

E ∈ ~EM with crit(E) = κ. Then whenever E ∈ ~E is an extender with critical point
κ, the index of E is the cardinal successor of the least cutpoint of Ult(M, E) greater
than κ.

Here κ is a cutpoint of a layered hybrid premouse N if there is no extender
F ∈ ~EN such that crit(F ) < κ ≤ lh(F ). κ is a strong cutpoint of a layered hybrid

premouse N if there is no extender F ∈ ~EN such that crit(F ) ≤ κ ≤ lh(F ).

The significance of the last clause of Definition 2.1.6 will be apparent later. It
was independently noticed by the first author and John Steel. Essentially it comes
up as follows. Suppose κ is as in Definition 2.1.6 and suppose we have an embedding
j : M|(κ+)M → N . Often times we will use such embeddings to guess or recon-
struct extenders on the sequence of M that have critical point κ (see for instance
Lemma 4.9.6 and Lemma 4.9.7). In the old indexing scheme (i.e., Mitchell-Steel in-
dexing scheme) to describe extender E we need to first construct Ult(M, E), which
in many cases has longer height than the index of E. This mismatch of heights
creates many unwanted complications. Similar complications arise when we index
extenders using Jensen indexing (recall that this means that extenders are indexed at
the successor of the image of the critical point). In this case, while the two ordinals
match, we need to guess what Ult(M, E) is up to the image of κ.

We finish this section by introducing hp that are closed under sharps. We will
use such a closure to introduce short tree strategy premice (see Definition 2.2.3 and
Definition 3.8.4).

2In this case, the γ defined in Definition 2.1.2 is the length of a tree T according to f . The
condition “M � cof(γ) is not measurable” in Definition 2.1.2 ensures the structure we build has
sufficient condensation.
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Definition 2.1.7 (Closed hp) Suppose M is an hp and α ≤ o(M). Then we say

M is closed under sharps below α if for all β < α there is γ ∈ dom( ~EM) such that
crit(EMγ ) > β. We say M is closed under sharps if M is closed under sharps below
o(M).

2.2 Layered strategy premice

In this paper, we are concerned with lhp whose f predicate codes a strategy. The
goal of this section is to introduce the language used to describe such structures.

Suppose thatM is an lhp. We then say that a shifted amenable function f codes
a partial strategy function for M if

1. dom(f) ⊆ {Jω(~T ) : ~T is a stack on M without a last model},

2. whenever ~T is a stack onM such that Jω(~T ) ∈ dom(f) and whenever ~U is an

initial segment of ~T without a last model, Jω(~U) ∈ dom(f),

3. if g is the amenable component of f then for all Jω(~T ) ∈ dom(f), g(Jω(~T )) is

a cofinal branch of ~T , and

4. φf is the formula defining sup(g(Jω(~T ))) over Jω(~T ).

Notice that we do not require that g(Jω(~T )) is a well-founded branch of ~T , which is
why we call the resulting function just a strategy function.

When defining short tree strategy mice, we will encounter hybrid structures whose
f predicate doesn’t necessarily code a strategy but a partial strategy. We make this
notion more precise. First we make a useful notation.

Notation 2.2.1 Suppose M is a transitive model of a fragment of set theory and T
is an iteration tree on M of limit length. Then we let

M+(T ) = (M(T ))#.

In general, given a transitive self-well-ordered set X, we let M+(X) be the minimal
active X-mouse.

Remark 2.2.2 Suppose M is an lhp. We then say that Σ is a semi-strategy for M
if the domain of Σ consists of quadruples (M0, T0,M1, ~U) such that M0 = M, T0

is a normal tree on M0, M1 is either the last model of T0 or T0 doesn’t have a last
model andM1 =M+(T0), and ~U is a stack onM1. We can then consider amenable
functions that code partial semi-iteration strategies. We will abuse our terminology
and will treat semi-iteration strategies as if they were just strategies.



22 CHAPTER 2. HYBRID J -STRUCTURES

Suppose then a shifted amenable function f codes a partial strategy function for
M. We then let Σf be the partial strategy function coded by f . More precisely,
letting g be the amenable component of f ,

1. dom(Σf ) = dom(f) and

2. for all ~T ∈ dom(Σf ), Σf (~T ) = g(Jω(~T )).

We say f codes a partial strategy if Σf chooses cofinal and well-founded branches.
We say f codes a total strategy if Σf is a total strategy.

Recall that if M is an lhp, N EM and Σ is an iteration strategy for M then
ΣN is the strategy of N we get by the copy construction. More precisely, ΣN is the
id-pullback of Σ.

Definition 2.2.3 (Strategy premouse, sp) Suppose P is a transitive model of
some fragment of ZFC, X is a self-well-ordered set such that P ∈ X and M is
a φ-indexed hp. We say M is a φ-indexed strategy premouse (sp) over X based
on P if fM codes a partial iteration strategy for P and for any a ∈ dom(fM) if
β = min(fM(a)) then M|β is closed under sharps (see Definition 2.1.7).

Definition 2.2.4 (Layered strategy premouse, lsp) Suppose M is a φ-indexed
lhp. We say M is a φ-indexed layered strategy premouse (lsp) if for all Q ∈ YM, in
M,

1. fM(Q) codes a partial strategy function for Q such that for every a ∈ dom(fM(Q)),
if β = min(fM(Q)(a)) then M|β is closed under sharps, and

2. if Q0 E Q1 ∈ YM − {J0(M)} then letting, for i ∈ 2, Σi be the partial strategy
function coded by fM(Qi), then (Σ1)Q0 is id-pullback of Σ0.

We can also introduce lsp that are over some self-well-ordered set X and are
based on some P ∈ X. We leave this to the reader.

Notice that the fact that M is a layered strategy premouse depends on what φ
says. Thus, the clauses above should be viewed as part of φ. The strategy premice
are a special case of layered strategy premice, and we leave the exact definition to
the reader. We let ΣM be the partial strategy function coded by fM. If Q ∈ YM
then we let ΣMQ be the partial strategy function coded by f(Q).

In most applications, lsps have a very canonical indexing scheme which is origi-
nally due to Woodin. At each stage the stack whose branch is being indexed by f is
the least stack whose branch hasn’t yet been indexed. Here and in future definitions,
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for any lsp (sp) M (over a self-well-ordered set), we say “M-least” to mean “<M-
least”, where <M is the canonical (constructible) well order onM. We call this the
standard indexing scheme.

Definition 2.2.5 (Standard indexing scheme) We say φ(x, y) is the standard
indexing scheme if wheneverM is an lsp and Q ∈ YM thenM � φ[Q, a] if and only
if

1. a is the M-least set of the form Jω(~T ) where ~T is a stack on Q such that ~T is

according to ΣMQ , ~T doesn’t have a last model, if ~T has the last normal compo-

nent T , then cof(lh(T )) is not measurable,3 and fM(Q)(Jω(~T )) is undefined,
and

2. for every R/M such that R � ZFC, in R, (Q, a) isn’t the lexicographically R-

least set of the form (Q∗,Jω(~T )) where Q∗ ∈ Y R and ~T is a stack on Q∗ such

that ~T is according to ΣRQ∗,
~T doesn’t have a last model and fR(Q∗)(Jω(~T )) is

undefined.

We write φstd for φ.

SupposeM is an lsp and Σ is a (κ, θ)-iteration strategy for Q for some Q ∈ YM.
Then it can be the case that ΣMQ ⊆ Σ. When this happens we get structures relative
to Σ.

Definition 2.2.6 ((Σ, φ)-premouse) Suppose X is a transitive self-well-ordered struc-
ture such as hp, lhp, sp or lsp or just a model of some fragment of ZFC. Suppose
further that Σ is a (κ, θ)-iteration strategy for X and M is a φ-indexed sp over X.
Then M is called a (Σ, φ)-premouse if ΣM ⊆ Σ �M.

Definition 2.2.7 ((Σ, φ)-mouse) Keeping the notation of Definition 2.2.6, we say
M is a (Σ, φ)-mouse if M has an ω1 + 1-iteration strategy Λ such that whenever N
is a Λ-iterate of M then N is a (Σ, φ)-premouse.

We warn the reader that we will often omit φ from our notation and say “M is
a Σ-mouse” instead of “M is a (Σ, φ)-mouse” if φ is clear from the context.

3If cof(lh(T )) = κ is measurable in M, then M can figure out the (necessarily unique) cofinal
branch b of T by taking the ultrapower of an extender with critical point κ on M’s sequence.
Furthermore, we do not want to index b for reasons discussed in [20].
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2.3 Iterations of (Σ, φ)-mice

Suppose X is a transitive self-well-ordered structure such as hp, lhp, sp or lsp or just
a model of some fragment of ZFC. Suppose further that Σ is an (ω1, ω1)-iteration
strategy for X and φ is an indexing scheme. Given two (Σ, φ)-mice, we can compare
them using the usual comparison argument.

Theorem 2.3.1 (Theorem 3.11 of [28]) SupposeM and N are two countable k-
sound (Σ, φ)-mice with (ω1 + 1)-iteration strategies Λ and Γ respectively. Then there
are iteration trees T and U on M and N respectively according to Λ and Γ respec-
tively, having last models MT

α and NNη such that either

1. the iteration embedding πT0,α-exists4, and MT
α is an initial segment of MU

η , or

2. the iteration embedding πU0,η-exists, and MU
η is an initial segment of MT

α .

Comparison for lsp is more involved and we do not know how to do it in general.
Below we recall our primary method of identifying the good branches of iteration
trees. Recall that the strategy for a sound mouse projecting to ω is determined by
Q-structures. For T normal, let Φ(T ) be the phalanx of T (see Definition 6.6 of
[24]).

Definition 2.3.2 Let T be a k-normal tree of limit length on a k-sound lsp, and let
b be a cofinal branch of T . Then Q(b, T ) is the shortest initial segment Q of MT

b , if
one exists, such that Q projects strictly across δ(T ) (i.e. ρ(Q) < δ(T )) or defines a
function witnessing δ(T ) is not a Woodin cardinal as witnessed by the extenders on
the sequence of M(T ).

Next we would like to state a general result stating that branches identified by
Q-structures are unique. Suppose that M is an lsp and Σ is a strategy for M.
If N is a Σ-iterate of M via ~T then we let ΣN ,~T be the strategy of N given by

ΣN ,~T (~U) = Σ(~T _ ~U).

Definition 2.3.3 Suppose M is a φ-indexed lsp (perhaps over some set X) and Σ
is an iteration strategy forM. We say (M,Σ) is a layered strategy φ-mouse (φ-lsm)
pair if Σ has hull condensation (see Definition 1.30 of [10]) and whenever N is a

Σ-iterate of M via ~T then N is a φ-indexed lsp and ΣN ⊆ ΣN ,~T .

4In [28], this is stated in a somewhat stronger form, namely that [0, α]T doesn’t drop in model
or degree.
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We say an iteration tree T is above η if all the extenders used in T have critical
points > η.

Theorem 2.3.4 Suppose (M,Σ) is a φ-lsm pair. Suppose γ < o(M) is such that
sup(YM) < γ and ρ(M) ≤ γ. Then M has at most one (k, ω1 + 1) iteration
strategy Λ that acts on iteration trees that are above γ and whenever N is a Λ-
iterate of M then N is a φ-indexed lsp and ΣN ⊆ Σ � N . Moreover, any such
strategy Λ is determined by: Λ(T ) is the unique cofinal b such that the phalanx
Φ(T )_(δ(T ), degT (b),Q(b, T )) is ω1 + 1-iterable (as a (Σ, φ)-phalanx).5

In some cases, however, it is enough to assume that Q(b, T ) is countably iterable.
This happens, for instance, when M has no local Woodin cardinals with extenders
overlapping it.6 While the lsp we will consider do have local overlapped Woodin
cardinals (that is, some strict initial segment of the lsp has overlapped Woodin
cardinals), the lsp themselves will not have such Woodin cardinals. This simplifies
our situation somewhat, and below we describe exactly how this will be used.

Definition 2.3.5 (Definition 2.1 of [29]) Let (M,Σ) be a φ-lsm pair and let γ <
o(M) be such that sup(YM) < γ. Suppose T is a normal iteration tree on M above
γ; then Q(T ) is the unique ⊕ν∈YM(ΣM|ν , φ)-mouse, if there is any, extendingM(T )
that has δ(T ) as a strong cutpoint, is ω1 + 1-iterable above δ(T ) and either projects
strictly across δ(T ) or defines a function witnessing δ(T ) is not a Woodin cardinal
as witnessed by the extenders on the sequence of M(T ).

Countable iterability is usually enough to guarantee there is at most one hp with
the properties of Q(T ). If it exists, Q(T ) might identify the good branch of T , the
one any sufficiently powerful iteration strategy must choose. This is the content of
the next lemma which can be proved by analyzing the proof of Theorem 6.12 of [28].
To state it we need to introduce fatal drops and also the following useful notation.

Definition 2.3.6 (OP-stack) Suppose P is an lsp, η, α < o(P) and Q E P||η. We
then let

OPη,Q,α = ∪{M E P : P|η EM, ρ(M) ≤ η,
⋃

(YM) /Q and for all E ∈ ~EM , if
η ∈ [crit(E), lh(E)) then crit(E) ≤ α}.

Next we define the stack (OP,ξη,Q,α : ξ ≤ ΩPη,Q,α) according to the following recursion:

5The meaning of this is left to the reader.
6An extender E overlaps κ if crit(E) ≤ κ ≤lh(E).
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1. OP,0η,Q,α = OPη,Q,α,

2. for ξ + 1 ≤ ΩPη,Q,α, OP,ξ+1
η,Q,α = OP

o(OP,ξη,Q,α),Q,α
,

3. for limit λ ≤ ΩPη,Q,α, OP,λη,Q,α =
⋃
ξ<λO

P,ξ
η,Q,α, and

4. ΩPη,Q,α is the least ν such that OP,ν+1
η,Q,α = OP,νη,Q,α.

If Q = P||κ, then we write OPη,κ,α for OPη,Q,α. For ξ ≤ ΩPη,P||η,α, we let OP,ξη =

OP,ξη,P||η,0.7

We can now introduce fatal drops. Suppose T is an iteration tree on some struc-
ture M and N is a node on T . Then we let T≥N be the portion of T that appears
after stage N .

Definition 2.3.7 (Fatal drop) SupposeM is a φ-indexed lhp and T is an iteration
tree on M. We say T has a fatal drop if for some α < lh(T ) and some η < o(MT

α ),

T≥MTα is a normal iteration tree on OM
T
α

η that is above η. We then say T has a fatal
drop at (α, η) if the pair is the lexicographically least satisfying the above condition.

The following is the lemma mentioned above.

Lemma 2.3.8 Let (M,Σ) be a φ-lsm pair and let γ < o(M) be such that
⋃

(YM) /
M||γ.

1. Suppose T is a normal iteration tree onM above γ of limit length and suppose
Q(T ) exists. Then there is at most one cofinal branch b of T such that either
Q(T ) =MT

b or Q(T ) =MT
b |ξ for some ξ in the wellfounded part of MT

b .

2. Suppose further no measurable cardinal ofM which is ≥ γ is a limit of Woodin
cardinals. If then T is an iteration tree according to Σ above γ which doesn’t
have a fatal drop and b = Σ(T ) is such that Q(b, T )-exists then Q(b, T ) =
Q(T ).

Q(T ) identifies b because it determines a canonical cofinal subset of rng(πTα,b ∩
δ(T )), for some α ∈ b, to which we can apply Lemma 1.13 of [10] (which is an
immediate consequence of the zipper argument from [7]).

7In particular, η is a strong cutpoint of OP,ξη .
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Remark 2.3.9 Suppose (M,Σ) is a φ-lsm pair and Q ∈ YM. Let R =M if Q is
the largest initial segment of M in YM and otherwise, let R be the least member of
YM properly extending Q. Suppose T is a tree on M which is above o(Q) and is
based on R. Notice that in this case we can define Q(T ) just as in Definition 2.3.5
by using R instead of M.

2.4 Hod-like layered hybrid premice

In this paper, we are concerned with lsp8 whose f predicates code a fragment of
their own strategy. The difference of the lsp considered here and those considered in
[10] is that here we will have lsp whose predicate codes the short tree strategy of its
initial segments. The hod mice we will consider in this paper are all layered, and we
start by introducing these objects.

If M is an lsp and κ is an M-cardinal then we let

XMκ = {ξ : EMξ 6= ∅ and crit(EMξ ) = κ}.

We also let

oM(κ) = max(supXMκ , (κ+)M).

Suppose M is a transitive structure and η is an ordinal. Then we let (η+α)M

be the αth-cardinal successor of η in M if it exists and otherwise, we let it be the
ordinal height of M .

Definition 2.4.1 (Pre-hod-like) Suppose P is an lsp. We say P is pre-hod-like if
one of the following holds:

1. (Type I) For some δ such that P � “δ is a Woodin cardinal or a limit of Woodin
cardinals”, P = ∪n<ωP|(δ+n)P .

2. (Type II) For some P-cardinal κ, letting δ = oP(κ), ρ(P) ≤ δ or o(P) is a
limit of ordinals ξ such that ρ(P|ξ) ≤ δ.

We let δP be the δ above.

The next definition isolates the type of hod pairs that give rise to pointclasses
satisfying the Largest Suslin Axiom.

8We write “lsp” for both layered hybrid premouse and layered hybrid premice.
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Definition 2.4.2 (Lsa type) Suppose P is a pre-hod-like lsp. We say P is of lsa
type if there is κ < δP such that oP(κ) = δP and P � “δP is a Woodin cardinal and
κ is a limit of Woodin cardinals”.

In this paper we will consider hod mice that are lsa small.

Definition 2.4.3 (Lsa small) Suppose P is a pre-hod-like lsp. We say P is lsa
small if for all P-cardinal κ such that oP(κ) < δP and P � “κ is a limit of Woodin
cardinals”, P � “oP(κ) is not a Woodin cardinal”.

The next definition is somewhat technical. The meaning of it is that we will wait
until we see the sharp of a layer before we will activate the strategy.

Definition 2.4.4 (Proper Type II) Suppose P is a pre-hod-like lsp of Type II.

We say P is of proper Type II if there is ξ ∈ dom( ~EP) such that crit(EPξ ) > δP ,
P|ξ = Jξ[P|δP ] and P||ξ is of lsa type.

We can now isolate the layers of pre-hod-like lsp.

Definition 2.4.5 (Layers of lsp) Suppose P is an lsa small pre-hod-like lsp. We
say Q E P is a layer of P if one of the following conditions holds:

1. P is of proper Type II lsa type lsp and Q =M+(P|δP).

2. Q / P|δP is a pre-hod-like lsp and the following holds.

(a) For some P-cardinal κ such that P � “κ is a limit of Woodin cardinals”,
δQ = oQ(κ) and Q is of proper Type II.

(b) Clause 2.a fails, δQ is a P cardinal such that P � “δQ is either a Woodin
cardinal or a limit of Woodin cardinals”, Q = OP,ω

δQ,δQ
and if δQ is a limit

of Woodin cardinals of P then

P|((δQ)+)P = Q|((δQ)+)Q.

Next we introduce hod-like lsp. These will eventually turn into hod premice. To
do this we need to impose conditions on the layers of lsp, which are just the members
of Y P where P is an lsp.

Definition 2.4.6 (Hod-like lsp) Suppose P is a pre-hod-like lsp. We say P is
hod-like if the following conditions hold.
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1. If P is of Type II then P is of proper Type II.

2. Y P = {Q : Q is a layer of P}.

The next definition isolates four types of proper pre-hod-like lsp that we will
encounter in this paper. The types are not necessarily disjoint.

Notation 2.4.7 Suppose P is a hod-like lsp. Let

LP = {δ : ∃Q ∈ Y P , δQ = δ} ∪ {δP}.

Let λP be the order type of LP . We let (δPα : α ≤ λP) be the increasing enumeration
of LP . Often we will refer to the intervals (δPα , δ

P
α+1) as the windows of P. If λP is

a successor then we often say that (δPλP−1, δ
P
λP ) is the top window of P.

Terminology 2.4.8 Suppose P is a hod-like lsp.

1. (Successor type) We say P has a successor type if λP is a successor ordinal
and δPλP−1 is not a measurable cardinal.

2. (Limit type) We say P has a limit type if λP is a limit ordinal or λP is a
successor ordinal and δPλP−1 is a measurable cardinal.

3. (Lsa types) Suppose P is of lsa type. We say P has lsa type I if P � “ZFC-
Powerset”. Otherwise, we say P has lsa type II.

4. (Meek) We say P is meek if either it has a successor type or λP is a limit
ordinal.

Remark 2.4.9 From now on we tacitly assume that all lsp considered in this paper
are lsa-small. We will, from time to time, remind the reader of this.

Definition 2.4.10 (The internal strategy) Given Q ∈ Y P we let ΣPQ be the strat-
egy of Q coded by fP(Q).

Next, we isolate the bottom part of non-meek limit type hod-like lsp. This
is essentially the part of P that is below the largest measurable limit of cutpoint
Woodin cardinals.

Definition 2.4.11 (The bottom part of lsp) Given a non-meek limit type hod-
like lsp P, we let Pb = OP,ω

δP
λP−1

,P||δP
λP−1

where “b” stands for “bottom”. We say that

Pb is the bottom part of P.
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We end this section with the definition of hod initial segments of lsp.

Definition 2.4.12 (Hod initial segment) Suppose P and Q are two hod-like lsp.
We then write P Ehod Q and say P is a hod initial segment of Q if P ∈ Y Q.

We finish this section by introducing a useful notation.

Notation 2.4.13 Suppose P is a hod-like lsp and ξ < λP . We define P(ξ) according
to the following clause.

1. Suppose that δPξ is a Woodin cardinal of P or a non-measurable limit of Woodin

cardinals of P. Then we let P(ξ) = OP,ω
δPξ ,P|δ

P
ξ

.

2. Suppose δPξ is a measurable limit of Woodin cardinals. Let E ∈ ~EP be the
Mitchell order 0 extender with critical point δPξ . Then let P(ξ) = Ult(P , E)(ξ).

3. Suppose ξ = γ + 1 and δPξ = oP(δPγ ). If δPξ < δP then let P(ξ) = P|((δPξ )+)P .
If δPξ = δP then let P(ξ) = P.

2.5 Analysis of stacks

Here we review the analysis of stacks of iteration trees from Section 6.2 of [10].

Suppose M is a transitive structure and ~T is a stack of iteration trees on M9. Let S
and R be nodes in ~T . Then we write ~T≥S for the component of ~T that comes after

stage S and ~T≤S for the component of ~T up to stage S. In the case R appears in ~T
later than S, we also write ~TS,R for the part of ~T that is between S and R. Notice

that neither ~T≥S nor ~TS,R might be stacks on S.

Definition 2.5.1 (Cutpoint of a stack) We say S is a cutpoint of ~T if no normal

component of ~T≤S has a fatal drop and ~T≥S is a stack on S.

Suppose now that T is a normal tree on M .

Definition 2.5.2 (Reducible and irreducible trees) We say T is reducible if it
has a cutpoint. Otherwise we say T is irreducible.

9Recall that all trees are normal.
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Suppose next that P is a hod-like lsp. In our current context we must consider
stacks with more severe dropping patterns than those considered in [10]. However,
we will rule out stacks with too many bad drops. The bad drops will consist of fatal
drops and non-continuable drops. The stacks that we will consider can have at most
one of each such drops. We have already introduced fatal drops (see Definition 2.3.7).
Below we introduce non-continuable drops.

Continuing with our P suppose T is a normal irreducible tree on P which has a
last model but πT doesn’t exist.

Definition 2.5.3 (Continuable drop) We then say T has a continuable drop if
T doesn’t have a fatal drop and for some limit type Q ∈ Y P , T is based on Q and is
above o(Qb).

Besides fatal drops, continuable drops rule out drops in windows (δPξ , δ
P
ξ+1) where

δPξ is not a measurable cardinal of P . Notice that it is not required that there be no
such drops, but rather that the final branch doesn’t have such a drop.

Definition 2.5.4 (Continuable stack) Suppose ~T is a stack on P . We say ~T is

continuable if for every two successive cutpoints S and R, either π
~TS,R exists or ~TS,R

(which is a normal irreducible tree) has a continuable drop.

Say T has a non-continuable drop if T has a drop which is not a continuable
drop. The next definition blocks iterations of hod-like lsp that have more than one
non-continuable drops.

Definition 2.5.5 (Stack on hod-like lsp) We say ~T is a stack on P with normal
components (Mα, Tα : α < η) if it is produced according to the rules of the usual

iteration game except that for every α < η, ~T � α is continuable.

Continuing with our P , let ~T be a stack on P . Given a node R in ~T we say
R is a terminal node in ~T if player I can legitimately continue ~T≤R by starting a
new round of the iteration game. We say R is a non-trivial terminal node if it is a
terminal node and the extender chosen from R is applied to R. The following is an
easy lemma.

Lemma 2.5.6 Suppose ~T is a stack on P and S is a cutpoint of ~T . Then S is a
non-trivial terminal node of ~T .

Suppose again that ~T is a stack on P . We then let
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tn(~T ) = {R : R is a terminal node in ~T }
ntn(~T ) = {R : R is a non-trivial terminal node in ~T }.

Given two Q,R ∈ tn(~T ), we write Q �~T ,w R if10, in ~T , R appears later than Q. We

write Q �~T R if, in ~T , Q-to-R iteration embedding exists. If Q �~T R then we let
π
~T
Q,R : Q → R be the iteration embedding given by ~T . If Q = P then we just write

π
~T
R. We write Q �~T ,s R if11 Q �~T R and ~TQ,R is a stack on Q.

Continuing with P and ~T = (Mα, Tα : α < η), suppose C ⊆ tn(~T ). We say C is

linear if it is linearly ordered by �~T ,s.
Suppose now that C is linear and (Rα : α < η) is a �~T ,s-increasing enumeration

of C. We let lh(C) = η. Suppose further that η is a limit ordinal. Then we let R~T
C

be the direct limit of the Rα under the iteration embeddings π
~T
Rα,Rβ . We then say

C ⊆ tn(~T ) is closed if it is linear and for every limit α < lh(C), R~T
C�α ∈ C. Notice

that linearity implies that for each limit α < lh(C), R~T
C�α is a node in ~T .

Next, we say C is cofinal if for every node S of ~T either S ∈ C or there are
R �~T ,s Q ∈ C such that S is a node in ~TR,Q. The following is another easy lemma.

Lemma 2.5.7 If C is cofinal then every node in C is a cutpoint.

We say C is a club if it is closed and cofinal. Notice that if C is closed and cofinal
and S 6∈ C then there is a �~T ,s-largest R ∈ C such that for any Q ∈ C such that
R �~T ,s Q, S is a node in ~TR,Q.

Continuing with our fixed P , suppose ~T = (Mα, Tα : α < η) is a stack on P .

If R is a non-trivial terminal node of ~T then we let ξ
~T ,R be the least such that

ETαβ ∈ R(ξ
~T ,R + 1), where R =MTα

β . We also let ~TR be the largest initial segment

of ~T≥R that can be regarded as a stack on R(ξ
~T ,R + 1).

Notice that if ~T doesn’t have a last model but there is a club C ⊆ tn(~T ) then C

uniquely identifies the branch of ~T . Indeed, let D = {S ∈ tn(~T ) : ∃R,Q ∈ C(R �~T

S �~T Q)}. Let R ∈ D be the �~T -minimal member of D and let b be the set of

indices of the nodes of ~T between P and R. Then the union of b with the indices
of the nodes of D constitute a branch bC of ~T . It is not hard to see that we have
M~T

bC
= R~T

C .

Suppose now that ~T doesn’t have a last model and there is no club C ⊆ tn(~T ).
Let then D = {S ∈ tn(T ) : S is a cutpoint}. It follows from our discussion that D

10“w” stands for “weakly”
11“s” stands for “strongly”.
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has a �~T ,s-largest element. Let S~T be this largest element. The following is our last
easy lemma.

Lemma 2.5.8 ~T≥S~T is a normal tree on S~T such that if it is reducible then it has
either a fatal or a non-continuable drop.

2.6 The iteration embedding π
~T ,b

Continuing with P and ~T , assume that P is a limit type hod-like lsp which isn’t
meek. Again, we will not be concerned with the particular indexing scheme that P
has. In some cases, regardless of whether ~T has a last model or not, it is possible to
extract an embedding out of the iteration embeddings given by ~T that acts on Pb.
We describe this embedding below. First we define it by assuming that ~T = T is a
normal irreducible tree. Recall that our lsp are lsa-small (see Definition 2.4.3).

Definition 2.6.1 (πT ,b fo irreducible trees) Let λ = λP . Let M = M(T ) if T
is of limit length and letM be the last model of T otherwise. Then letting δ = δPλP−1,

we let πT ,b be

1. undefined if T is below δ and πT doesn’t exist,

2. πT � Pb if πT exist,

3. id if T is above δ, πT doesn’t exist and M|(δ+)P = P|(δ+)P ,

4. undefined if T is above δ, πT doesn’t exist and M|(δ+)P 6= P|(δ+)P .

Remark 2.6.2 Notice that in Definition 2.6.1, because T is irreducible and δPλ−1 is
a limit of cutpoints, it cannot be the case that for some α < lh(T ), crit(ETα ) = δPλ−1

and crit(ETα+1) ≥ πETα (δPλ−1) (this is because otherwise T≥MTα+1
would be a normal tree

on MT
α+1). This observation implies that the above clauses are all possible clauses.

Next we define πT ,b for trees T .

Definition 2.6.3 (πT ,b for trees) Suppose T is a tree on P. We define πT ,b by
induction on cutpoints of T . If there is a cutpoint R of T such that πTP,R,b is
undefined then let πT ,b be undefined. Otherwise let C = (Rα : α < η) be the sequence
of cutpoints of T . If C is a club then letting c be the unique branch of T , we let
πT ,b = πTc � Pb. Otherwise letting η = γ + 112, let πT ,b = πT≥Rγ ,b ◦ πTP,Rγ ,b.

12Notice that η is always a successor ordinal.
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Finally we define π
~T ,b for stacks.

Definition 2.6.4 (πT ,b for stacks) Suppose ~T is a stack on P with normal com-

ponents (Mα, Tα : α < η). If for some α < η, πTα,b is undefined then we let π
~T ,b

be undefined. Suppose then for every α < η, πTα,b is defined. Then if η is a limit
ordinal then, letting c be the unique branch of ~T , we let π

~T ,b = π
~T
c � Pb. If η = γ+ 1

then let π
~T ,b = πTγ ,b ◦ π ~T �γ,b.

Notice that in Definition 2.6.5 we are not assuming that the stack has a last
model. The fragment of the eventual iteration embedding π

~T restricted to Pb can
be seen without actually having the last branch. Notice also that the actual branch
embedding may not agree with π

~T ,b.

Definition 2.6.5 (Almost non-dropping stacks) Suppose P is a non-meek hod-

like lsp and ~T is a stack of iteration trees on P. We say ~T is almost non-dropping
if π

~T ,b is defined on Pb. Suppose Σ is an iteration strategy for P13. We then let

I(P ,Σ) = {(~T ,R) : ~T is according to Σ, R is the last model of ~T and π
~T is

defined}.
Ib(P ,Σ) = {(~T ,R) : ~T is according to Σ, R is the last model of ~T and π

~T ,b is
defined}.

Remark 2.6.6 Notice that if ~T is almost non-dropping then it may only have drops
in some image of the top window of P.

The following notion will be used throughout this paper.

Definition 2.6.7 (Canonical singularizing sequences) Suppose P is a non-meek

hod-like lsp and ~T is an almost non-dropping stack on P. Let Q = π
~T ,b(Pb). Then

Q is an lsp. For ξ + 1 ≤ λQ, we let

s(~T , ξ) = {α : ∃a ∈ (δQξ + 1)<ω∃f ∈ Pb(α = π
~T ,b(f)(a))} ∩ δQξ+1

The following is an easy lemma.

Lemma 2.6.8 Suppose P is a non-meek hod-like lsp and ~T is an almost non-
dropping stack on P. Let Q = π

~T ,b(Pb). Then for any ξ + 1 ≤ λQ, sup(s(~T , ξ)) =
δQξ+1.

13It is worth remembering that this entails that Σ-iterates of P have the same indexing scheme
as P.
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2.7 The un-dropping game

Before we proceed, we explain the meaning of the un-dropping game. Suppose we are
comparing the strategies of two lsa type hod-like lsp P and Q. Let Σ be the strategy
of P and Λ be the strategy of Q. Let us assume that the pointclasses generated by
(P ,Σ) and (Q,Λ) are the same. We are then searching for R which is an iterate of
P and Q and ΣR = ΛR. In this comparison we might be forced to consider iteration
trees T and U with last models M and N such that πT and πU don’t exist and
for some ξ < min(λM, λN ), M(ξ + 1) = N (ξ + 1) but ΣM(ξ+1) 6= ΛN (ξ+1). We
can continue the comparison by comparing (M,ΣM) and (N ,ΛN ) and producing
(S,Φ) which is a common tail of (M,ΣM) and (N ,ΛN ). However, (S,Φ) cannot be
thought of as a last model of a successful comparison of (P ,Σ) and (Q,Λ) simply
because πT and πU do not exist. What we need to do is to compare (M,ΣM) and
(N ,ΛN ) and then somehow get back to P and Q. This is what the un-dropping
game achieves.

To define the un-dropping game, we need to define the sequence of main drops.
It is the sequence of stages in an iteration at which there is a drop below the top
window.

Definition 2.7.1 (The main drops of a continuable stack) Suppose P is a hod-

like lsp and ~T is a continuable stack. We say md
~T = (Ri, ~Ti : i ≤ k) is the sequence

of main drops of ~T if the following conditions hold:

1. k < ω and R0 = P.

2. (Ri : i ≤ k) is a �~T ,s-increasing sequence of cutpoints of ~T .

3. For i+ 1 ≤ k, ~Ti = ~TRi,Ri+1
and ~Tk = ~T≥Rk .

4. For each i ≤ k, ξ
~T ,Ri + 1 < λRi, Ri(ξ

~T ,Ri + 1) is a limit type hod-like lsp and
~T≥Ri is a stack on Ri(ξ

~T ,Ri + 1)14.

5. For each i < k, Ri+1 is �~T ,s-least cutpoint Q of ~T such that Ri �~T ,s Ri+1,

πTRi,Q,b exists and for every node S 6= Q of ~T≥Q, π
~TRi,S ,b doesn’t exist.

6. For every cutpoint S of ~T≥Rk , π(~Tk)Rk,S ,b exists.

14Recall the definition of ξ
~T ,Ri . It was defined a few paragraphs below Definition 2.5.7.
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Notice that it is possible that in the above definition R0 = R1. This can happen,
for instance, when I starts out with a drop. Next we define the un-dropping extender
of ~T . This is essentially the extender given by dovetailing the embeddings π

~Ti,b.

Definition 2.7.2 (The un-dropping extender of a stack) Suppose P is a hod-

like lsp and ~T is a continuable stack with a last model. Let (Ri, ~Ti : i ≤ k) be

the sequence of the main drops of ~T and suppose π
~Tk,b is defined. For i ≤ k, let

κi = δRi
ξ
~T ,Ri

, and for i+ 1 ≤ k, let

σ
~T
i,i+1 : (℘(κi))

Ri → (℘(κi+1))Ri+1

be given by

σ
~T
i,i+1(A) = π

~Ti,b(A) ∩ κi+1.

Set σ
~T = π

~Tk,b ◦ σ ~Tk−1,k ◦ σ
~T
k−2,k−1 · · · ◦σ

~T
0,1 and let E

~T be the (κ0, π
~Tk,b(κk))-extender

derived from σ
~T . More precisely,

E
~T = {(a,A) : a is a finite subset of π

~Tk,b(κk), A ∈ (℘(κ0))P , and a ∈ σ ~T (A)}.

E
~T is called the un-dropping extender of ~T . Suppose Q Ehod π ~Tk,b(Rb

k). Then we

let E
~T
Q be the (κ0, δ

Q)-extender derived from σ
~T . More precisely,

E
~T
Q = {(a,A) : a is a finite subset of δQ, A ∈ (℘(κ0))P , and a ∈ σ ~T (A)}.

When comparing hod premice we need to consider iterations in which at certain
stages I is allowed to use the un-dropping extender of the resulting stack. The game
producing such iterations is defined below.

Definition 2.7.3 (The un-dropping iteration game) Suppose P is a hod-like
lsp with an indexing scheme φ. The un-dropping iteration game on P, Guk (P , κ, λ, α),
is an iteration game satisfying the following conditions:

1. If any of the models produced during a run of Guk (P , κ, λ, α) is ill-founded or
doesn’t have indexing scheme φ then player II loses that run.

2. Guk (P , κ, λ, α) has at most κ main rounds. Player I starts the main rounds.

3. If p is a run of Guk (P , κ, λ, α) and Mζ is the model at the beginning of the ζth
main round of p then the ζth main round of p is a run of Gk(Mζ , λ, α).
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4. Suppose p is a run of Guk (P , κ, λ, α) and (Mξ : ξ < ζ) are models at the
beginning of the main rounds of p. Suppose ξ < γ and γ + 1 < ζ. Then the
iteration embedding π :Mξ →Mγ exists.

5. Suppose p is a run of Guk (P , κ, λ, α). Then player I can start a main round in
two different ways.

(a) Suppose first p has ζ < κ main rounds where ζ is a limit ordinal. Let
(Mα : α < ζ) be the sequence of the models at the beginning of the main
rounds. Let then Mζ be the direct limit of Mα under the iteration em-
beddings. Then the ζth main round is played on Mζ.

(b) Next suppose ζ = γ + 1. Then I can start a new main round only if the

stack played in the γth main round is continuable. Let then ~Tγ be the stack

played in the γth main round and suppose ~Tγ is continuable with last model
R. Then Player I chooses Q Ehod Rb and ξ ≤ γ. Let π : Mξ → Mγ

be the iteration embedding in ~T and let F
~T
ξ,γ be the (δM

b
ξ , δM

b
γ )-extender

derived from π. Set

Mζ = Ult(Ult(Mξ, F
~T
ξ,γ), E

~Tγ
Q ).

Then I can start a new main round, if she wishes so, on Mζ.

If ~T is a run of Guk (P , κ, λ, α), then we let (Mς , ~Tς ,Qς , ξς , Fς , Eς : ς < η) be such that

1. Mς is the lsp at the beginning of the ςth main round,

2. ~Tς is the stack played in the ςth main round,

3. if R is the last model of ~Tς and ς + 1 < η then Qς Ehod Rb,

4. ξς ≤ ς,

5. Fς is the (δM
b
ξ , δM

b
γ )-extender derived from π

~TMξς
,Mς ,

6. Eς = E
~Tς
Qς and

7. both Fς and Eς are defined iff ς + 1 < η.

We will often omit ξς and Fς as those are not essential. If Σ is a winning strategy for
II in Guk (P , κ, λ, α) then we say Σ is a (κ, λ, α)-strategy. We say ~T is a generalized
stack if it is produced via a run of the un-dropping game.
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It is important to remark that clauses 4 and 5b are in conflict. Clause 4 blocks
the possibility of un-dropping to an earlier model than the model at the end of
the previous main round while 5b allows one to go back. The issue is resolved by
noticing that Player I can un-drop to an earlier model than the model at the end
of the previous main round only once. We require that our iteration strategies be
(ω1, ω1, ω1)-strategies.

Definition 2.7.4 (Hod-like lsp pair) We say (P ,Σ) is a hod-like lsp pair (with
an indexing scheme φ) if P is a hod-like lsp (with an indexing scheme φ) and Σ is a
winning strategy in Guk (P , ω1, ω1, ω1).



Chapter 3

Short tree strategy mice

3.1 The short tree component of a strategy

Suppose (P ,Σ) is a hod-like lsp pair such that P is of lsa type. We suppress the
indexing scheme that the pair (P ,Σ) has from our notations below; the particular
indexing scheme will not matter for what follows. The next definition isolates the
short tree component of Σ denoted by Σstc. Let κ = δPλP−1 and δ = δPλP .

Definition 3.1.1 (The normal short tree component of a strategy) We first
define Σnstc, the portion of the short tree component that acts on normal trees. Sup-
pose T is a normal tree on P of limit length. Let b = Σ(~T ). We then let

Σnstc(T ) =

{
b : πTb doesn’t exist or πTb (δ) > δ(T ),

MT
b : otherwise.

Suppose Q is an iterate of P via ~T such that π
~T exists. We define the short tree

component of Σ by concatenating all Σnstc
Q,~T .

To make the next definition more intuitive, we say T is a Σ-maximal tree on P if
T has a limit length, is according to Σ and the second case of Definition 3.1.1 above
holds for T . Notice that maximality of T depends on Σ. Also, if T is a tree then we
let T − be T without its last model if it exists and T otherwise.

The next definitions describe when a stack is according to the short tree strategy
component of Σ.

Definition 3.1.2 We let

~U = (Nα,Uα : α < η) ∈ dom(Σstc)

39
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if there is ~T = (Mα, Tα : α < η) ∈ dom(Σ) such that ~U is the same as ~T except it

doesn’t have the maximal branches of ~T ; more precisely,

1. For every α < η, Nα =Mα.

2. For every α < η such that π
~T �α-exists,

Uα =

{
T −α : Tα is ΣNα,~T �α-maximal,

Tα : otherwise.

3. Letting α be the least, if it exists, such that π
~T �α-doesn’t exist, for all β ≥ α−1,

Uβ = Tβ1.

4. There are finitely many α such that Uα 6= Tα.

5. Either η is a limit ordinal or Tη−1 has a limit length.

If ~T and ~U are as above then we write ~U = ~T sc and say that ~U is the short component
of ~T .

Finally, we define the domain of the short tree component of Σ on generalized
stacks.

Definition 3.1.3 (The short tree component of a strategy: the domain) We
let the generalized stack

~U = (Nα, ~Uα,Qα, Eα : α < η) ∈ dom(Σstc)

if there is a generalized stack ~T = (Mα, ~Tα,Rα, Fα : α < η) ∈ dom(Σ) such that ~U
is the same as ~T except it doesn’t have the maximal branches of ~T ; more precisely,

1. for every α < η, Nα =Mα, Qα = Rα and Eα = Fα,

2. for every α < η such that ~Uα = ~T scα ,

3. there are finitely many α such that ~Uα 6= ~Tα, and

4. either η is a limit ordinal or the last normal component of ~Tη−1 has a limit
length.

1Notice that α is necessarily a successor ordinal.
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If ~T and ~U are as above then we write ~U = ~T sc and say that ~U is the short component
of ~T .

Conditions (4) in 3.1.3 and (3) in 3.1.3 ensure that if the relevant stacks are of
limit length, we can take the direct limit. We will not be concerned with quasi-limits
(cf. [19]) here.

The next definition defines the short tree component of Σ. Recall that if ~T is a
stack of iteration trees then δ(~T ) is the sup of the generators of ~T . It can be defined

inductively on the number of normal components of ~T (see Definition 1.15 of [10]).

Definition 3.1.4 (The short tree component of a strategy) Given a general-
ized stack

~U = (Nα,Uα,Qα, Eα : α < η) ∈ dom(Σstc),

letting ~T be such that ~T sc = ~U and b = Σ(~T ), we let

Σstc(~U) =

{
b : π

~T
b doesn’t exists or πTb (δ) > δ(~T ),

M~T
b : otherwise.

Thus, Σstc(~T ) either returns the value of Σ(~T ) or M~T
b where b = Σ(~T ). From

now on, we will use this notation even when Σ is a partial iteration strategy.

Notice the similarity with the short tree iterability for suitable mice in the context
of core model induction or in the context of HOD analysis and Σstc. If P is a Σ2

1-
suitable premouse and Σ is fullness preserving iteration strategy for P ,2 Σstc is just
the short tree iterability strategy of P .

3.2 The short tree game and short tree strategy

mice

In order to define short tree strategy mice, we will need to define short tree strategy
in a way that it is independent of a particular strategy. The short tree strategies are
winning strategies for player II in the short tree iteration game introduced below. It
will not be hard to see that if Σ is a strategy then Σstc is a short tree strategy.

2Here Σ2
1 and fullness preservation are relative to an AD+-model.
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Definition 3.2.1 (The normal short tree game, Gnstk (P , λ)) Suppose P is a hod-
like lsa type φ-indexed lsp. Let κ = δPλP−1 and δ = δPλP . Then the short tree game
Gnstk (P , λ) is a two player game on P played as follows. Just like in Gk(P , λ), I plays
the successor steps in Gnstk (P , λ) according to the rules of Gk(P , λ). Let then T be an
iteration tree produced by a run of Gnstk (P , λ). Suppose T has a limit length. Then
II has the following two options:

Option 1. πT ,b exists, πT ,b(κ) < δ(T ) and there is M such that

1. M is φ-indexed,

2. M(T ) EhodM and M is λ-iterable above δ(T ) and

3. M is a hod-like lsa type lsp such that δM = δ(T ).

Option 2. Otherwise.

If Option 1 holds then II may choose, but is not required, to play M satisfying
the above clauses. If II plays M then the game stops. In all other cases, II must
play a cofinal branch b such that either πTb doesn’t exist or πTb (δ) > δ(T ).

Suppose p is a run of Gnstk (P , λ). II wins p if all models in p are φ-indexed and
well-founded.

If II plays according to Option 1 then we say that II plays a model (rather than
a branch) or that II’s move is a model and etc. Notice that if T is a tree satisfying
hypothesis of Option 1 then for some node Q of T , P ≺T ,s Q, πTP,Q exists, Q is a
cutpoint of T and T≥Q is a tree above πTP,Q(κ).

Next, we introduce the version of the normal short tree game that has at most ω
main rounds.

Definition 3.2.2 (The short tree game) Suppose P is a hod-like lsa type φ-indexed
lsp. The short tree game Gstk (P , λ, η) is an iteration game that has at most ω main
rounds each of which consists of a run of the usual (k, λ, η)-iteration game (see Def-
inition 2.5.5) with the following exceptions.

1. Suppose M is a model at the beginning of the main round of some run of the
game and ~T is a run of (k, λ, η) on M. Suppose R is a non-trivial terminal

node in ~T . If π
~T
R exists then the largest irreducible initial segment of ~T≥R is

played according to the rules of Gnst(R, η). If π
~T
R doesn’t exist then the largest

irreducible initial segment of ~T≥R is played according to the rules of the usual
iteration game.
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2. If at any point during the run of a sub-round, II plays a model then I has to
start a new main round on that model, and all main rounds are started in this
fashion.

Suppose p is a run of Gstk (P , λ, η). II wins p if all models in p are φ-indexed and
well-founded. Additionally, if p has ω main rounds, then II wins.

Finally, we introduce the un-dropping short tree game.

Definition 3.2.3 (The un-dropping short tree game) Suppose P is a hod-like
lsa type φ-indexed lsp. The un-dropping short tree game on P, Gustk (P , λ, η, α), is an
iteration game that has at most ω main rounds each of which consists of a run of
Guk (P , λ, η, α) (cf. Definition 2.7.3) with the following exceptions.

1. Suppose M is a model at the beginning of a main round of some play and ~T is
a run of Guk (P , λ, η, α). Suppose ~T = (Mς , ~Tς ,Qς , Eς : ς < η). Then for each

ς < η, ~Tς is played according to the rules of Gst(Mς , η, α).

2. If at any point during the run of a sub-round, II plays a model then I has to
start a new main round on that model, and all main rounds are started in this
fashion.

Suppose p is a run of Gustk (P , λ, η, α). II wins p if all models in p are φ-indexed and
well-founded. Additionally, if p has ω main rounds, then II wins.

Definition 3.2.4 (Short tree strategy) Suppose P is an lsa type φ-indexed lsp.
We say Λ is a short tree (λ, η, α)-strategy for P if Λ is a wining strategy for II in
Gustk (P , λ, η, α).

Suppose now P and Λ are as in Definition 3.2.4. We let b(Λ) be the set of all
~T ∈ dom(Λ) such that ~T has a last normal component of limit length and Λ(~T ) is

a cofinal wellfounded branch of ~T . Let m(Λ) = dom(Λ) − b(Λ). We call m(Λ) the

model component of Λ. Given ~U ∈ dom(Λ) such that the last component of ~U has a
limit length, we let

M(Λ, ~U) =

{
M~U

b : Λ(~U) = b

Λ(~U) : otherwise.
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Remark 3.2.5 In many situations, it is expected that winning Gstk (M, κ, λ) must be
easy for II: II wins it as soon as she plays infinitely many models. However, we will
be interested in strategies for II that have certain fullness preservation properties.
For instance, suppose M is just a suitable mouse in the sense of L(R). Suppose Λ
is strategy for II in Gnstk (M, ω1) such that whenever T is a tree according to Λ then

1. if T ∈ b(Λ), b = Λ(T ) and πTb exists then MT
b is (Σ2

1)L(R)-full and

2. if T ∈ m(Λ) and N = Λ(T ) then N is suitable in the sense of L(R)

then Λ is in fact a “short tree iterability strategy” in the sense of L(R), it is L(R)-
fullness preserving. Such strategies are difficult to construct, and in our current
situation, we will be interested in a notion of fullness preservation with respect to a
much more complicated pointclass than (Σ2

1)L(R).

3.3 Hull and branch condensation for short tree

strategy

The goal of this section is to introduce hull condensation for short tree strategies.
Hull condensation for iteration strategies was introduced in Definition 1.31 of [10]. It
is an important property that is used to show that when doing hod pair constructions
no discrepancies arise due to coring down. Thus if ~T is according to a strategy with
hull condensation and ~U is a hull of ~T (cf. Definition 3.3.3) then it is according to
the strategy.

The difference between strategies and short tree strategies is that short tree strate-
gies have a model component, and this difference causes some complications when
trying to outright generalize hull condensation. The resulting definition is just sim-
ply too strong. Our solution is based on our indexing scheme Definition 3.6.2. In
short tree strategy mice, we only index branches of a certain kind of iterations. We
introduce such iterations.

First we define the unambiguous stacks which are essentially the stacks whose
branches are easy to guess.

Definition 3.3.1 (Unambiguous stacks) Suppose P is a hod-like lsa type lsp and
~T is a run of Gstk (P , κ, λ) without any main rounds. We say ~T is unambiguous if

either, letting md
~T = (Ri, ~Ti : i ≤ k) be the sequence of main drops of ~T , k ≥ 1 or

one of the following holds:

1. There is a linear closed unbounded C ⊆ ntn(~T ).
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2. ~T has a last normal component T such that lh(T ) is a successor ordinal.

3. Clauses 1 and 2 above fail, and ~T has a last normal component of limit length
such that letting T be this normal component, one of the following conditions
hold:

(a) πT ,b doesn’t exist.

(b) πT ,b exists and for some cutpoint S of T and some η < o(S) such that
δSλS−1 < η, T≥S is a normal tree on OSη,η,η (see Definition 2.3.6) and is
above η.

(c) Clauses 3.a and 3.b fail, there is a cutpoint S of T such that T≥S is above
δSλS−1, and there is Q E J (M(T )) such that Q � “δ(T ) is Woodin” and
rud(Q) � “δ(T ) isn’t Woodin”.

Recall the notation M+(T ) from Notation 2.2.1.

Definition 3.3.2 (Finite stack) Suppose P is a hod-like lsa type lsp. We say
(P0, T0,P1, T1, ...,Pn−1, Tn−1,Pn) is a finite stack on P of length n+ 1 if

1. n < ω and P0 = P,

2. For i < n− 1, Ti is a normal ambiguous tree on Pi and Pi+1 =M+(Ti),

3. ~U , if it is defined, is a stack such that for some α + 1 < λPn, ~U is based on
Pn(α + 1) and ~U has a last normal component of limit length.

4. Tn−1 is either a normal ambiguous tree on Pn−1 and Pn =M+(Tn−1) or Pn is
the last model of Tn−1 and πTn−1-exists.

The iterations that we will consider in short tree strategy mice are stacks of length
2. We define hull condensation for such stacks.

Definition 3.3.3 (Hull of a stack) Suppose M and N are hod-like lsa type lsp

and ~T = (Mα, Tα : α < η) and ~U = (Mβ, Tβ : β < ν) are stacks on M and N
respectively such that ~T is based on Mb and ~U is based on N b. We say (N , ~U) is a

hull of (M, ~T ) if there are (i) an embedding π : N →Σ1 M, (ii) an order preserving

map σ : lh(~U) → lh(~T ) (iii) a sequence ~τ = (τβ : β < ν) of order preserving
maps τβ : lh(Uβ) → lh(Tσ(β)) and (iv) a sequence of Σ1-elementary embeddings

~π = (πβα : α < lh(Uβ)∧ β < ν) such that letting ≤~T be the tree order of ~T and ≤~U be

the tree order of ~U then
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1. for all (γ, α) and (ξ, β) such that γ, ξ < ν, α < lh(Uγ) and ξ < lh(Uξ), (γ, α) ≤~U
(ξ, β)↔ (σ(γ), τγ(α)) ≤~T (σ(ξ), τξ(β)) and

[(γ, α), (ξ, β)]~U ∩D
~U = ∅ ↔ [(σ(γ), τγ(α)), (σ(ξ), τξ(β)]~T ∩D

~T = ∅,

2. for every β < ν and α < lh(Uβ), πβα :MUβ
α →M

Tσ(β)

τβ(α) and πβα(EUα ) = E
Tσ(β)

τβ(α),

3. for every γ < ν and β < α < lh(Uγ), πγα � lh(E
Uγ
β ) + 1 = πγβ � lh(E

Uγ
β ) + 1,

4. for every γ < ν, if α ≤U β and [α, β]Uγ∩DUγ = ∅ then πγβ◦π
Uγ
α,β = π

Tσ(γ)

τγ(α),τγ(β)◦πγα,

5. for every γ < ν, if β = predUγ (α + 1) then τγ(β) = predTσ(γ)
(τγ(α + 1)) and

πγα+1([a, f ]
E
Uγ
α

) = [πγα(a), πβ(f)]
E
Tσ(γ)
τγ (α)

,

6. (0, 0) ≤~T (σ(0), τ0(0)), [(0, 0), (σ(0), τ0(0))]∩D~T = ∅, and π0
0 = π

~T
(0,0),(σ(0),τ0(0))◦

π.

We say (π, σ, ~τ , ~π) witnesses that (N , ~U) is a hull of (M, ~T ).

Definition 3.3.4 (Hull of a stack of length 2) Suppose M is a hod-like lsp and

u = (M,U ,M1, ~W) and t = (M, T ,M2, ~S) are two stacks of length 2. We say
(M, u) is a hull of (M, t) if there are (i) a pair (π, ~π) witnessing that (M,U) is a

hull of (M, T ) and (iii) a sequence (σ, τ,~k,~j) witnessing that (M1, ~W) is a hull of

(M2, ~S) such that if πU exists then (π, ~π)_(σ, τ,~k,~j) witnesses that (M,U_ ~W) is a

hull of (M, T _ ~S) and if πU doesn’t exist then, letting

1. σb = σ � (M1)b and

2. for (γ, α) ∈ lh( ~W)× lh(Wγ),

jγ,bα =

{
jγα � (MWγ

α )b : π
~W
≤M ~W

γ,α,b exists

jγα : otherwise

then for any (γ, β) ∈ lh( ~W)× lh(Wγ) letting m = π
~W
≤M ~W

γ,α
,b

and n = π
~S
≤M~S

τ(γ),kγ (α)

,b

(if they exist)

n ◦ σb ◦ πU ,b = jγ,bα ◦m ◦ πU ,b
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To finally define hull condensation for short tree strategy, we need to introduce a
few more definitions. Suppose (P ,Σ) is a pair such that P is a hod-like lsa type lsp
and Σ is a short tree strategy for P . First we introduce two sorts of iterates of (P ,Σ),

Ib(P ,Σ) and I(P ,Σ). To start, we let max(P ,Σ) consist of pairs (~T ,Q) such that ~T
is according to Σ, Q is the last model of ~T and if ~T = (Mi, ~Ti : i ≤ n) then for some

ordinal γ, ~Tn has a last normal component of length γ + 1 and ~T −n ∈ m(ΣMn,⊕i<n ~Ti).
Thus, max(P ,Σ) is the set of maximal Σ-iterates of P .

Definition 3.3.5 (Ib(P ,Σ) and I(P ,Σ)) Suppose (P ,Σ) is a pair such that P is
an lsa type lsp and Σ is a short tree strategy for P. We then let

Ib(P ,Σ) = {(~T ,Q) : ~T is according to Σ, Q is the last model of ~T and π
~T ,b exists},

I(P ,Σ) = {(~T ,Q) : ~T is according to Σ, Q is the last model of ~T and if
~T = (Mi, ~Ti : i ≤ n) then either π

~Tn exists or ~T ∈ max(P ,Σ)},

From now on, we fix a natural coding of subsets of HC by sets of reals. We call
such a coding Code.

Definition 3.3.6 Suppose (P ,Σ) is a pair such that P is a hod-like lsa type lsp and
Σ is a short tree strategy for P. We then let

B(P ,Σ) = {(~T ,Q) : ∃R((~T ,R) ∈ Ib(P ,Σ) ∧Q Ehod Rb)},

and

Γb(P ,Σ) = {A ⊆ R : ∃(~T ,Q) ∈ B(P ,Σ)(A ≤w Code(ΣQ,~T )}.

Definition 3.3.7 (Hull condensation) Suppose P is a hod-like lsa type lsp and Σ
is a short tree strategy for P. We say Σ has hull condensation if

1. for all (~T ,Q) ∈ B(P ,Σ), ΣQ,~T has hull condensation, and

2. whenever (~T ,Q) ∈ I(P ,Σ), u = (Q,U ,Q1, ~W) and t = (Q, T ,Q2, ~W ′) are two
stacks of length 2 on Q such that t is according to ΣQ,~T and (Q, u) is a hull of
(Q, t) then u is according to ΣQ,~T .

Next we introduce branch condensation for short tree strategies. We will need
this notion in the definition of hod mice (see Definition 3.9.3).
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Definition 3.3.8 (Branch condensation for short tree strategies) Suppose (P ,Σ)
is such that P is a hod-like lsa type lsp and Σ is a short tree strategy for P. We say
Σ has branch condensation if whenever (~T ,Q, ~U ,R, π,S, c, α, β) is such that

1. (~T ,Q), (~U ,R) ∈ Ib(P ,Σ),

2. α < λR
b

and S is a tree according to ΣR, ~U on Rb based on R(α+ 1) such that

it has limit length and is above δRα ,

3. c is a branch of S such that πSc exists, and

4. π : S → Q(β) and π
~T ,b = π ◦ πSc ◦ π

~U ,b

then c = ΣR, ~U(S).

3.4 Lsa type pair

Suppose P is a hod-like lsa type lsp and suppose Λ is a short tree strategy for P .
We would like to introduce the notion of a short tree premouse and in particular,
Λ-premouse. The main technical problem is that we do not have a reasonable notion
of condensation for short tree strategies. In particular, if Λ = Σstc for some strategy
Σ, then it may well be that there is a tree T on P such that if b = Σ(T ) then b is
non-dropping and πTb (δ) = δ(T ) yet there is a hull U of T such that if c = Σ(U)
then in fact πUc (δ) > δ(U). Thus, Λ(T ) =MT

b while Λ(U) = c.
The above scenario is the main difficulty with defining short tree strategy mice.

We have to find a particular indexing of short tree strategies, or rather carefully skip
over “bad trees”, in a way that when T above is “cored down” to U above then our
indexing is still preserved. In particular, the branch of U cannot be added too early.
The idea is to wait until branches or rather the Q-structures are certified. Before we
define short tree hybrids, however, we have to make a few definitions that will be
useful to us in the future.

We will only consider short tree strategies Λ with the property that whenever
~T ∈ dom(Λ) is an unambiguous stack then Λ(~T ) is a branch. If Λ is a short tree

strategy for P and ~T is a stack on P according to Λ with last model N then we
let ΛN ,~T be the short tree strategy of N induced by Λ, i.e., for every ~U on N ,

ΛN ,~T (~U) = Λ(~T _ ~U).

Definition 3.4.1 (Faithful short tree strategy) Suppose P is a hod-like lsa type
lsp and Λ is a short tree (κ, λ, η)-strategy for P. We say Λ is a faithful short tree
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(κ, λ, η)-strategy if whenever ~T = (Mi, ~Ti : i ≤ k < ω) ∈ dom(Λ), and R ∈ tn(~T )

then, letting ~U be the largest initial segment of ~T that is based on R and has no main
rounds, then

1. if ~U is unambiguous then ~U ∈ b(ΛR,~T≤R),

2. if clause 3.c of Definition 3.3.1 holds for ~U then letting S be the cutpoint node
of ~U witnessing clause 3.c of Definition 3.3.1 then ΛS, ~U≤S (~U≥S) is a branch of

~U such that Q(b, ~U≥S) exists and Q(b, ~U≥S) E J (M(~U≥S)).

In the next section we will need to consider short tree iteration strategies that
are partial and their range consists of branches. The next definition introduces this
notion.

Definition 3.4.2 (Short tree strategy without a model component) Suppose
P is a hod-like lsa type lsp. We say Λ is a partial short tree strategy for P if it is a
partial winning strategy in Gstk (P , ω1, ω1, ω1). If Λ is a partial short tree strategy for
P then we say it is without model component if m(Λ) = ∅.

We can then also define faithful short tree strategies without model component.

Definition 3.4.3 (Lsa type pair) We say (P ,Λ) is a hod-like lsa type pair if P is
a hod-like lsa type lsp and Λ is an (ω1, ω1, ω1) faithful short tree strategy with hull
condensation. We say (P ,Λ) is a hod-like lsa type pair without model component if
P is a hod-like lsa type lsp and Λ is an (ω1, ω1, ω1) faithful short tree strategy without
model component.

3.5 (P ,Σ)-hod pair construction

Suppose that (P ,Σ) is a hod-like lsa type pair. Below we describe a fully back-
grounded construction that, if successful, constructs a Σ-iterate of P . We say a
(κ, λ)-extender E coheres Σ if P ∈ Vκ, Vλ ⊆ Ult(V,E) and πE(Σ) � Vλ = Σ � Vλ.

Definition 3.5.1 ((P ,Σ)-coherent fully backgrounded constructions) Suppose
κ is an inaccessible cardinal and (P ,Σ) is a hod-like lsa type pair such that Σ is a
(κ, κ, κ)-short tree strategy. Then for η < κ, we say ((Mγ,Nγ : γ ≤ η), (Fγ : γ <
η), (Tγ : γ ≤ η)) is the output of the (P ,Σ)-coherent fully backgrounded construction
if the following holds.
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1. M0 = ∅.

2. Mγ is a hod-like lsp such that in the comparison of P with Mγ, Mγ doesn’t
move and the comparison results in a tree Tγ on P according to Σ such that
either Tγ has a last model M such that Mγ EhodM or Mγ =M(Tγ).

3. Suppose γ ≤ η is such that either Tγ has a last model or Tγ ∈ b(Σ). Let M be

the last model of Tγ if it exists and otherwise, letting b = Σ(Tγ), letM =MTγ
b .

Let ς be such that Mγ = M|ς and suppose Mγ = J ~E,f
ξ . Then the following

statements hold.

(a) If Mγ =M then γ = η.

(b) Suppose Mγ /M. Suppose there is no pair (F ∗, F ) and an ordinal ζ < ξ
such that F ∗ ∈ Vκ is an extender over V cohering Σ, F is an extender
over Mγ, Vζ+ω ⊆ Ult(V, F ∗) and

F = F ∗ ∩ ([ζ]ω × J ~E,f
ξ )

such that (J ~E,f
ξ ,∈, ~E, f, F̃ ) is a hod-like lsp (here F̃ is the amenable code

of F ). Then Nγ = J1(Mγ) and Mγ+1 = Cω(Nγ).

(c) Again suppose Mγ /M but there is a pair (F ∗, F ) and an ordinal ζ sat-

isfying the above conditions. Then if F ∈ ~EM then we let

Nγ = (J ~E,f
ξ ,∈, ~E, f, F̃ )

where F̃ is the amenable code of F . Also, Mγ+1 = Cω(Nγ). If F 6∈ ~EM

then γ = η and we stop the construction.

(d) Again suppose Mγ /M and that M|ς is an active J -structure such that
its last predicate codes a set A that is not an extender. Let then Nγ =
(Mγ, A,∈) and Mγ+1 = Cω(Nγ).

4. Suppose γ ≤ η is such that Tγ is of limit length and Tγ 6∈ b(Σ). Then γ = η.

Remark 3.5.2 Notice that the constructions introduced in Definition 3.5.1 can be
carried out even when (P ,Σ) is a hod-like lsa type pair without model component.
It can also be carried out when Σ is a partial strategy. Also, if the background uni-
verse has a distinguished extender sequence then we tacitly assume that the extenders
appearing in the (P ,Σ)-coherent fully background construction come from this dis-
tinguished extender sequence.
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3.6 A short tree strategy indexing scheme

Our goal here is to introduce the notion of a short tree strategy premouse (sts pre-
mouse). As we mentioned in the previous section, the difficulty with doing this lies
in the fact that maximal trees might “core down” to short trees and thus, creating
indexing issues. The idea behind the solution presented here is to add a branch for
a tree as soon as we see a certificate, which in our case will be a Q-structure, that it
is short. As the Q-structures that we will be looking for are themselves sts premice,
this inevitably leads to an induction.

Technically speakingM in Definition 3.6.1 should not be sp (strategy premouse)
as fN doesn’t quite code an iteration strategy. Its domain consist of finite stacks of
length 2. But recall the abuse of terminology proposed by Remark 2.2.2

Definition 3.6.1 (Unambiguous sp) Suppose M is an sp over some self-well-
ordered set X based on a hod-like lsa type lsp P. We say M is unambiguous if M
is closed under sharps and whenever t = (P0, T0,P1, ~U) ∈ M is a finite stack on P
of length 2 according to ΣM such that either

1. ~U = ∅ and M � “T0 is an unambiguous tree of limit length” or

2. ~U is a nonempty stack of limit length

then t ∈ dom(ΣM). We say M is ambiguous if it is not unambiguous.

The next definition introduces an indexing scheme that we will use to define short
tree premice. The indexing scheme only defines the strategy on certain carefully
chosen stacks. It turns out that this much information is enough to extend the
strategy on all stacks (see Chapter 6). In the next two definitions, instead of explicitly
writing what ψ says, we indicate the impact that it has on the structures satisfying
it. We leave it to the reader to extract the actual formula from our description.

Definition 3.6.2 (φ-sts indexing scheme) Suppose ψ(x) and φ(x, y) are two for-
mulas in the language of sp. We say ψ is a φ-sts indexing scheme for φ if whenever
X is a self-well-ordered set, P ∈ X is a hod-like lsa type lsp and N is an sp over X
based on P then N � ψ[c] if and only if

1. N is closed under sharps,

2. N � “ΣN is a partial faithful short tree strategy without model component”,
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3. for some finite sequence t = (P0, T0,P1, ~U) ∈ N on P of length 2 such that t

is according to ΣN , lh(T0) is not of measurable cofinality, and lh(~U)3 is not of
measurable cofinality, c = Jω(t),

4. letting t = (P0, T0,P1, ~U) be as in clause 3 above, the following conditions hold.

(a) There is (ν, ξ) such that letting ((Mγ,Nγ : γ ≤ η), (Fγ : γ < η), (Uγ :
γ < η)) be the output of the (P ,ΣN )-coherent fully backgrounded con-
struction of N in which extenders used have critical points > ν (see Def-
inition 3.5.1), Uξ = T0.

(b) If N is ambiguous4 then t is the N -least stack on P satisfying clause 4.a
and witnessing that N is ambiguous.

(c) If N is unambiguous, then ΣN (T0) is undefined and letting (ν, ξ) be the
least witnessing clause 4.a above, N � “there is a unique cofinal well-
founded branch b ∈ N of T0 such that φ[T0, b] holds”

Notice that ψ is uniquely determined by φ. The meaning of clause 4 is as follows.
Clause 4a implies that the domain of the strategy consist of stacks (P0, T0,P1, ~U) of
length 2 such that T0 is a tree appearing in the (P ,ΣN )-coherent fully backgrounded

construction. It is then required that ~U be based on Pb1. Clause 4b says that for
unambiguous stacks we use the standard indexing scheme. Clause 4c says that for
ambiguous stacks indexing branches that have property φ, which we want to say that
“there is a certified Q-structure”. This is done in Definition 3.8.2.

Definition 3.6.3 (Sts φ-premouse) Suppose X is a self-well-ordered set, P ∈ X
is a hod-like lsa type lsp and φ(x, y) is a formula in the language of sp. Then M is
an sts φ-premouse over X based on P ifM is an sp over P with an indexing scheme
ψ where ψ is the φ-sts indexing scheme.

If φ(x, y) = “0 = 1” then we say M has a trivial indexing scheme and also say
thatM is a trivial sts premouse. Notice that in a trivial sts ambiguous trees do not
have branches.

3By this, we mean the sum of the lengths of the normal components of ~U .
4This implies that ~U = ∅ and T0 is N -ambiguous.
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3.7 Authentic finite stacks

Suppose (P ,Σ) is a hod-like lsa type pair. Suppose T is a tree on P according to
Σ such that πT ,b exists and M+(T ) � “δ(T ) is a Woodin cardinal”. When defining
short tree strategy mice, we will be faced with the following question? How can we
guess the iterations of M+(T ) that are according to ΣM+(T ),T ? In this section, we
present an authentication process that allows us to guess the correct iterations of
M+(T ).

The main technical object used in our authentication process is s(~T , ξ) introduced
in Definition 2.6.7. We start by recalling it. Suppose P is a non-meek hod premouse
and ~T is a stack on P such that π

~T ,b exists. Let Q = π
~T ,b(Pb). For ξ + 1 ≤ λQ and

X ⊆ Pb, we let

s(~T , X, ξ) = {α : ∃a ∈ (δQξ + 1)<ω∃f ∈ X(α = π
~T ,b(f)(a))} ∩ δQξ+1

When X = Pb then we just write s(~T , ξ).

Definition 3.7.1 (Authentic hod-like lsp) Suppose (P ,Σ) is an sts hod-like pair,
T is a normal tree on P according to Σ such that πT ,b exists and X ⊆ Pb. Let
S = πT ,b(Pb). Suppose R is a hod-like lsp. We say (T , X) authenticates R if for
some α < λS and some ξ ≤ o(S(α)), there is a normal tree U on R with last model
S||ξ5 and such that

1. (S(α))b = HullS
b
(πT ,b[X] ∪ δ(S(α))b),

2. whenever γ < lh(U) is a limit ordinal such that there is β + 1 ≤ α with the
property that S � “δSβ+1 is a Woodin cardinal” and M(U � γ) = S|δSβ+1 then
the branch b of U � γ is such that for some τ ∈ b,

s(T , X, β) ⊆ rng(πUτ,b)

and

3. if R is of limit type then {x ∈ (S(α))b : x ∈ HullS(πT ,b[X])} ⊆ rng(πU ,b).

We say R is (P ,Σ, X)-authentic if there is T on P according to Σ such that (T , X)
authenticates R. We also say that R is (P ,Σ, X, T )-authentic.

Notice that there is only one tree U with the above properties. We say U is the
(T , X)-authentication tree on R, and (α, ξ) are the (T , X)-authentication ordinals.
When X = Pb we simply omit it from terminology.

5Recall that M||ξ is M up to ξ with the last predicate
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Clearly the tree U in Definition 3.7.1 is a tree built via a comparison process
in which S doesn’t move. A typical R that we would like to authenticate will be
an iterate of P . When Σ has nice properties, such as strong branch condensation
(see Definition 4.7.1 and Section 5.5), the clauses 2 and 3 of Definition 3.7.1 can be
satisfied. Next, we would like to define authentic iterations.

Definition 3.7.2 (Authentic iterations) Suppose (P ,Σ) is an sts hod-like pair,
T is a normal tree on P according to Σ such that πT ,b exists and X ⊆ Pb. Let
S = πT ,b(Pb). Suppose R is a hod-like lsp and ~W is a stack on R. We say

(T , X) authenticates (R, ~W) if (T , X) authenticates R and, letting U be the (T , X)-

authentication tree on R and (α, ξ) be the T -authentication ordinals, ~W is according
to πU -pullback of ΣS||ξ.

Again we omit X when X = Pb. We say (R, ~W) is a (P ,Σ, X)-authenticated
iteration if there is a tree T on P according to Σ such that (T , X) authenticates

(R, ~W). We also say that (R, ~W) is (P ,Σ, X, T )-authentic. When X = Pb we
simply omit it from terminology.

Next we define authentic stacks of length 2. These are stacks that will be impor-
tant in our definition of short tree strategy mice in the next section.

Definition 3.7.3 (Authentic stacks of length 2) Suppose (P ,Σ) is an sts hod

pair, X ⊆ Pb and R is an lsa type hod premouse. Suppose t = (R0,U ,R1, ~W) is
a stack on R of length 2. We say t is a (P ,Σ, X)-authenticated if the following
conditions hold.

1. Suppose S is a cutpoint of U , πU≤S ,b exists and some initial segment of U≥S is
based on Sb. Then (Sb,K) is (P ,Σ, X)-authenticated iteration, where K is the
longest component of U≥S that is based on Sb.

2. Suppose S is a cutpoint of U such that πU≤S ,b exists and some initial segment
of U≥S is above δSλS−1. Let K be the longest such initial segment. Then the
following conditions hold.

(a) Suppose K doesn’t have any fatal drops. Then for any limit α < lh(K), if
b is the branch of K � α then Q(b,K � α) exists and is (P ,Σ, X)-authentic.

(b) Suppose K has a fatal drop at (α, η). Let Q = OM
K
α

η . Then (Q,K≥Q) is a
(P ,Σ, X)-authenticated iteration.

3. ((R1)b, ~W) is a (P ,Σ, X)-authenticated iteration.
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When X = Pb we simply omit it from terminology.

It is of course desirable that (P ,Σ)-authenticated stacks are according to Σ. We
will show this in Section 5.5. In the next section, we will use our authentication idea
to define certified stacks.

3.8 Short tree strategy mice

We now have developed enough terminology and tools to define sts premice. We use
the following notation below. Suppose M is a transitive model of some fragment of
set theory and λ is a limit of Woodin cardinals. Let g ⊆ Coll(ω,< λ) beM-generic.
Then we let D(M, λ, g) stand for the derived model of M at λ computed using g.
More precisely, letting R∗ =

⋃
α<λRM[g∩Coll(ω,<α)], D(M, λ, g) is defined inM(R∗) by

first letting Γ = {A ⊆ R∗ : L(A,R∗) � AD+} and then letting D(M, λ, g) = L(Γ,R∗).
Woodin’s derived model theorem says that D(M, λ, g) � AD+ (see [27]).

Before we introduce the notion of short tree strategy premouse, we take a moment
to describe the intuition behind the definition. Suppose P is a hod-like lsa type lsp
and T is a normal ambiguous tree on P . We would like to find the correct Q-
structure for T . We first attempt to find this Q-structure among sp that have a
trivial indexing scheme ψ0, i.e., no ambiguous tree has an indexed branch. However,
there may never be such an sp that can be used as Q-structure. Assume then that
this is the case. We then immediately encounter two problems.

The first problem is to know exactly when to stop looking for a Q-structure
among trivial sp’s. We will do this as soon as we reach a sufficiently closed Q. To
know that we have reached such a level, we need to address the second problem.

The second problem is to describe the next type of gadgets that can be used
as Q-structures. A natural choice is the collection of sp’s over M(T ) in which
all ambiguous trees have Q-structures with the trivial indexing scheme. This is our
second indexing scheme. Let us call it ψ1. One wrinkle is that we need a certification
method for the Q-structures that are used in a ψ1-sts premouse. This is done by
using the ideas from Definition 3.7.3.

The way we put the two ideas together is as follows. We first search for a Q-
structure among sp’s with trival indexing scheme ψ0. If we reach a level Q0 that
has a ψ1-sts Q1 ∈ Q0 that can be used as Q-structure then we stop and see if Q0

certifies Q1 (see Definition 3.8.2). If yes, then we declare success. If no, then we
continue with trivial indexing. This naturally leads to an induction, in which we
define more and more complex indexing schemes. To show that we indeed reach the
desired Q-structure we have to use an appropriate notion of fullness preservation.
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Before we begin, we make the following useful definition.

Definition 3.8.1 (Terminal tree) Suppose X is a self-well-ordered set, P ∈ X is
a hod-like lsa type lsp, φ(x, y) is a formula in the language of sp and N is an sts
φ-premouse over X based on P. Given T ∈ N on P, we say T is N -terminal if T
is according to ΣN and N � “T is ambiguous”.

We now by induction define a sequence of indexing schemes (ψβ : β ∈ Ord). To
start we let ψ0 be the trivial indexing scheme, i.e., ψ0 is just “0=1”. Thus, if M is
an sts ψ0-premouse then M does not have branches for ambiguous trees.

Definition 3.8.2 (Sts indexing scheme) Suppose (ψβ : β < α) have been defined.
We let ψα be the following formula in the language of sp. Suppose X is a self-well-
ordered set, P ∈ X is a hod-like lsa type lsp and M is an unambiguous sp over X
based on P. ThenM � ψα[T , b] if and only if (T , b) is theM-lexicographically least6

pair such that T is an M-terminal tree on P, lh(T ) is not of measurable cofinality,
and b is a cofinal branch through T such that for some pair (β, γ) such that γ < α
and β < o(M),

1. M|β is unambiguous (see Definition 3.6.1) and M|β � ZFC + “there are in-
finitely many Woodin cardinals > δ(T )”,

2. b ∈M|β and M|β � “b is well-founded branch”,

3. M|β � “Q(b, T ) exists and is an sts ψγ-premouse over M(T )” and

4. letting (δi : i < ω) be the first ω Woodin cardinals > δ(T ) of M|β, M|β �
“Q(b, T ) is < Ord-iterable above δ(T ) via a strategy Σ such that letting λ =
supi<ω δi, for every generic g ⊆ Coll(ω,< λ), Σ has an extension Σ+ ∈
D(M|β, λ, g) such that D(M, λ, g) � “Σ+ is an ω1-iteration strategy” and
whenever R ∈ D(M|β, λ, g) is a Σ+-iterate of Q(b, T ) (above δ(T )) and t ∈ R
is a stack on M+(T ) of length 2 then t is (P ,ΣM|β)-authenticated”.

The lexicographically least pair (β, γ) satisfying the above conditions is called the least
(M, ψα)-witness for (T , b). We also say that (β, γ, b) is an M-minimal shortness
witness for T . We also say that T has an M-shortness witness.

6This is just the order defined by: first order the first coordinate by <M, the canonical well-order
of M, then order the second coordinate by <M.
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Notice that M has at most one M-shortness witnesses for T . We set ψOrd =def

ψsts and refer to ψsts as the sts indexing scheme. Notice that in Definition 3.8.2 we
tacitly assumed the following absoluteness lemma that can be proved by an easy
induction.

Lemma 3.8.3 Suppose M is a transitive model of ZFC, X ∈ M is a sellf-well-
ordered set, P ∈ X is a hod-like lsa type lsp, M ∈ M is an sp over X based on P
and γ < o(M). Then M � “M is an sts ψγ-premouse” if and only if M is an sts
ψγ-premouse.

The next few definitions introduce sts premice.

Definition 3.8.4 (α-sts premouse) Suppose α ∈ Ord or α = Ord. Suppose X is
a sellf-well-ordered set and P ∈ X is a hod-like lsa type lsp. We say M is an α-sts
premouse over X based on P if M is a ψα-sts premouse over X based on P. When
α = Ord we just say that M is an sts premouse over X based on P.

Definition 3.8.5 (Sts mouse) Suppose X is a self-well-ordered set and P ∈ X is
a hod-like lsa type lsp. We say M is an sts mouse over X based on P if M is an
sts premouse over X based on P which is ω1 + 1-iterable.7

Definition 3.8.6 (Λ-sts premouse) Suppose X is a self-well-ordered set, P ∈ X
is a hod-like lsa type lsp, Λ is an short tree strategy for P and M is an sts premouse
over P. Then we say M is a Λ-sts premouse over P if ΣM ⊆ Λ �M.

Definition 3.8.7 (Λ-sts mouse) Suppose X is a self-well-ordered set, P ∈ X is a
hod-like lsa type lsp, Λ is an short tree strategy for P and M is a Λ-sts premouse
over P. Then we say M is a Λ-sts mouse over P if M has an ω1 + 1-iteration
strategy Σ such that whenever N is a Σ-iterate of M via Σ, N is a Λ-sts premouse
over P.

3.9 Hod mice

The main goal of this section is to introduce lsa small hod premice. We start by
isolating the types of points in Y P where P is hod-like lsp.

Notation 3.9.1 (Meek and lsa points) Suppose P is a hod-like lsp.

7Here implicit in this is the demand that iterates of P according to the strategy are sts premice.
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1. meek(P) = {Q ∈ Y P : Q is of meek type}.

2. lsa(P) = {Q ∈ Y P : Q is of lsa type}.

3. QP =
⋃
Y P .

Definition 3.9.2 Suppose P is a hod-like lsp and Q /R are either layers of P or
Q =M+(P|δP) and R = P.

1. We say R is the P-successor of Q if there is no S ∈ Y P such that Q / S /R.

2. We say Q is a cutpoint of P if Q / P|δP and if S ∈ Y P is the P-successor of
Q then S is of successor type.

3. Suppose Q is of lsa type. We say R witnesses that Q is not of lsa type if R is
least such layer of P such that R � “δQ is a Woodin cardinal” but J1(R) � “δQ

is not a Woodin cardinal”.

Definition 3.9.3 (Hod premouse) Suppose P = J ~E,f
β is a hod-like lsp. We say

P is an lsa small hod premouse if the following holds:

1. Suppose P is meek. Then P = OP,ω
δP ,δP

.

2. Suppose P is of lsa type I. Then P = OP,ω
δP ,((δP )+)P

. Moreover, for every n ∈
[1, ω), P|((δP)+n+1)P is an sts premouse over P|((δP)+n)P based on P|((δP)+)P .

3. (Lsa smallness) For every α such that α + 1 < λP , P(α + 1) isn’t of lsa type.

4. For all Q ∈ Y P − lsa(P), P � “ΣPQ is an (Ord,Ord,Ord)-strategy with hull
condensation and strong branch condensation” and if Q has a successor R then
P � “R is a ΣPQ-premouse over Q”.

5. For all Q ∈ lsa(P), letting R ∈ Y P be the successor of Q8, R � “ΣRQ is a
partial short tree strategy with hull condensation that acts on stacks of length
2” and R is a ΣRQ-sts premouse over Q.

6. For all Q ∈ lsa(P), if R ∈ Y P witnesses that Q is not of lsa type, then letting
Λ be the id-pullback of ΣPR, ΣPQ = Λsts.

7. Suppose η is a cutpoint of P. Then the following hold.

8Which exists because of close 3 above.
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(a) If P is meek or lsa type I then P � “OPη,η has an Ord-strategy acting on
trees that are above η”.

(b) If P is non-meek but not of lsa type I and η < δP then P � “OPη,η has a
δP-strategy acting on trees that are above η”.

8. If λP is a successor ordinal and P is either of successor type or of lsa type I
then for any P-cardinal η ∈ (δPλP−1, δ

P), P � “P|(η+) is (Ord,Ord)-iterable

for stacks that are above δPλP−1”

Definition 3.9.3 implicitly introduces an indexing scheme φ such that whenever
P is a φ-indexed lsp then P is a hod premouse. Next we define hod pairs.

Definition 3.9.4 (Hod pairs) We say (P ,Σ) is a hod pair if P is a hod premouse
and Σ is an (ω1, ω1, ω1)-strategy for P with hull condensation and such that whenever

Q is a Σ-iterate of P via ~T and S ∈ Y Q, either

1. R 6∈ lsa(Q) and ΣQR ⊆ ΣR,~T � Q or

2. R ∈ lsa(Q) and ΣQR ⊆ Σstc
R,~T � Q.

Next we introduce the collection of sets generated by hod pairs.

Definition 3.9.5 (Γ(P ,Σ) and B(P ,Σ)) Suppose (P ,Σ) is a hod pair of limit type.
We then let

B(P ,Σ) = {(~T ,Q) : ∃R((~T ,R) ∈ I(P ,Σ) ∧Q /hod Rb)}

and

Γ(P ,Σ) = {A ⊆ R : ∃(~T ,Q) ∈ B(P ,Σ)(A ≤w Code(ΣQ,~T )}.

Definition 3.9.6 (Pre-sts hod pairs) We say (P ,Σ) is a pre-sts hod pair if (P ,Σ)
is lsa type pair (see Definition 3.4.3), P is an lsa type hod premouse and Σ is a short

tree (ω1, ω1, ω1)-strategy for P with hull condensation such that whenever (~T ,Q) ∈
I(P ,Σ), Q is an lsa type hod premouse and for all R ∈ Y Q, ΣQR = ΣR,~T � Q.

To define sts hod pairs, we will make use of the notation introduced in Defini-
tion 3.3.6. Recall that in Definition 3.3.6, we introduced Γb(P ,Σ) but not Γ(P ,Σ).
We will define Γ(P ,Σ) for sts hod pairs in Section 8.1.

Suppose now that X is a self-well-ordered set, (P ,Σ) is a pre-sts pair such that
P ∈ X and Q is a Σ-sts mouse over X based on P . Let Λ be the strategy of Q. We
then let Γ(Q,Λ) be the collection of all sets of reals A such that for some Λ-iterate

R of Q, there is (~T ,S) ∈ B(P ,ΣR) such that A ≤w ΣS,~T .
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Definition 3.9.7 (Sts hod pairs) We say (P ,Σ) is an sts hod pair if (P ,Σ) is a
pre-sts pair such that whenever

1. (~T ,R) ∈ I(P ,Σ),

2. η ∈ (δRλR−1, δ
R
λR ] is such that J1(M+(R|η)) � “η is a Woodin cardinal”9,

3. ν ≥ η is a P-cardinal, and

4. Q E R is a ΣM+(R|η),~T -sts mouse over R|ν based on R|η

then Q has an iteration strategy Φ ∈ Γb(P ,Σ) witnessing that Q is a ΣM+(R|η),~T -sts

mouse over R|ν based on R|η and such that Γ(Q,Φ) <w Γb(P ,Σ).

Definition 3.9.7 imposes conditions on sts hod pairs that may seem unnatural.
However, these conditions are needed to prove that sts hod pairs behave nicely. For
instance, we will use these clauses in the proof of Lemma 5.5.1, which is an important
lemma showing that our indexing scheme doesn’t index incorrect branches. Our sts
indexing scheme is such that when indexing a branch of an ambiguous tree we do
not consult the strategy but instead look at the sts mouse itself. Lemma 5.5.1 shows
that indexed branches are according to the strategy.

We finish this section by introducing the minimal component of a short tree
strategy. Suppose (P ,Σ) is an sts hod pair and suppose ~T = (Pi, ~Ti : i < ω) is a

stack on P according to Σ. We then let ~T min be the same as ~T except that whenever
S is a cutpoint of ~T such that (~T≤S ,S) ∈ I(P ,Σ) and if W is the largest normal

component of ~T that is based on S and is above δS then, letting W− be W without
its last model if it exists and otherwise justW ,W− is of limit length, ~T _≤SW ∈ m(Σ)

and in ~T min, II plays M+(W−). Thus, in ~T min, when II plays a model she always
plays M+(W−).

Definition 3.9.8 Suppose (P ,Σ) is an sts hod pair. We say Ψ is the minimal
component of Σ if Ψ is a short tree strategy for P such that

1. ~T ∈ dom(Σ) if and only if ~T min ∈ dom(Ψ),

2. ~T ∈ b(Σ) if and only if ~T min ∈ b(Ψ), and

3. if ~T ∈ m(Ψ) then Ψ(~T ) =M+(W) where W is the last normal component of
~T .

9Recall Notation 2.2.1.



Chapter 4

Comparison theory of hod mice

4.1 Background triples and Suslin capturing

The goal of this section is to introduce background triples and Suslin, co-Suslin
capturing. We will use these notions to build hod pairs with desired properties, such
as fullness preservation and branch condensation.

Definition 4.1.1 (Background triple, Definition 2.24 of [10]) We say

M = (M, δ,Σ)

is a weak background triple if M � ZFC + “δ is a Woodin cardinal” and Σ ∈M is a
(δ, δ + 1)-iteration strategy for V M

δ with hull condensation acting on stacks that are
in Jω(V M

δ ). We say (M, δ,Σ) is a background triple if Σ is an (ω1, ω1)-strategy for
M and (M, δ,ΣVδ � Jω(V M

δ )) is a weak background triple.

Suppose M = (M, δ,Σ) is a a background triple and A ⊆ R. We review the
standard capturing notions. We say M Suslin captures A at η if there is a tree
T ∈M such that whenever N is a Σ iterate of M and i : M → N and whenever g is
< i(η)-generic over N , (p[i(T )])N [g] = A∩N [g]. We say M Suslin, co-Suslin captures
A at η if it Suslin captures both A and Ac.

Suppose Γ is a good pointclass.1 For x ∈ R, we let CΓ(x) be the largest countable
Γ(x)-set of reals. For transitive a ∈ HC and surjection g : ω → a, we let ag be the
real coding (a,∈) via g. More precisely, letting mEgn if and only if g(m) ∈ g(n),
ag = {(m,n) : g(m) ∈ g(n)}. Let πg : (ω,Eg) → (a,∈) be the transitive collapse of

1See [26, Definition 9.12].
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(ω,Eg). If also b ⊆ a, the we let bg = {m : πg(m) ∈ b}. We then let CΓ(a) = {b ⊆ a :
for comeager many g : ω → a, bg ∈ CΓ(ag)}.

Continuing with Γ, we say P is a Γ-Woodin if

1. P is countable,

2. for some P -cardinal δ, P = CΓ(CΓ(V P
δ )),

3. P � “δ is the only Woodin cardinal” and

4. for every η < δ, CΓ(Vη) � “η is not a Woodin cardinal”.

We say (P,Ψ) is a Γ-Woodin pair if

1. Ψ is an ω1-iteration strategy for P and

2. for every Ψ-iterate Q of P , Q is a Γ-Woodin.

Woodin showed under AD+ that for any good, scaled pointclass Γ not closed under
∀R, there are Γ-Woodin pairs (see [26, Theorem 10.3]). Given a Γ-Woodin pair
(P,Ψ), we let M#,Ψ

n be the minimal active Ψ-mouse with n Woodin cardinals and
Ψn be the unique ω1-iteration strategy of M#,Ψ

n .2

Definition 4.1.2 Suppose Γ is any pointclass and Γ∗ is the least good, scaled point-
class such that Γ ⊆ ∆∼ Γ∗. We say a background triple M Suslin, co-Suslin cap-
tures Γ if for some Γ∗-Woodin pair (P,Ψ), M Suslin, co-Suslin captures the sequence
(Code(Ψn) : n < ω). We also say that M captures Γ via the pair (P,Ψ).

The following is an important yet straightforward lemma that we will use through-
out this book. See [19, Section 1.5] for a proof.

Lemma 4.1.3 (Correctness of background triples) Suppose M = (M, δ,Σ) is
a background triple that captures a good, scaled pointclass Γ via the pair (P,Ψ) and
suppose x ∈ R ∩ M . Then M Suslin, co-Suslin captures any set of reals that is
lightface definable over (HC,Code(Ψ), x,∈).

Suppose Γ is a pointclass and (P ,Σ) is a hod pair or an sts hod pair such that
Code(Σ) ∈ Γ. Recall the definition of LpΓ,Σ(X). In the case Σ is an iteration
strategy, LpΓ,Σ(X) is the stack of all sound Σ-miceM over X3 such that ρ(M) = X

2Under AD+, this is equivalent to Ψn being the unique ω1 + 1-iteration strategy of M#,Ψ
n

3In case X isn’t transitive or P 6∈ X, “over X” means “over Tc({X,P})”.
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and M has a strategy in Γ. In the case Σ is a short tree strategy LpΓ,Σ(X) is the
stack of all sound Σ-sts mice M over X based on P such that ρ(M) = X and M
has a strategy in Γ.4 Below if Ψ is an iteration strategy or short tree strategy then
we let MΨ be the structure that it iterates.

Notation 4.1.4 Suppose Γ is some pointclass. Following Section 2.5 of [10] we let

HP Γ = {(P ,Σ) : (P ,Σ) is a hod pair or an sts hod pair such that Code(Σ) ∈ Γ}
MiceΓ = {(a,Σ,M) : a ∈ HC ∧ a is a swo ∧ (MΣ,Σ) ∈ HP Γ ∧MΣ ∈ a ∧M E

LpΓ,Σ(a) ∧ ρ(M) = a}

and given (P ,Σ) ∈ HP Γ,

MiceΓ
Σ = {(a,M) : a ∈ HC ∧ a is a swo ∧ P ∈ a ∧M E LpΓ,Σ(a) ∧ ρ(M) = a}

When Γ = ℘(R), we omit it from our notation.
Given a set A ⊆ R with w(Γ) ≤ w(A), we let AΓ be the set of triples of continuous

functions (σ0, σ1, σ2) such that σ−1
0 [A] is a code for some (P ,Σ) ∈ HP Γ, σ−1

1 [A] is a
code for a triple (a,Σ,M) ∈ MiceΓ and σ−1

2 [A] is a code for the unique ω1-strategy
of M.

The following is an easy consequence of Lemma 4.1.3.

Corollary 4.1.5 Suppose M = (M, δ,Σ) is a background triple that captures a
pointclass Γ via the pair (P,Ψ). Then M Suslin, co-Suslin captures Code(Ψ)Γ,
Code(HP Γ) and Code(MiceΓ).

We finish by recalling the notion of self-capturing background triple (Definition
2.24 of [10]). Suppose M = (M, δ,Σ) is a background triple. We say M is self-
capturing if for every M -inaccessible cardinal λ < δ there is a set X ∈ M such that
for any M -generic g ⊆ Coll(ω, λ) and for every M [g]-cardinal η which is countable
in V , (M [g],Σ) Suslin, co-Suslin captures Code(ΣVMλ

) at η as witnessed by a pair

(T, S) ∈ ODM [g]
X . Self-capturing background triples are very useful for building hod

pairs and proving comparison. The following theorem of Woodin shows that under
AD+, self-capturing background triples are abundant.

Theorem 4.1.6 (Woodin, Theorem 10.3 of [26]) Assume AD+. Suppose Γ is a
good, scaled pointclass and there is a good, scaled pointclass Γ∗ such that Γ ⊆ ∆Γ∗.
Suppose (N,Ψ) Suslin, co-Suslin capture Γ. There is then a function F defined on
R such that for a Turing cone of x, F (x) = (N ∗x ,Mx, δx,Σx) such that

4From here on, “Lp” means “g-organized Lp” as defined in [20] unless explicitly stated otherwise.
We will occasionally remind the reader of this convention. The reason we need to use g-organization
is so that S-constructions go through.
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1. N ∈ L1[x],

2. N ∗x |δx =Mx|δx,

3. Mx is a Ψ-mouse: in fact,Mx =MΨ,#
1 (x)|κx where κx is the least inaccessible

cardinal of MΨ,#
1 ,

4. N ∗x � “δx is the only Woodin cardinal”,

5. Σx is the unique iteration strategy of Mx,

6. N ∗x = L(Mx,Λ) where Λ is the restriction of Σx to stacks ~T ∈ Mx that have
finite length and are based on Mx � δx,

7. (N ∗x ,Σx) Suslin, co-Suslin captures Code(Ψ) and hence, (N ∗x ,Σx) Suslin, co-
Suslin captures Γ,

8. (N ∗x , δx,Σx) is a self-capturing background triple.

Suppose next that Γ is a pointclass and M = (M, δ,Σ) is a self-capturing back-
ground triple capturing Γ via a pair (P,Ψ). In Section 4.3.9, we will describe the
Γ-hod pair construction of M that produces a hod pair in HP Γ. When describing
this construction, we will use the following simple observations.

Remark 4.1.7 It follows from Corollary 4.1.5 that the statement (P ,Λ) ∈ HP Γ is
absolute between V and M . Indeed, given a hod pair (P ,Λ) such that for some < δ-
generic g, P ∈ HCM [g] and Λ � HCM [g] ∈ M [g], we write M [g] � (P ,Λ) ∈ HP Γ if
there is a continuous function σ ∈ RM [g] such that Code(Λ) = σ−1Code(Ψ). Notice
that because of Lemma 4.1.3 if σ1, σ2 ∈ RM [g] are two continuous functions then

M [g] � “σ−1
1 [Code(Ψ)] = σ−1

2 [Code(Ψ)]” if and only if
σ−1

1 [Code(Ψ)] = σ−1
2 [Code(Ψ)].

Remark 4.1.8 Similarly mouse operators are definable over background triples. In-
deed, suppose (P ,Λ) ∈ HP Γ is such that for some g, M [g] � (P ,Λ) ∈ HP Γ. Suppose
further that F : HC → HC is given by F (a) = LpΓ,Λ(a). Then for any M [g]-
generic h, the function F � M [g][h] is uniformly definable from h, Code(Ψ) and
any continuous functions σ0, σ1 ∈ RM [g] such that σ−1

0 [Code(Ψ)] = Code(Λ) and
Code(F ) = σ−1

1 [Code(Ψ)].
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4.2 Fully backgrounded constructions relative to

short tree strategy

Suppose (M, δ,Σ) is a weak background triple and P ∈ V M
δ is an lsa type hod

like lsp. Suppose Λ ∈ M is a short tree (δ, δ, δ)-strategy for P and X ∈ V M
δ is

a transitive self-well-ordered set such that P ∈ X. We can then define the model
J ~E,Λ(X) exactly like in the case Λ is an iteration strategy. The construction will

ensure that the model J ~E,Λ(X) is an sts premouse over X based on P . Here is the
precise definition.

Recall that if (Mα : α < ξ) is a sequence of J -structures and ξ is a limit ordinal
thenM = limα→ξMα is the J -structure with the property that for each β such that
JMβ is defined, there is γ < ξ such that for all α ∈ (γ, ξ), JMα

β = JMβ .

Suppose (M, δ,Σ) is a weak background triple and E ∈ V M
δ is an extender. Then

we say E coheres Λ if ν(E) is an inaccessible cardinal of M , V M
ν(E) ⊆ Ult(M, E) and

Λ∩ V M
ν(E) = πE(Λ)∩ V M

ν(E). Recall that an lhpM is reliable if for all k, Ck(M) exists

and is k-iterable, where Ck(M) is the kth core of M (see [8, Chapter 11]).

Definition 4.2.1 Suppose (M, δ,Σ) is a weak background triple and P ∈ V M
δ is an

lsa type hod like lsp. Suppose Λ ∈ M is a short tree (δ, δ, δ)-strategy for P and
X ∈ V M

δ is a transitive self-well-ordered set such that P ∈ X. Suppose further that
Λ has hull condensation. Then for η ≤ δ, ((Mγ,Nγ : γ ≤ η), (Fγ : γ < η)) is the
ηth initial segment of the output of the fully backgrounded construction relative to Λ
if the following is true.

1. M0 = J1(X), and for all ξ < η, Mξ and Nξ are Λ-sts premice.

2. Suppose ((Mγ,Nγ : γ ≤ ξ), (Fγ : γ < ξ)) has been defined for ξ < η. Then we
define Mξ+1, Nξ+1 and Fξ as follows.

(a) Suppose Mξ = (J ~E,f
α ,∈, ~E, f) is a passive hp, i.e., with no last predicate,

and there is an extender F ∗ such that F ∗ coheres Λ and reflects ((Mγ,Nγ :
γ ≤ ξ), (Fγ : γ < ξ)), an extender F over Mξ, and an ordinal ν < α such
that Vν+ω ⊆ Ult(V, F ∗) and

F � ν = F ∗ ∩ ([ν]ω × J ~E,f
α ).

Then

Nξ+1 = (J ~E,f
α ,∈, ~E, f, F̃ )
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and ν = νNξ+1 where F̃ is the amenable code of F 5. Also, if Nξ+1 is
reliable then Mξ+1 = C(Nξ+1)6 and Fξ = F . If Nξ+1 is not reliable then
we stop the construction.

(b) Suppose Mξ = (J ~E,f
α ,∈, ~E, f) is a passive hp, the hypothesis of item

2.a above doesn’t hold, Mξ � ZFC-Replacement, and Mξ is ambiguous.

Let t = (P0, T ,P1, ~U) ∈ J ~E,f
α ∩ dom(Λ) on P be the Mξ-least stack of

length 2 witnessing that Mξ is ambiguous and such that lh(T ) is not of

measurable cofinality in Mξ and lh(~U) is not of measurable cofinality in
Mξ. Set b = Λ(t), β = sup b and N = Jβ(Mξ). If ρ(N ) ≥ α then

Nξ = (J ~E,f+

β ,∈, ~E, f+)

where f+ = f ∪(Jω(t), b̃) where b̃ ⊆ α+β is defined by α+ν ∈ b̃↔ ν ∈ b.
If ρ(N ) < α then let γ ∈ (α, β] be least such that ρ(Jγ(Mξ)) < α and let
Nξ+1 = C(Jγ(Mξ)). Also, if Nξ+1 is reliable then Mξ+1 = C(Nξ+1) and
Fξ = ∅. If Nξ+1 is not reliable then we stop the construction.

(c) Suppose Mξ = (J ~E,f
α ,∈, ~E, f) is a passive hp, the hypothesis of item 2.a

and 2.b above don’t hold, Mξ � ZFC, Mξ is unambiguous and there is

a normal terminal T ∈ J ~E,f
α ∩ dom(Λ) such that Mξ � “T is ambigu-

ous and lh(T ) is not of measurable cofinality”, fMξ(T ) isn’t defined and
there is an Mξ-minimal shortness witness for T . Let U be the Mξ-least
such tree, (φ, ζ, e) be a shortness witness for U , b = Λ(U), β = sup b and
N = Jβ(Mξ).

Important Anomaly: If e 6= b then stop the construction.

Assume then that e = b. If ρ(N ) ≥ α then

Nξ = (J ~E,f+

β ,∈, ~E, f+)

where f+ = f∪{(Jω(U), b̃)} where b̃ ⊆ α+β is defined by α+ν ∈ b̃↔ ν ∈
b. If ρ(N ) < α then let γ ∈ (α, β] be least such that ρ(Jγ(Mξ)) < α and
let Nξ+1 = C(Jγ(Mξ)). Also, if Nξ+1 is reliable then Mξ+1 = C(Nξ+1)
and Fξ = ∅. If Nξ+1 is not reliable then we stop the construction.

5For the definition of the “amenable code” see the last paragraph on page 14 of [28].
6Recall that C(M) is the core of M.
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3. Suppose ξ ≤ η is a limit ordinal and ((Mγ,Nγ : γ < ξ), (Fγ : γ < ξ)) has been
defined. Then we define Mξ and Nξ as follows7. Let ν = limsupλ→ξ(ρ

+)Mξ .
Then we let Nξ be the passive lhp P = J Pν , where for all β < ν we set J Pβ be

the eventual value of JMλ
β as λ→ ξ. Also if Nξ is reliable then Mξ = C(Nξ).

If Nξ is not reliable then we stop the construction.

The important comment in clause 2.c is a non-trivial matter. Recall that accord-
ing to our sts indexing scheme (see Definition 3.8.2), the branch we have to index
at stage ξ in clause 2.c is e not b. However, if e 6= b then the resulting structure
cannot be a Λ-sts mouse. Thus, if e 6= b then we have to halt the construction.
When Λ has nice properties such strong branch condensation (see Definition 4.7.3)
then such anomaly will never arise, as shown in Corollary 5.5.2. See Remark 5.5.3
for an in-depth discussion of this issue.

4.3 Hod pair constructions

Next we define Γ-hod pair constructions. Unlike in [10], here we view these construc-
tions in a somewhat different yet equivalent way. For us a hod pair construction is
a procedure that builds four types of operations E, B, J and Lim. We call them
respectively the extender operator, the branch operator, the constructibility operator
and the limit operator. We also refer to these operators as the hpc-operators. We
start by describing three auxiliary sets.

Suppose Γ is a pointclass and M = (M, δ,Σ) is a background triple Suslin, co-
Suslin capturing Γ. We will work with M and Γ, but we will omit both from our
notations. For instance, E below should really be EM. Also, all the fully backgrounded
constructions that we will use are fully backgrounded constructions in the sense of
V M
δ , and if M is equipped with a distinguished extender sequence then we tacitly

assume that all the backgounded constructions use extenders from this particular
extender sequence.

Definition 4.3.1 (E0, B0 and J0) Below we define three sets E0, B0 and J0.

1. Q ∈ dom(E0) if Q ∈ V M
δ is a passive lhp and there is an extender F ∗ ∈ M ,

an extender F ∈ M over Q and an ordinal ν such that M � “ν(F ∗) is an
inaccessible cardinal”, F = F ∗ ∩ [ν]<ω ×Q, and (Q, F̃ ) is a reliable lhp where

F̃ is the amenable code of F and ν(Q,F̃ ) = ν.

7Fξ will be defined at the next stage of the induction as in clause 2.
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2. Q ∈ dom(B0) if Q = J E,f
α+β ∈ V M

δ is a passive lhp such that for some R ∈ Y Q

such that R is a hod premouse and there is a stack ~T ∈ Q−dom(ΣQR) based on

R such that ~T is according to ΣQR, lh(~T ) is not of measurable cofinality in Q,

and there is some cofinal well-founded branch b ∈M of ~T such that β = sup b
and if b̃ is such that α+ γ ∈ b̃ if and only if γ ∈ b then (Q,∈, ~E, f+) is an lhp

where f+ = f ∪ {(Jω(~T ), b)}.

3. Q ∈ dom(J0) if Q is an lhp and Q ∈ V M
δ − (dom(E0) ∪ dom(B0)).

The next definition introduces the bad lhps.

(Bad) Suppose M is an lhp such that every R ∈ YM is a hod premouse. We
say Bad(M) holds if one of the following conditions hold.

1. M is unreliable (i.e, for some k < ω, Ck(M) doesn’t exist).

2. There is R ∈ YM such that R is of successor type and ρ(M) < δR.

3. There is R ∈ YM of limit type such that ρ(M) < (ν+)R where ν = δR
b
.

We will have that dom(E) ⊆ dom(E0) and dom(B) ⊆ dom(B0). All four functions
E, B, J and Lim will be defined by induction.

Definition 4.3.2 (Stage 0) We set.

1. J(0) = ∅.

2. E(0) = B(0) = Lim(0) = ∅.

When defining J, E, B and Lim, we will maintain the following requirements.

Requirements

1. dom(J), dom(E), dom(B) and dom(Lim) are subsets of δ.

2. If αM =def sup{ξ + 1 : ξ ∈ dom(J) ∪ dom(E) ∪ dom(B) ∪ dom(Lim))} then the
four sets dom(J), dom(E), dom(B) and dom(Lim) form a partition of αM and
αM ≤ δ.

3. {β < αM : β is a successor ordinal} ⊆ dom(J).
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4. For all β < αM, the value of the hpc-operators at β is either undefined or is an
lhp Q such that for every R ∈ Y Q, R is a hod premouse.

5. Given any Q and R as in clause 4, Σ induces, via the construction described
in [8, Chapter 12], a strategy ΛR for R.

6. If β ∈ dom(E) ∪ dom(B) then β is a successor ordinal and β − 1 ∈ dom(Lim).

We start by describing how the operator E works.

Definition 4.3.3 (The extender operator) Suppose J � β, E � β, B � β and
Lim � β have been defined and β = γ + 1. Let Q = Lim(γ).

1. Suppose Q 6∈ E0. Then let E(β) be undefined.

2. Suppose then that Q ∈ E0.

(a) Suppose there is no triple (F ∗, F, ν) witnessing that Q ∈ E0 with the ad-
ditional property that F ∗ coheres (J � β,E � β,B � β, Lim � β). Then we
let E(β) be undefined.

(b) Otherwise let (F ∗, F, ν) witness that Q ∈ E0 with the additional property
that F ∗ coheres (J � β,E � β,B � β, Lim � β). Letting F̃ be the amenable
code of F and M = (Q, F̃ ), set

E(β) =

{
undefined : Bad(M) holds

C(M) : otherwise.

We split the branch operator into three pieces Bnlsa, Bualsa and Balsa. These
respectively stand for non lsa, unambiguous lsa and ambiguous lsa. We then let
B = Bnlsa ∪ Bualsa ∪ Balsa. Suppose J � β, E � β, B � β and Lim � β have been defined
and β = γ+1. Let Q = Lim(γ). The folowing condition is part of the definition of B.

(B1) Suppose Q 6∈ B0. Then let B(β) be undefined.

Suppose then that Q = J ~E,f
ξ+ν ∈ B0 and let R ∈ Y Q be the least member of Y Q

witnessing that Q ∈ B0. Let Λ be the strategy of R induced by Σ. We say R is
layerable if one of the following conditions holds:

1. R is of successor type and R = Lp
Γ,ΛR(λR−1)
ω (R|δR).

2. R is of limit type but not of lsa type and Rb = Lp
Γ,⊕

α<λRb
ΛR(α)

ω (Rb|δRb).
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3. R is of lsa type and Rb = Lp
Γ,⊕

α<λRb
ΛR(α)

ω (Rb|δRb) and J1(Q) � “δR is not a
Woodin cardinal”.

The next three definitions will use the notation introduced above. In all three
definitions, we will isolate a stack ~T based on R and a branch b of ~T . Then letting
b̃ ⊆ ξ + ν be given by ξ + ζ ∈ b̃ ↔ ζ ∈ b, set f+ = f ∪ {(trc(~T ), b̃)}. If one of the
following conditions is satisfied then we will let B(β) be undefined.

(B2) M � “for some κ ∈ [|R| , δ) 
Coll(ω,κ) (R,Λ) ∈ HP Γ”8, sup(b) 6= ν or
Bad(Q, f+).

Definition 4.3.4 (The non lsa branch operator) SupposeR is layerable and let
~T ∈ Q − dom(ΣQR) be the Q-least stack that is according to ΣQR, lh(~T ) is not of

measurable cofinality in Q,9 and ΣQR(~T ) is not defined. Set b = Λ(~T ). If B2 holds of
(b,Q, f+) then let Bnlsa(β) be undefined. Otherwise set Bnlsa(β) = C(Q, f+).

The following condition is also part of the definition of B.

(B3) Suppose R is of lsa type and J1(Q) � “δR is a Woodin cardinal”. If Q is
not an sts premouse over R based on M+(R|δR) or it is but it is not closed under
sharps then let B(β) be undefined.

Suppose then Q is an sts premouse over R based on M+(R|δR) and Q is closed
under sharps.

Definition 4.3.5 (The ambiguous branch operator) Suppose Q is ambiguous
and let t ∈ Q be the Q-least stack of length 2 witnessing this. Again since Q ∈ B0,
we can require lh(t) is not of measurable cofinality in Q. Let Λstc(t) = b. If B2 holds
of (b,Q, f+) then let Balsa(β) be undefined. Otherwise set Balsa(β) = C(Q, f+).

Definition 4.3.6 (The unambiguous branch operator) Suppose Q is unambigu-
ous. Suppose there is no Q-terminal T that has a Q-shortness witness. Then let B(β)
be undefined. Suppose then that there is a Q-terminal T that has a Q-shortness
witness and T is chosen as in the definition of Q ∈ B0. Let (T , b) ∈ Q be the lexico-
graphically Q-least pair such that for some (ξ, ν), T is Q-terminal and (ξ, ν, b) is a
minimal Q-shortness witness. If B2 holds of (b,Q, f+) then let Bualsa(β) be undefined.
Otherwise set Bualsa(β) = C(Q, f+).

8See the discussion after Definition 4.3.9
9 ~T exists because Q ∈ B0.
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Finally set B(β) = Bnlsa(β)∪Bualsa(β)∪Balsa(β). Next we define the constructibility
operator.

Definition 4.3.7 (The constructibility operator) Suppose J � β, E � β, B � β
and Lim � β have been defined and β = γ + 1. Let

Q =


J(γ) : γ ∈ dom(J)

B(γ) : γ ∈ dom(B)

Lim(γ) : γ ∈ dom(Lim)

Then

J(β) =


undefined : β ∈ dom(E) ∪ dom(B)

undefined : β 6∈ dom(E) ∪ dom(B) and Bad(Q) holds

J1(Q) : otherwise

Finally we define the limit operator.

Definition 4.3.8 (The limit operator) Suppose J � β, E � β, B � β and Lim � β
have been defined and β is a limit ordinal. For γ < β, let

Qγ =


J(γ) : γ ∈ dom(J)

B(γ) : γ ∈ dom(B)

Lim(γ) : γ ∈ dom(Lim)

Given an ordinal ξ, we let Qξ be the eventual value of Qγ||ξ as γ approaches β
provided this eventual value exists. Then

Lim(β) =


undefined : for some ξ, Qξ is undefined

undefined : Bad(∪ξ∈OrdQξ) holds

∪ξ∈OrdQξ : otherwise.

We say Q appears at stage β if Q is the value of one of the construction oper-
ators at β. We let Qβ be this model and Σβ be the strategy of Qβ induced by Σ.
We then say that (Qβ,Σβ : β < αM) are the models and strategies of the hod pair
constructions of M. When Γ = ℘(R) we omit it from our terminology. The following
is the final condition signaling the halt of the construction.

(LSA) If for some limit β, Qβ is of lsa type such that Qβ = LpΓ,Σstcβ (M+(Qβ|δQβ))
then stop the construction.
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Definition 4.3.9 (Hod pair constructions) The Γ-hod pair construction of M
below δ is the quadruple (EM,BM, JM, LimM). We say that the hod pair construction
is successful if αM = δ. We say Q is a model appearing in the hod pair construction
of M if for some β < αM,

Q =


EM(β) : β ∈ dom(EM)

BM(β) : β ∈ dom(BM)

JM(β) : β ∈ dom(JM)

LimM(β) : β ∈ dom(LimM)

Our statement of B2 is somewhat ambiguous. We now explain the notation
M � “for some κ ∈ [|R| , δ) 
Coll(ω,κ) (R,Λ) ∈ HP Γ”. Provided R is countable, the
meaning of M � “(R,Λ) ∈ HP Γ” was explained in Remark 4.1.7. The following
discussion and lemma makes the notation meaningful.

We assume that M Suslin, co-Suslin captures Γ via the pair (P,Ψ). Because M
is self-capturing, we have that whenever g is Coll(ω,R)-generic and η is an M [g]-

cardinal, Λ � V M [g]
η has a uniform definition in η and parameters from M (recall that

Λ is the induced strategy of R, it is build according to the procedure described in [8,
Chapter 12]). The following lemma is an easy consequence of genericity iterations.

Lemma 4.3.10 Suppose g ⊆ Coll(ω, κ) is M-generic and σ ∈ RM [g] is a continuous
function such that M � σ−1[Code(Ψ)] = Code(Λ � HCM [g]). Then Code(Λ) =
σ−1[Code(Ψ)]. In particular, if M [g] � “(R,Λ � HCM [g]) ∈ HP Γ” then (R,Λ) ∈
HP Γ.

4.4 Iterability of backgrounded constructions

Our first definition is a game that we will use to show that hod pair constructions
inherit an (ω1, ω1, ω1)-iteration strategies. As is customary, unless it is specifically
mentioned that a transitive set M is fine structural, all iteration trees on M are
coarse, meaning that extenders used to build the tree are all total (there are no
drops in such iterations).

Definition 4.4.1 (G(M,κ, λ, ν)) Suppose M is a transitive model of some fragment
of ZFC. Then G(M,κ, λ, ν) is an iteration game on M with following rules.

1. G(M,κ, λ, ν) has at most κ main rounds.
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2. If Mα is the model at the beginning of the αth main round then the αth main
round is a run of G(Mα, λ, ν).

3. Suppose p is a run of G(M,κ, λ, ν) with α main rounds and (Mγ : γ < α) are
the models at the beginning of the main rounds of p. Then if β < γ < α and
γ + 1 < α then the iteration embedding π : Mβ →Mγ exists.

4. I is the player starting the main rounds. She does it as follows. Suppose p is
a run of G(M,κ, λ, ν) with α main rounds. Let (Mγ : γ < α) be the models at
the beginning of the main rounds of p and let πβ,γ : Mβ → Mγ be the iteration
embeddings. Then there are two cases.

(a) Suppose α is limit. Letting Mα be the direct limit of (Mγ : γ < α) under
the iteration maps πβ,γ, I can start the αth main round on Mα.

(b) Suppose α = β + 1. Let ~T be the stack of iteration trees produced during

the βth main round. I can start a new main round only if ~T has a last
model. Suppose then this is the case and let Q be the last model of ~T .
Suppose ξ < o(Q). For γ ≤ β let ξγ ∈ Mγ be such that π

~T ◦ πγ,β(ξγ) ≥ ξ

and let Eγ be the (ξγ, ξ)-extender derived from π
~T ◦ πγ,β. Then I may

choose any γ ≤ β, set Mα = Ult(Mγ, Eγ) and start the main new round
on Mα.10

5. II wins the game if all the models produced in the iteration game are well-
founded.

We say M is (κ, λ, ν)-iterable if II has a winning strategy in G(M,κ, λ, ν).
We also say Σ is a (κ, λ, ν)-strategy for M if Σ is a winning strategy for II in
G(M,κ, λ, ν). As is usual, when M has a distinguished extender sequence then player
I can only play extenders from the images of the distinguished extender sequence of
M .

As we show below a winning strategy in G(M,κ, λ) induces a winning strategy
in G(M,κ, λ, ν). We will use the following notation. Given an iteration strategy Σ

let dom+(Σ) = {~T : ~T is according to Σ}.

Definition 4.4.2 (Certified strategy) Suppose M and N are two transitive mod-
els of ZFC − Powerset. Suppose Σ and Λ are iteration strategies for M and N re-
spectively (in one of the iteration games that we have defined, not necessarily the

10As in clause 5 of Definition 2.7.3, player I can choose γ < β only once in a run of the game.
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same). We say Σ is certified by Λ if there is a set X and a function F : dom+(Σ)→
dom+(Λ)×X such that the following holds:

1. For all ~U ∈ dom+(Σ), ~U has a last model iff (F (~U))0 has a last model.

2. For all ~U ∈ dom+(Σ), if ~U has a last model then letting Q and R be the last

models of ~U and (F (~U))0, (F (~U))1 = σ such that σ : Q→Σ1 R.

3. For all ~U ∈ dom+(Σ) if α < lh(~U) then letting ~T = (F (~U))0 and ~T ∗ = (F (~U �
α))0 then ~T ∗ is an initial segment of ~T .

4. If ~T is a stack on M according to Σ with last model Q and U is a normal tree on
Q then letting R be the last model (F (~T ))0 and W be such that (F (~T ))_0 W =

F (~T _U)0 then W is a normal tree such that lh(U) = lh(W), and for every

α0, α1 < lh(U), letting β0, β1 < lh(W) be such that for i = 0, 1, F (~T _U �
αi + 1)0 = (F (~T ))_0 W � βi + 1,

(a) α0 <U α1 ↔ β0 <W β1

(b) letting for i = 0, 1, σi = (F (~T _U � αi+1))1, if α0 <U α1 then πWβ0,β1
◦σ0 =

σ1 ◦ πUα0,α1
.

Clearly pullback constructions produce certified strategies.

Theorem 4.4.3 Suppose M is a transitive model of some fragment of ZFC and
κ ≤ λ. Then if II has a winning strategy Λ in G(M,λ, ν) then II has a winning
strategy in G(M,κ, λ, ν) certified by Λ.

Proof. Suppose we have defined F as in Definition 4.4.2 on ~T ∈ dom(Σ) which

have < α-many main rounds. We want to define F on ~T with exactly α-many main
rounds. We assume that α is a successor and leave the rest to the reader. Let
α = β + 1. Thus, we need to extend Σ to act on β + 1st round of G(M,κ, λ, ν). Let

then ~T ∈ dom(Σ) be such that lh(~T ) = β + 1 and ~T has a last model Q. Let R be

the last model ~U = (F (~T ))0 and let σ = (F (~T ))1.
Suppose that I wants to start a new main round. Suppose then (Mγ : γ ≤ β)

are the models at beginning of the main rounds of ~T . Suppose ξ < o(Q). For γ ≤ β

let ξγ ∈Mγ be such that π
~T ◦ πγ,β(ξγ) ≥ ξ and let Eγ be the (ξγ, ξ)-extender derived

from π
~T ◦πγ,β. Suppose then I sets Mα = Ult(Mγ, Eγ) where γ ≤ β. Let k : Mα → Q

be the factor embedding. Thus
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π
~T = k ◦ πEγ .

Let π = σ◦k◦πEγ . We then let F (~T _{Mβ+1}) = (~U , π) which clearly has the desired
properties. Next we require that II plays the β + 1st round on Mβ+1 according to
π-pullback of ΛR,~U . �

4.5 Fullness preservation

Throughout this section we assume AD+. Suppose that Γ ⊆ ℘(R) is a pointclass,
X ∈ HC is a self-well-ordered set (swo),11 (P ,Σ) is a hod pair or an sts hod pair
such that P ∈ HC and Code(Σ) ∈ Γ.12 Below, we use R∗ to denote the ∗-translation
of R (cf. [18]).

Definition 4.5.1 (Γ-Fullness preservation) Suppose (P ,Σ) is a hod pair or an
sts hod pair such that P ∈ HC and Γ is a pointclass. We say Σ is Γ-fullness
preserving if the following holds for all (Q, ~T ) ∈ I(P ,Σ).

1. For all limit type R ∈ Y Q, Rb = Lp
Γ,⊕
S∈YRb

ΣS,~T
ω (R|δR).

2. For all successor type R ∈ Y Q,

R = Lp
Γ,⊕
S∈YRb

ΣS,~T
ω (R|δR).

3. If Q is of lsa type then Q = Lp
Γ,Σstc
M+(Q|δQ),~T

ω (Q|δQ)13,

4. If η is a cardinal cutpoint of Q such that for some R1,R2 ∈ Y Q such that
R2 is the Q-successor of R1 (see Definition 3.9.2), R1 is a cutpoint of Q and
η ∈ (δR1 , δR2) then

(Q|(η+)Q)∗ = Lp
Γ,ΣR1,

~T (Q|η).

The next lemma follows from clause 4 above. Below S∗(R) is the ∗-transform of
S into a mouse over R, it is defined when R is a cutpoint of S (cf. [18]).

11Recall that X is a self-well-ordered set if Jω(X) � “X is well-orderable”.
12Recall that Code(Σ) is the set of reals coding Σ.
13Here, if Σ is a short tree strategy then Σsts = Σ.
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Lemma 4.5.2 Let (~T , T ) be a countable tree via Σ, consisting of a stack ~T followed
by a normal tree T , such that T has successor length and bT drops. Let Q = MT

∞
and λ = λQ. Suppose Q(λ) is a cutpoint of Q.14 Let γ be least such that o(Q(λ)) <

lh(ETγ ) and let U = ~T _(T � (γ+1)). (Note bU does not drop.) Let R,S be such that
Q(λ)�R�S�Q and R is a cutpoint of S and S projects ≤ o(R) and is o(R)-sound
(so either S � Q or all generators of T are < o(R)). Then letting Λ = Σstc

Q(λ),U if

Q(λ) is of lsa-type and Λ = ΣQ(λ),U otherwise,

S∗(R) � LpΓ,Λ(R).

Theorem 4.5.3 (Fullness preservation of induced strategies) Assume AD+.
Suppose for some α such that θα < Θ, Γ = {A ⊆ R : w(A) < θα} and M = (M, δ,Σ)
is a self-capturing background triple that Suslin, co-Suslin captures Γ via (P,Ψ). Let
(Qβ,Σβ : β < αM) be the models and strategies of the Γ-hod pair construction of M.
Suppose β is such that (Qβ,Σβ) ∈ HP Γ and that for some < δ-generic g, there is a
continuous function σ ∈M [g] ∩R such that σ−1[Code(Ψ)] = Code(Σβ). Then Σβ is
Γ-fullness preserving.

Proof. Let P = Qβ and Λ = Σβ. Towards a contradiction, assume Λ is not Γ-fullness
preserving. It follows by absoluteness (see Lemma 4.1.3 and Corollary 4.1.5) that
there is a counterexample in M [g] where g is < δ-generic. Fix a < δ-generic g such

that there (~T ,Q) ∈ I(P ,Λ) ∩M [g] witnessing that Λ isn’t Γ-fulness preserving. All
the clauses of Γ-fullness preservation are very similar and follow from the universality
of background constructions. Below we derive a contradiction from the failure of
clause 1 of Definition 4.5.1 and leave the rest to the reader.

Fix R∗ ∈ Y Q witnessing the failure of clause 1 of Definition 4.5.1. Let R = (R∗)b
and κ = δR. We need to see that

R = Lp
Γ,⊕S∈YRΛS,~T
ω (R|κ).

We only show that

R|(κ+)R = LpΓ,⊕S∈YRΛS,~T (R|κ).

and leave the rest to the reader.
Suppose first that M E R|(κ+)R is a ⊕S∈YRΛS,~T -mouse over R|κ such that

ρ(M) ≤ κ. Because P is constructed via backgrounded construction, it follows that
M is ω1-iterable as a ⊕S∈YRΛS,~T -mouse and therefore,

14So Q is a ΣQ,~T_T (or ΣstcQ,~T_T )-mouse over Q(λ) and Q(λ) is the largest hod premouse R�Q.
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M E LpΓ,⊕S∈YRΛS,~T (R|κ).

Fix now M E LpΓ,⊕S∈YRΛS,~T (R|κ) and let Φ be its ω1-strategy. We let π = π
~T .

Let N = (L[⊕S∈Y PbΛS ][Pb])VMδ and notice that if E = Eπ � π(δP) then M �
“Ult(N , E) is δ-iterable”15. Let then π+ = πNE and let

N ∗ = (J ~E,⊕S∈YRΛS,~T )π
+(N ).

It then follows that N ∗ too is δ-iterable and so we can compare N ∗ with M. By
universality of backgrounded constructions, M has to lose the comparison implying
that M E N ∗. Therefore, M ∈ π+(N ). Since M is ω1-iterable, it follows that
M E R. �

The proof actually gives more.

Definition 4.5.4 (Strongly Γ-fullness preserving) Suppose (P ,Σ) is a hod pair
or an sts hod pair and Γ is a pointclass. We say Σ is strongly Γ-fullness preserving
if Σ is Γ-fullness preserving and whenever

1. ~T is a tree according to Σ with last model S such that if P is of limit type then
π
~T ,b exists and otherwise π

~T exists, and

2. R is such that there are (σ, τ) with the property that

(a) if P is of limit type then σ : Pb → R, τ : R → Sb and π
~T ,b = τ ◦ σ, and

(b) if P is of successor type then σ : P → R, τ : R → S and π
~T = τ ◦ σ,

then the τ -pullback strategy of ΣSb,~T if 2(a) holds and of ΣS,~T if 2(b) holds is Γ-
fullness preserving.

The following is then a corollary to the proof of Theorem 4.5.3 and we leave it to
the reader.

Theorem 4.5.5 (Strong fullness preservation of induced strategies) Assume
AD+. Suppose for some α such that θα < Θ, Γ = {A ⊆ R : w(A) < θα}

15The proof of the iterability of N shows that Ult(N , E) is well-founded. To see this let ~W be

the tree on M , according to Σ obtained by lifting ~T to M . We then have σ : Q → π
~W(P) such

that π
~W � P = σ ◦ π. It is now not hard to see that σ extends to σ+ : Ult(N , E) → π

~W(N ). The
same argument shows that Ult(N , E) is δ-iterable in M .
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and M = (M, δ,Σ) is a self-capturing background triple that Suslin, co-Suslin cap-
tures Γ via (P,Ψ). Let (Qβ,Σβ : β < αM) be the models and strategies of the
hod pair construction of M. Suppose β is such that (Qβ,Σβ) ∈ HP Γ and that
for some < δ-generic g, there is a continuous function σ ∈ M [g] ∩ R such that
σ−1[Code(Ψ)] = Code(Σβ). Then Σβ is strongly Γ-fullness preserving.

The following is an easy yet useful consequence of strong fullness preservation.

Lemma 4.5.6 Assume AD+ and suppose Γ is a pointclass. Suppose further that
(P ,Σ) is a hod pair or an sts hod pair such that Σ is strongly Γ-fullness preserving.

Let ~T be a stack on P according to Σ with last model S such that if P is of limit
type then π

~T ,b exists and otherwise π
~T exists. Suppose (R, σ, τ) is such that

1. if P is of limit type then σ : Pb → R, τ : R → Sb and π
~T ,b = τ ◦ σ, and

2. if P is of successor type then σ : P → R, τ : R → S and π
~T = τ ◦ σ.

Let E be such that

1. if P is of limit type then E is the (δP
b
, δR)-extender derived from σ, and

2. if P is of successor type then E is the (δP , δR)-extender derived from σ

Then R = Ult(P , E). In particular, R = {πE(f)(a) : f ∈ P and α ∈ (δR)<ω}.

Proof. Let k : Ult(P , E) → R be the factor map, i.e., k(π(f)(a)) = σ(f)(a). Then

if P is of limit type then π
~T ,b = τ ◦ k ◦ πE and if P is of successor type then

π
~T = τ ◦ k ◦ πE. Notice that crit(k) > δR. It now follows from strong Γ-fullness

preservation of Σ that Στ◦k
S,~T is Γ-fullness preserving. But because k � δR = id, we

have that for every α + 1 ≤ λR,

(Στ◦k
S,~T )R(α+1) = (Στ

S,~T )R(α+1).

It then follows that R = Ult(P , E). �
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4.6 The normal-tree comparison theory

As in Theorem 2.2.2 of [10], under AD+ and in several other contexts, we can prove a
comparison theorem where comparison is achieved via normal trees. In this section
we state a comparison theorem for hod pairs that can be applied inside models of
AD+ and also, inside models satisfying sufficiently rich extensions of ZFC, like hod
mice themselves. Such comparison arguments, among other things, are useful in core
model induction arguments and in the analysis of HOD of models of AD+.

We start with some general definitions and facts. One warning is that our exposi-
tion differs from the one in [10] mainly because we would like to set up our arguments
here in a more general setting than the ones stated in [10].

Definition 4.6.1 (Comparison) Suppose (P ,Σ) and (Q,Λ) are two hod pairs.

Then we say comparison holds for (P ,Σ) and (Q,Λ) if there is (~T ,R) ∈ I(P ,Σ)

and (~U ,S) ∈ I(Q,Λ) such that one of the following holds:

1. R Ehod S and ΛR, ~U = ΣR,~T .

2. S Ehod R and ΣS,~T = ΛS, ~U .

We say normal comparison for (P ,Σ) and (Q,Λ) holds if we can take ~T and ~U to
be normal.

As in [10], we can prove comparison for pairs whose corresponding strategies are
fullness preserving.

4.6.1 Tracking disagreements

Here we introduce terminology that we will use to track the disagreements between
strategies. Given a stack ~T on a hod premouse P , we let δ(~T ) be the sup of the

generators of ~T (see Definition 1.15 of [10]).

Definition 4.6.2 (Low level disagreement between strategies) Suppose (P ,Σ)

and (P ,Λ) are two hod pairs. Suppose there is (~T ,Q) ∈ B(P ,Σ) and (~U ,Q) ∈
B(P ,Λ) such that ΣQ,~T 6= ΛQ, ~U . Then we say that there is a low level disagreement

between Σ and Λ. We say (~T ,Q) constitutes a minimal low level disagreement if

1. Q is of successor type and (~T ,Q) ∈ B(P ,Σ) ∩B(P ,Λ),

2. for every α < λQ − 1, ΣQ(α),~T = ΛQ(α),~T ,
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3. if P is meek (see Definition 2.4.8) then δ(~T ), δ(~U) ⊆ Q(λQ − 1),

4. if P is non-meek then letting E be the un-dropping extender of ~T then

δQ = sup{πE(f)(a) : f ∈ Pb ∧ a ∈ Q(λQ − 1)}

Next we show that the existence of a disagreement translates into the existence
of a minimal low level disagreement.

Lemma 4.6.3 (Disagreement implies low level disagreement) Suppose Γ is a
pointclass closed under Wadge reducibility, and (P ,Σ) and (P ,Λ) are two hod pairs
such that both Σ and Λ are Γ-fullness preserving. Suppose that one of the following
conditions holds:

1. P is of limit type and not of lsa type, and Σ 6= Λ.

2. P is of lsa type and Σstc 6= Λstc.

Then there is a minimal low level disagreement between Σ and Λ.

Proof. We give the proof from clause 2 and leave the proof from clause 1, which is
easier, to the reader (also, see Proposition 2.41 of [10]). Assume there is no low level
disagreement between Σ and Λ. We can also assume without loss of generality that

(1) for any (~T , ~U ,Q) such that (i) (~T ,Q) ∈ Ib(P ,Σ), (ii) (~U ,Q) ∈ Ib(P ,Λ) and (iii)
there is α ≤ λQ

b
such that for every β < α, ΣQ(β),~T = ΛQ(β), ~U but ΣQ(α),~T 6= ΛQ(α), ~U ,

there is a minimal low level disagreement between ΣQ,~T and ΛQ, ~U .

Let now ~T = (Mα, ~Tα,Qα, Eα : α ≤ η) be any disagreement between Σstc and
Λstc. We must have that η is a successor ordinal, Eη is undefined, and the last normal

component of ~Tη is of limit length. Notice that if ~T has main drops then, because

we are assuming (1) above, the claim of the lemma follows. We then assume that ~T
has no main drops.

Notice that there cannot be a club C ⊆ ntn(~T ) as otherwise Σ(~T ) = Λ(~T ) = bC .

Let then S = S~T . Thus, ~T≥S is a normal tree on S. Notice that, because ~T has no

main drops, we must have that π
~T≤S ,b exists.

Let now T = ~T≥S . It then follows that T must be above o(Sb) as otherwise it will
generate a low level disagreement, which then can be easily turned into a minimal
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low level disagreement16. Without loss of generality, we can further assume that
ΣSb,~T≤S = ΛSb,~T≤S as otherwise we get a low level disagreement using (1) and the

argument given in the above footnote.

Claim. ~T ∈ b(Σstc) ∩ b(Λstc), i.e., Σstc(~T ) and Λstc(~T ) are branches rather than
models.
Proof. To see this suppose that ~T ∈ m(Σstc). Let b = Σ(~T ), c = Λ(~T ) and

Q =M+(T )(=def (M(T ))#).

We now define two hybrid mice M0 and M1 and an ordinal ν. Suppose first

that ~T ∈ b(Λstc). We then have that M~T
c � “δM

~T
b isn’t a Woodin cardinal”. Let

M1 E M~T
c be the largest such that M1 � “δM

~T
b is a Woodin cardinal”. Next

suppose that M~T
b 6EM1. Then we let M0 = M~T

b . Suppose now that M~T
b EM1.

It follows from Γ-fullness preservation that for any η, M1 6E Lp
Γ,Σstc
Q,~T

η (Q). Let then

η be the least such that Lp
Γ,Σstc
Q,~T

η+1 (Q) 6EM1 and let M0 = Lp
Γ,Σstc
Q,~T

η+1 (Q). Finally let

ν = o(Lp
Γ,Σstc
Q,~T

η (Q)).

Suppose next that ~T ∈ m(Λstc). Because Λsts(~T ) 6= Σsts(~T ), we have thatM~T
b 6=

M~T
c . Set ξ = δ(T ) and let n be least such that M~T

b |(ξ+n)M
~T
b = M~T

c |(ξ+n)M
~T
c but

M~T
b |(ξ+n+1)M

~T
b 6=M~T

c |(ξ+n+1)M
~T
c . Let ν = (ξ+n)M

~T
b , and letM0 EM~T

b |(ξ+n+1)M
~T
b

and M1 EM~T
c |(ξ+n+1)M

~T
c be least such that ρ(M0) = ρ(M1) = ν and M0 6=M1.

Notice that in both cases we have that

(2) M0 6E M1, M1 6E M0, M0|ν = M1|ν, and M0 and M1 are either ν-sound
and project to ν or are limit of levels that are ν-sound and project to ν, and ν is a
strong cutpoint of both M0 and M1.
(3) M0 is a Σstc

Q,~T -mouse and M1 is a Λstc
Q,~T -mouse.

(4) The comparison of M0 and M1 cannot halt.

(4) holds as otherwise its failure implies that either M0 E M1 or M1 E M0,
both of which are impossible (because of (2)).

It follows that the comparison ofM0 andM1 encounters disagreements involving
strategies, as otherwise the usual comparison argument would imply that the com-
parison halts. Let Φ and Ψ be the canonical strategies of M0 and M1 respectively.

16To see this suppose T is based on Sb(α+ 1) for some α+ 1 < λS
b

. Let R be �T -least cutpoint

of T such that for some β+ 1, πTR,S(β+ 1) = α+ 1. Then (~T≤R,R) constitutes a low level minimal
disagreement.
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Thus, Φ witnesses thatM0 is a Σsts
Q,~T -mouse, and Ψ witnesses thatM1 is a Λsts

Q,~T -sts
mouse.

We can then find Φ-iterate K ofM0 and Ψ-iterate N ofM1 such that K and N
are produced via the usual extender comparison procedure (this implies that both
iterations are above ν) and for some α,

(2) K|α = N|α, K||α 6= N||α, α 6∈ dom( ~EK) and α 6∈ dom( ~EN ).

Notice that it follows from our indexing scheme (see Definition 3.6.2) that there must

be a branch indexed at α in both K and N . Let then t = (M+(T ),W ,S1, ~U) ∈ K||α
be such that its branch is indexed at α in both K and N .

We now have to analyze exactly what kind of stack t is. Recall that our indexing
scheme is so that we add branches for two kinds of stacks that we now list.

Case 1. W is an unambiguous normal tree and ~U is undefined.
Case 2. ~U is defined and is a stack on (S1)b.

We can immediately rule out case 1 above: K|α = N|α and the branch of W
just depends on K|β (see Lemma 3.8.2). Case 2 immediately leads to a low level
disagreement.

�

Let b = Σ(~T ) and c = Λ(~T ). Recall that just before the statement of the claim

we set T = ~T≥S . It follows from the claim that both Q(b, T ) and Q(c, T ) exist.
Because b 6= c, we have that Q(b, T ) 6= Q(c, T ). It follows that

M+(T ) / (Q(b, T ) ∩Q(c, T )).

Let P1 = M+(T ). Notice that it follows from our smallness assumption on hod
mice, namely that hod mice do not have lsa hod initial segments, that δ(T ) is not
overlapped in both Q(b, T ) and Q(c, T ). We then have that Q(b, T ) is a Σstc

P1,~T
-

mouse over P1, Q(c, T ) is a Λstc
P1,~T

-mouse over P1 and the comparison of Q(b, T ) and

Q(c, T ) does not halt. Applying the proof of the claim to M0 =def Q(b, T ) and
M1 =def Q(c, T ), we get a minimal low level disagreement.

�

Next we introduce several definitions that will be useful in the sequel.

Definition 4.6.4 (Comparison stack) Suppose (P ,Σ) and (Q,Λ) are two hod
pairs or sts hod pairs. Then we say
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(~T ,R, ~U ,S) are comparison stacks for ((P ,Σ), (Q,Λ)) with last models (R,S)

if (~T ,R) ∈ I(P ,Σ), (~U ,S) ∈ I(Q,Λ), and either

1. S ∈ Y R and ΣS,~T = ΛS, ~U .

2. R ∈ Y S and ΣR,~T = ΛR, ~U .

Definition 4.6.5 (Agreement up to the top) Suppose P and Q are two hod pre-
mice of limit type. Then we say P and Q agree up to the top if λP = λQ and Pb = Qb.
Suppose further that Σ and Λ are such that (P ,Σ) and (Q,Λ) are two hod pairs or
sts hod pairs. Then we say (P ,Σ) and (Q,Λ) agree up to the top if P and Q agree
up to the top and ΣPb = ΛQb.

Definition 4.6.6 (Extender and strategy disagreement) Given two hod pre-
mice P and Q such that P 6= Q, we let β(P ,Q) be the least ordinal γ such that
P|γ = Q|γ but P||γ 6= Q||γ. We say P and Q have an extender disagreement if

β(P ,Q) ∈ dom( ~ER)4dom( ~EQ). We say P and Q have a strategy disagreement

if β(P ,Q) 6∈ dom( ~ER) ∪ dom( ~EQ). In this case, we let RP,Q ∈ Y P ∩ Y Q be the

P|β(P ,Q)-least such that if ~T ∈ P ∩ Q is the stack for which P and Q have a

branch indexed at β(P ,Q) then ~T is a stack on RP,Q. We say RP,Q is the disagree-
ment layer of P and Q.

Definition 4.6.7 (Extender comparison) Suppose that (P ,Σ) and (Q,Λ) are two
hod pairs which agree up to the top. Then we say (T ,R,U ,S) are the trees of the
extender comparison of (P ,Σ) and (Q,Λ) if

1. T is according to Σ and R is its last model,

2. U is according to Λ and S is its last model, and

3. T and U are obtained by using the usual extender comparison process (i.e., by
removing the least extender disagreements) for comparing the top windows of
P and Q until a strategy disagreement appears.

It follows that if in Definition 4.6.7, R 6= S then R and S have a strategy
disagreement.
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4.6.2 Universality of backgrounded constructions

Here we show that the fully backgrounded constructions are universal in a sense that
they win the comparison with hod pairs. Suppose M = (M, δ,Σ) is a weak back-
ground triple and Λ ∈ (℘(V M

δ ))M . We say (EM,BM, JM, LimM) are the construction
functions of Λ-coherent hod pair construction of M if the extenders used during the
construction cohere Λ.17

Our next theorem establishes that backgrounded constructions are universal. To
establish it, we will use the strategy absorption argument. The strategy absorption
argument was first presented in [10] (see the proof of Theorem 2.28 of [10]) and
it is based on unpublished arguments of Steel. Because we will use the strategy
absorption argument several times in this paper and in the next proof, it is important
to understand how it works. The general form of the argument is as follows. We
have a hod pair (P ,Λ) captured by some background triple (M, δ,Σ). There is also
an iteration tree T on P according to Λ with last model Q and R Ehod Q such that
R is constructed via some fully backgrounded construction of M . It is additionally
required that the certificates used to build R cohere Λ. The goal of the argument
is to show that the strategy R inherits from the background universe is the same as
ΛR,T . In many cases, this can be done by appealing to branch condensation and the
existence of minimal disagreements. Here is how a typical argument works.

Let Φ be the iteration strategy of R. Fix ~U on R that is according to both
ΛR,T and Φ but ΛR,T (~U) 6= Φ(~U). Let ~U∗ be the stack on M obtained from ~U by

lifting ~U to M . Let b = Φ(~U∗). We then have that π
~U∗
b (T ) is according to Λ (this

is where we use coherence). Then branch condensation is applied to the equality

ππ
~U∗
b (T ) = σ ◦ π ~Ub ◦ πT where σ :M~U

b → π
~U∗
b (R) is the canonical factor map that the

lifting process gives (in particular, π
~U∗
b � R = σ ◦ π ~Ub ).

Now we state our result on universality of background constructions.

Theorem 4.6.8 (Universality of backgrounded construction) Assume AD+.
Suppose M = (M, δ,Σ) is a self-capturing background triple, (P ,Λ) is a hod pair or
an sts hod pair and for some α such that θα < Θ, Γ = {A ⊆ R : w(A) < θα}.
Suppose further that Λ is Γ-fullness preserving and M Suslin, co-Suslin captures Γ
and Λ. Let (Qβ,Σβ : β < αM) be the models and strategies of Γ-hod pair construction
of M. Then there is a β such that (Qβ,Σβ) is a normal tail of (P ,Λ).

Proof. As in the proof of Lemma 2.10 of [10], in the comparison of P with the hod
pair construction no extender disagreement appears on Q side. It is then enough to

17Where we say E coheres Λ if πE(Λ) = Λ ∩ Ult(V,E). See Section 4.3.9 for the definition of
(EM,BM, JM, LimM).
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show that

(1) for every β < αM if T is a tree on P according to Λ with last model R and
for any S ∈ Y R such that S Ehod Qβ,

(Σβ)S = ΛS,T .

Towards a contradiction, we assume that (1) fails. Let β < αM and (S, T ,R)
witness the failure of (1). We assume that S ∈ Y Qβ is the least layer for which (1)
fails. Let Φ = Σβ and Q = Qβ.

Suppose first that S is of successor type. Then we get a contradiction using
branch condensation of Λ. Let ~U be a stack on S such that it is according to both
Φ and ΛS,T but Φ(~U) 6= ΛS,T (~U). Let b = Φ(~U) and c = ΛS,T (~U). Let ~U∗ be the

result of lifting ~U to the background universe M . Then because extenders used to
construct Q cohere Λ, we have that π

~U∗(T ) is according to Λ. Let N be the last

model of ~U∗.
Notice now that it follows from Γ-fullness preservation and the fact that ΦS(λS−1) =

ΛS(λS−1),T that π
~U
b exists. To see this, assume not. Suppose c drops. Then because S

is of successor type, we can assume ~U is above S(λS−1). It is then not hard to see that

neither Q(b, ~U) nor Q(c, ~U) has an extender E such that crt(E) ≤ δ(~U) ≤lh(E); but

this implies Q(b, ~U) = Q(c, ~U).18 Hence b = c. Contradiction. So c does not drop.

We assume ¬(Q(~U , b)�M~U
c ) (otherwise, b = c). Let τ : Q(~U , b)→ Q′�π ~U∗b (R) be the

lifting map and let δ′ = τ(δ(~U)), Y = π
~U∗
b (T ). If δ′ is a cutpoint of MY

∞ = π
~U∗b (R),

then since Y is according to Λ and Λ is Γ-fullness preserving, δ(~U) is a cutpoint of

Q(~U , b) and Q(~U , b) has iteration strategy in Γ. This implies Q(~U , b)�M~U
c (because

c does not drop and Λ is Γ-fullness preserving). Contradiction. So δ′ is not a cutpoint
of MY

∞. Let E be the least extender on the extender sequence of MY
∞ such that

crt(E) < δ′ < lh(E). So o(Q′) <lh(E). Consider the tree Z on MY
∞ using E. So

Q′�MZ
1 and δ′ is a cutpoint of Z. This again implies Q′�M~U

c . Contradiciton. So

π
~U
b exists.

Let then R∗ = Ult(R, E) where E is the (δS , π
~U
b (δS))-extender derived from π

~U
b .

We then have σ : R∗ → π
~U∗
b (R) such that

ππ
~U∗
b (T ) = σ ◦ πE ◦ πT .

18crt(E) in fact must be < δ(~U). And if such an E exists then letting F be the least such and

κ =crt(F ), there is some model W of~U such that ~U≥W is a normal tree above κ and is on a strict

initial segment W ′ �W, where κ is a cutpoint of W ′. This easily implies that ~Uab and ~Uac are
both according to ΛS,T .
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Notice, however, that πE is just an iteration embedding obtained by applying ~U to
R. It then follows from branch condensation of Λ that ~U_{M~U

b } is according to Λ
implying that b = c, contradiction! Thus, S cannot be of successor type.

Suppose next that S is of limit type. Then by appealing to Lemma 4.6.3, we can
fix some (~U ,S1) that constitutes a low level minimal disagreement between Φ and
ΛS,T . Let

(2) ~W be a stack on S1 which is according to both ΦS1, ~U and ΛS1,T_ ~U but let-

ting b = Φ(~T _ ~W) and c = Λ(T _ ~U_ ~W), b 6= c.

Notice that again it follows from Γ-fullness preservation and the minimality of (~U ,S1)

that π
~W
b and π

~W
c exists. Let then R∗ be the result of applying ~U_ ~W and b to R.

Let ~U∗ be the result of resurrecting ~U_ ~W to M , and let N = M~U∗
b . There is then

σ : R∗ → π
~U∗
b (R) such that

ππ
~U∗
b (T ) = σ ◦ π ~U_ ~W

b ◦ πT .

It then again follows from the branch condensation of Λ that Λ(T _ ~U_ ~W) = b,
contradiction! �

As a corollary to Theorem 4.6.8 we get that the comparison holds.

Corollary 4.6.9 Assume AD+ and suppose Γ is a pointclass such that for some good
pointclass Γ1, Γ ⊆ ∆∼ Γ1. Suppose further that (P ,Σ) and (Q,Λ) are two hod pairs
such that both Σ and Λ are Γ-fullness preserving and have branch condensation.
Suppose further that both Code(Σ) and Code(Λ) are Suslin, co-Suslin. Then the
normal comparison holds for (P ,Σ) and (Q,Λ).

Proof. Fix a good pointclass Γ2 such that Γ1∪{Code(Σ), Code(Λ)} ⊆ ∆∼ Γ2 . Let F be
as in Theorem 4.1.6 for Γ2 and let x ∈ dom(F ) be such that M = (N ∗x , δx,Σx) Suslin,
co-Suslin captures Γ, Code(Σ) and Code(Λ). Let (Qβ,Σβ : β < αM) be the models
and strategies of the hod pair construction of M. It follows from Theorem 4.6.8 that
there are β, γ < αM and normal trees T and U such

1. (T ,Qβ) ∈ I(P ,Σ) and Σβ = ΣQβ ,T and

2. (U ,Qγ) ∈ I(R,Λ) and Σγ = ΛQγ ,T .

If β = γ then clearly the normal comparison for (P ,Σ) and (R,Λ) holds. Suppose
β < γ. Let R1 be the Λ-iterate of R via a normal tree U1 such that Qβ ∈ Y R1 . It
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then follows from Theorem 4.6.8 that Σβ = ΛQβ ,U1 . Therefore, normal comparison
for (P ,Σ) and (R,Λ) holds. The case γ < β is symmetrical. �

Using reflection, we can eliminate the extra assumptions on Γ and the two strate-
gies.

Corollary 4.6.10 (Comparison) Assume AD+ and suppose Γ is a pointclass. Sup-
pose further that (P ,Σ) and (Q,Λ) are two hod pairs such that both Σ and Λ are
Γ-fullness preserving and have branch condensation. Then the normal comparison
hold for (P ,Σ) and (Q,Λ).

Proof. Suppose not. Applying Σ2
1-reflection, we can fine Γ∗ and two hod pair (P1,Σ1)

and (Q1,Λ1) such that Γ∗∪{Code(Σ1), Code(Λ1)} ⊆ ∆∼
2
1 and the claim of the corollary

fails for (Γ∗, (P1,Σ1), (Q1,Λ1)). We then apply Corollary 4.6.9. �

4.7 Branch condensation

In this subsection we prove that the hod pair constructions produce strategies with
branch condensation and in fact more. In order, however, to prove that hod pair
constructions converge, we will need to establish the solidity and universality of the
standard parameter of the models appearing in such constructions. Establishing such
fine structural facts wasn’t an issue in [10] as the fine structure for hod mice consid-
ered in that paper was a routine generalization of the fine structure theory developed
in [8]. Here the matters are somewhat more complicated as the fine structure of non-
meek hod mice cannot be viewed as a routine generalization of the fine structure
of [8]. Nevertheless, the matter isn’t too complicated as a simple generalization of
branch condensation, strong branch condensation, allows us to reduce our case to the
one in [8].

In this subsection, we will establish that hod pair constructions produce strategies
with strong branch condensation. The reader is encouraged to concentrate on clause
1 of Definition 4.7.1. Clause 2 is a technical addition that will be used in the proof
of Corollary 5.5.1.

Definition 4.7.1 (Strong branch condensation) Suppose (P ,Σ) is a hod pair.
We say Σ has strong branch condensation if Σ has branch condensation and

1. whenever (~T ,Q, π,R, α, σ) is such that
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(a) (~T ,Q) ∈ I(P ,Σ) and R is a hod premouse,

(b) π : P → R, σ : R → Q and π
~T = σ ◦ π,

(c) α + 1 ≤ λR is such that for some ~U , (~U ,R(α + 1)) ∈ B(P ,Σ) ∪ I(P ,Σ)

then letting Λ = σ-pullback of ΣQ,~T , whenever ~W is such that ( ~W ,R(α+ 1)) ∈
B(P ,Σ) ∪ I(P ,Σ), if there is no low level disagreement between ΛR(α+1) and
ΣR(α+1), ~W then ΛR(α+1) = ΣR(α+1), ~W .

2. whenever (~T ,Q, π,R, α, β, ξ, k, σ) is such that

(a) (~T ,Q) ∈ I(P ,Σ) and R is a hod premouse of limit type,

(b) β ≤ λP and ξ ≤ λQ are limit ordinals such that π
~T (β) ≥ ξ and

(Q(ξ))b = HullQ(π
~T [(P(β))b] ∪ δQξ ),

(c) k : P(β)b → (Q(ξ))b is k0 ◦ k1, where k1 = π
~T � P(β)b and k0 is the

inverse of the collapse of HullQ(π
~T [(P(β))b] ∪ δQξ ),

(d) π : (P(β))b → Rb, σ : Rb → (Q(ξ))b and k = σ ◦ π,

(e) α + 1 ≤ λR is such that for some ~U , (~U ,R(α + 1)) ∈ B(P ,Σ) ∪ I(P ,Σ)

then letting Λ = σ-pullback of Σ(Q(ξ))b,~T , whenever ~W is such that ( ~W ,R(α +

1)) ∈ B(P ,Σ) ∪ I(P ,Σ), if there is no low level disagreement between ΛR(α+1)

and ΣR(α+1), ~W then ΛR(α+1) = ΣR(α+1), ~W .

Theorem 4.7.2 Assume AD+. Suppose for some α such that θα < Θ, Γ = {A ⊆
R : w(A) < θα} and M = (M, δ,Σ) is a self-capturing background triple that Suslin,
co-Suslin captures Γ via (P,Ψ). Let (Qβ,Σβ : β < αM) be the models and strategies
of the hod pair construction of M. Suppose ξ is such that (Qξ,Σξ) ∈ HP Γ is a hod
pair and that for some < δ-generic g, there is a continuous function σ ∈ M [g] ∩ R
such that σ−1[Code(Ψ)] = Code(Σξ). Then Σξ has strong branch condensation.

Proof. The proof of clause 2 of Definition 4.7.1 is only notationally more involved
than the proof of clause 1 of Definition 4.7.1. Because of this we only present the
proof of clause 1.

Towards a contradiction, suppose that for some ξ < αM, Qξ is a hod premouse
and Σξ doesn’t have strong branch condensation. Just like in the proof of fullness
preservation (see Theorem 4.5.3), if Σξ does not have strong branch condensation
then the witness can be found in M [g] where g is < δ-generic over M .
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Let Q = Pξ and Λ = Σξ. We start working in M [g]. What we need to show is

that whenever (~T ,S, π,R, β, σ) is such that

1. (~T ,S) ∈ I(Q,Λ) and R is a hod premouse,

2. π : Q → R, σ : R → S and π
~T = σ ◦ π,

3. β + 1 ≤ λR is such that for some ~U , (~U ,R(β + 1)) ∈ B(Q,Λ) ∪ I(Q,Λ),

then letting Φ = Λσ
S,~T , whenever ~U∗ is such that (~U∗,R(β+1)) ∈ B(Q,Λ)∪ I(Q,Λ),

if there is no low level disagreement between ΦR(β+1) and ΛR(β+1), ~W then ΦR(β+1) =
ΛR(β+1), ~W .

Fix then such a sequence (~T ,S, π,R, β, σ). Let (~U∗,W) ∈ I(Q,Λ) be such that
R(β + 1) =W(β + 1). Let Φ = Λσ

S,~T . It follows from strong fullness preservation of

Λ (see Theorem 4.5.5) that ΦRb is fullness preserving.
We assume that there is no low level disagreement between ΦR(β+1) and ΛR(β+1), ~U∗

and want to show that ΦR(β+1) = ΛR(β+1), ~U∗ . Towards a contradiction assume that
ΦR(β+1) 6= ΛR(β+1), ~U∗ .

It follows from Lemma 4.6.3 that either R(β + 1) is of successor type or of lsa
type. We then have two cases. Suppose first that R =W = R(β + 1). Letting

Λ∗ =

{
ΛQ(λQ−1) : Q is of successor type

Λstc : otherwise

and

Φ∗ =

{
ΦR(β) : Q is of successor type

Φstc : otherwise

set

Q∗ = (J ~E,Λ∗)V
M
δ and Q+ = SΛ∗(Q∗)19

Let E be the (δQ, δR)-extender derived from π, F be the (δQ, δS)-extender derived

from π
~T and H be the (δQ, δW)-extender derived from π

~U∗ . We let

R+ = Ult(Q+, E), S+ = Ult(Q+, F ) and W+ = Ult(Q+, H).

We then have that (see Lemma 5.3 of [10])

19S here denotes the stack. See Section 5.1 of [10].
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R+ = SΦ∗(R+|δ), S+ = SΛ∗
S,~T (S+|δ) and W+ = SΛ∗

W,~U∗ (W+|δ).

We also have σ+ : R+ → S+ such that πF = σ+ ◦ πE and σ+ � R = σ. More
precisely, σ+(x) = πF (f)(σ(a)) where f ∈ Q+, a ∈ (R)<ω and x = πE(f)(a).

Let now ~K be a stack on R such that Φ(~K) 6= ΛR, ~U∗(
~K). Suppose that b = Φ(~K)

and c = ΛR, ~U∗(
~K). Notice that because both Φ and Λ are strongly fullness preserving,

we must have that both π
~K
b and π

~K
c exist. Let now R+

b and W+
c be the last models

of ~K when it is applied to R+ and W+ respectively. Comparing R+
b and W+

c we
get a common model M. Let i′ : R+

b → M, j′ : W+
c → M be iteration maps and

i = i′ ◦ π ~Kb , j = j′ ◦ π ~Kc .
Let C ⊆ (δ+)M be an ω-club consisting of points β such that β ∈ rng(i)∩rng(j).

Then we have that

(1) crt(i′) ≥ δR and crt(j′) ≥ δR.

(2) δR = sup(HullR
+

(R(β), i−1[C]) ∩ δR) = sup(HullW
+

(R(β), j−1[C]) ∩ δR).

(3) π
~K
b (δR) = sup(HullM(π

~K
b (R(β)), C) ∩ π ~Kb (δR)).

(4) π
~K
c (δR) = sup(HullM(π

~K
c (R(β)), C) ∩ π ~Kc (δR)).

It follows from (1), (2) , (3), and (4) that rng(π
~K
b )∩rng(π

~K
c ) is cofinal in π

~K
b (δR) =

π
~K
c (δR) and hence (4) implies that b = c.

The case R(β+1) 6= R (implying that R(β+1)/R) is very similar but a bit more
technical. Notice that because of our minimality assumption, we have that R(β+ 1)

is not of lsa type. Let ν be least such that π(ν) ≥ β + 1 and set Q∗ = (J ~E,ΛQ(ν))V
M
δ .

Next let E be (δQν , δ
R
β+1)-extender derived from π, F be (δQ, σ(δRβ+1))-extender derived

from π
~T and H be (δQν , δ

W
β+1)-extender derived from π

~U∗ , and set

R∗ = Ult(Q∗, E), S∗ = Ult(Q∗, F ) and W∗ = Ult(Q, H).

Then let R∗∗ = (J ~E,ΦR(β))R
∗
, S∗∗ = (J ~E,ΛS(σ(β)),~T )S

∗
and W∗∗ = (J ~E,ΛW(β),~U∗ )W

∗
,

and finally set

R+ = SΦR(β)(R∗∗), S+ = SΛS(σ(β)),~T (S∗∗) and W+ = SΛW(β),~U∗ (W∗∗).

We now finish by noticing that we can get an embedding σ+ : R+ → S+. The rest
of the argument is as before. �

A variant of strong branch condensation holds for short tree strategy. The short
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tree strategies induced from background constructions have this form of branch con-
densation, but we will omit the proof of this fact because it is very similar to the
proof of Theorem 4.7.2.

Definition 4.7.3 Suppose (P ,Σ) is an sts hod pair. We say Σ has strong branch
condensation if Σ has branch condensation and

1. whenever (~T ,Q, π,R, α, σ) is such that

(a) (~T ,Q) ∈ Ib(P ,Σ) and R is a hod premouse,

(b) π : Pb → Rb, σ : Rb → Qb and π
~T ,b = σ ◦ π,

(c) α < λR
b

is such that for some ~U , (~U ,R(α + 1)) ∈ B(P ,Σ)

then letting Λ = σ-pullback of ΣQ,~T , whenever ~W is such that ( ~W ,R(α+ 1)) ∈
B(P ,Σ), if there is no low level disagreement between ΛR(α+1) and ΣR(α+1), ~W
then ΛR(α+1) = ΣR(α+1), ~W .

2. whenever (~T ,Q, π,R, α, β, ξ, k, σ) is such that

(a) (~T ,Q) ∈ Ib(P ,Σ) and R is a hod premouse of limit type,

(b) β ≤ λP and ξ ≤ λQ are limit ordinals such that

(Q(ξ))b = HullQ(π
~T [(P(β))b] ∪ δQξ ),

(c) k : P(β)b → (Q(ξ))b is k0 ◦ k1, where k1 = π
~T � P(β)b and k0 is the

inverse of the collapse of HullQ(π
~T [(P(β))b] ∪ δQξ ),

(d) π : (P(β))b → Rb, σ : Rb → (Q(ξ))b and k = σ ◦ π,

(e) α + 1 ≤ λR is such that for some ~U , (~U ,R(α + 1)) ∈ B(P ,Σ) ∪ I(P ,Σ)

then letting Λ = σ-pullback of Σ(Q(ξ))b,~T , whenever ~W is such that ( ~W ,R(α +

1)) ∈ B(P ,Σ) ∪ I(P ,Σ), if there is no low level disagreement between ΛR(α+1)

and ΣR(α+1), ~W then ΛR(α+1) = ΣR(α+1), ~W .

Theorem 4.7.4 Assume AD+. Suppose for some α such that θα < Θ, Γ = {A ⊆
R : w(A) < θα} and M = (M, δ,Σ) is a self-capturing background triple that Suslin,
co-Suslin captures Γ via (P,Ψ). Let (Qβ,Σβ : β < αM) be the models and strategies
of the hod pair construction of M. Suppose ξ is such that (Qξ,Σξ) ∈ HP Γ, (Qξ,Σstc

ξ )
is an sts hod pair and that for some < δ-generic g, there is a continuous function
σ ∈ M [g] ∩ R such that σ−1[Code(Ψ)] = Code(Σξ). Then Σstc

ξ has strong branch
condensation.
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The following is an easily provable lemma, which shows that the requirement that
there is no low level disagreement between ΛR(α+1) and ΣR(α+1), ~W is not necessary.

Lemma 4.7.5 Suppose (P ,Σ) is a hod pair or an sts hod pair and Γ is a pointclass.
Suppose that Σ has strong branch condensation and is Γ-strongly fullness preserving.
Then the requirement that there is no low level disagreement between ΛR(α+1) and
ΣR(α+1), ~W in clause 1 and 2 of Definition 4.7.1 and Definition 4.7.3 is not necessary.

Proof. Since all cases are very similar, we only concentrate on clause 1 of Defi-
nition 4.7.1. Suppose then (~T ,Q, π,R, α, σ) is as in clause 1 of Definition 4.7.1.

Let ~W be as in the hypothesis of Definition 4.7.1. Towards a contradiction assume
that ΛR(α+1) 6= ΣR(α+1), ~W . It follows that there is a low level disagreement be-

tween ΛR(α+1) and ΣR(α+1), ~W . Let then (~T1,S) ∈ B(R(α+ 1),ΣR(α+1), ~W)∩B(R(α+

1),ΛR(α+1)) be a low level disagreement between ΣR(α+1), ~W and ΛR(α+1).

Let S+ be the last model of ~T1 when it is applied to R, and let ~T ∗1 be the stack
on Q constructed via the copying construction using π. Let S1 be the last model of
~T _ ~T ∗1 and let k : S+ → S1 be the map constructed via the copying construction.
Let ξ be such that S+(ξ) = S. Then it is not hard to see that

(~T _ ~T1,S1, π
~T1 ◦ π,S+, ξ, k)

is as in the hypothesis of clause 1 of Definition 4.7.1. Let Ψ be the k-pullback of
ΣS1,~T_ ~T1 . Notice that Ψ = ΛS+,~T1 . It then follows that there is no low level disagree-
ment between ΨS+(ξ) and ΣS+(ξ), ~W_ ~T1 . Strong branch condensation of Σ then implies
that ΨS+(ξ) = ΣS+(ξ), ~W_ ~T1 , contradicting the fact that ΛS+(ξ),~T1 6= ΣS+(ξ), ~W_ ~T1 . �

We finish by proving branch condensation for Γ-hod pair constructions. Our
proof assumes Γ-fullness preservation, which we will establish this later on in the
text (see Theorem 8.3.1).

Theorem 4.7.6 Suppose Γ is a pointclass such that for some α,

Lα(Γ,R) � “ZF−Replacement” and Γ = Lα(Γ,R) ∩ ℘(R).

Suppose M = (M, δ,Σ) is a self-capturing background triple that Suslin, co-Suslin
captures Γ. Let (Qβ,Σβ : β < αM) be the models and strategies of the Γ-hod pair
construction of M . Suppose β < αM such that (Qβ,Σβ) ∈ HP Γ and Σβ is strongly
Γ-fullness preserving. Then Σβ has strong branch condensation.
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Proof. The proof is very similar to the proof of Theorem 4.7.2. Because of this, we
will only outline it. Notice that if Σβ does not have strong branch condensation then
the witness can be found in M [g] where g is < δ-generic over M .

Let Q = Qβ and Λ = Σβ. We start working in M [g] and just show clause (1) in
the definition of strong branch condensation. What we need to show is that whenever
(~T ,S, π,R, β, σ) is such that

1. (~T ,S) ∈ I(Q,Λ) and R is a hod premouse,

2. π : Q → R, σ : R → S and π
~T = σ ◦ π,

3. β + 1 ≤ λR is such that for some ~U , (~U ,R(β + 1)) ∈ B(Q,Λ) ∪ I(Q,Λ),

then letting Φ = Λσ
S,~T , whenever ~U∗ is such that (~U∗,R(β+1)) ∈ B(Q,Λ)∪ I(Q,Λ),

if there is no low level disagreement between ΦR(β+1) and ΛR(β+1), ~W then ΦR(β+1) =
ΛR(β+1), ~W .

Fix then such a sequence (~T ,S, π,R, β, σ). Let (~U∗,W) ∈ I(Q,Λ) be such that
R(β + 1) =W(β + 1). Let Φ = Λσ

S,~T . It follows from strong fullness preservation of

Λ that ΦRb is fullness preserving.

We assume that there is no low level disagreement between ΦR(β+1) and ΛR(β+1), ~U∗
and want to show that ΦR(β+1) = ΛR(β+1), ~U∗ . Towards a contradiction assume that
ΦR(β+1) 6= ΛR(β+1), ~U∗ .

It follows from Lemma 4.6.3 that either R(β + 1) is of successor type or of lsa
type. We then have two cases. Suppose first that R =W = R(β + 1). Letting

Λ∗ =

{
ΛR(β) : Q is of successor type

Λstc : otherwise

and

Φ∗ =

{
ΦR(β) : Q is of successor type

Φstc : otherwise

set

Q∗ = (J ~E,Λ∗)V
M
δ and Q+ = SΛ∗(Q∗)20

20S here denotes the stack. See Section 5.1 of [10].
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We have two cases. If Q∗ � “δQ is a Woodin cardinal” then we can finish as in
Theorem 4.7.2. Otherwise let M be the least level of Q∗ such that M � “δQ is a
Woodin cardinal” and J1[M] � “δQ is not a Woodin cardinal”. Notice then M is a
Q-structure for δQ implying that Λ∗ is determined by moving it correctly. This then
implies that ΦR(β+1) = ΛR(β+1), ~U∗ .

The case R(β + 1) 6= R (implying that R(β + 1) /R) is very similar but a bit
more technical. Notice that because of our minimality assumption, we have that
R(β + 1) is not of lsa type. Let ν be least such that π(ν) ≥ β + 1. It again follows
that ν + 1 < λQ.

Let then η < δ be the leastM -cardinal above o(Q) such that LpΓ,ΣQ(ν+2)(V M
η ) � “η

is a Woodin cardinal”. We now repeat the proof of Theorem 4.7.2 by using V M
η

instead of V M
δ . �

4.8 Positional and commuting

In this section, our goal is to show that strong branch condensation implies com-
muting. Recall [10, Definition 2.35]: if M is a transitive model of a fragment of ZFC
and Σ is an iteration strategy for M then we say Σ is positional if whenever Q is a
Σ-iterate of M via ~W and (~T , R), (~U , R) ∈ I(Q,ΣQ, ~W), ΣR, ~W_ ~T = ΣR, ~W_ ~U . Recall

that commuting means that in the above scenario, π
~T = π

~W . If Q = M , then we say
that Σ is weakly positional (and weakly commuting respectively). Using the usual
proof of the Dodd-Jensen lemma, we get that (weakly) positional implies (weakly)
commuting.

Proposition 4.8.1 Suppose (P ,Σ) is a hod pair or an sts hod pair, Γ is a pointclass
and Σ has strong branch condensation and is strongly Γ-fullness preserving. Then Σ
is positional. Moreover, if Σ is an iteration strategy then it is also commuting.

Proof. We just prove weak positionality and hence weak commuting. The proof of
the general case is similar.

Suppose (~T ,Q), (~U ,Q) ∈ I(P ,Σ). We want to see that ΣQ,~T = ΣQ, ~U . Towards
a contradiction, suppose not. Suppose first that either P is not of lsa type or if it
is then Σstc

Q,~T 6= Σstc
Q, ~U . Let then ( ~W ,R) ∈ B(Q,ΣQ,~T ) ∩ B(Q,ΣQ, ~U) be a minimal

lower level disagreement. Let R+ be the last model when we apply ~W to Q and
let α be such that R = R+(α + 1). We can then apply strong branch condensation

to (~T _ ~W ,R+, π
~T_ ~W ,R+, α, id) and (~U_ ~W ,R+(α)). It follows that ΣR,~T_ ~W =

ΣR, ~U_ ~W .



4.8. POSITIONAL AND COMMUTING 95

Finally suppose P is of lsa type, Σ is an iteration strategy and Σstc
Q,~T = Σstc

Q, ~U . Now

we can simply apply strong branch condensation (in fact, just branch condensation)

to (~T ,Q, π ~T ,Q, λQ, id) and (~U ,Q) and get that ΣQ,~T = ΣQ, ~U . �

Given a hod pair (P ,Σ) and Q ∈ pI(P ,Σ) such that Σ has strong branch con-
densation and is strongly Γ-fullness preserving for some Γ, we let ΣQ be the strategy
of Q induced by Σ. It follows from Lemma 4.8.1 that ΣQ is independent of the
particular iteration producing Q.

We need commuting not only for iteration strategies but also for short tree strate-
gies.

Definition 4.8.2 Suppose (P ,Σ) is an sts hod pair. We say Σ is strongly commuting

if whenever (~T ,Q) ∈ Ib(P ,Σ) and (~U ,R) ∈ Ib(P ,Σ) are such that for some α ≤ λQ,

Rb = (Q(α))b and Rb = HullQ(π
~T ,b[Pb] ∪ δRb), then letting k : Pb → Rb be the

inverse of the collapse of HullQ(π
~T ,b[Pb] ∪ δRb),21 k = π

~U ,b.
We say Σ is commuting if keeping the above notation, the conclusion holds with

α = λQ (in this case, k = π
~T ,b).

If (P ,Σ) is a hod pair. We say Σ is strongly commuting if Σ is commuting.22

To show strong commuting for short tree strategy, we will use AD+ reflection.
But first we need a lemma.

Lemma 4.8.3 Suppose (P ,Σ) is an sts hod pair, Γ is a pointclass and Σ has strong
branch condensation and is strongly Γ-fullness preserving. Then Σ is strongly com-
muting.

Proof. Fix (~T ,Q), (~U ,R) ∈ Ib(P ,Σ) and α as in Definition 4.8.2. Let k be the

inverse of the collapse of HullQ(π
~T ,b[Pb] ∪ δRb).

Using the fact that π
~T ,b and π

~U ,b exist, we can find a Q1 and R1 such that

1. Q1 is a cutpoint of ~T and R1 is a cutpoint of ~U ,

2. ~T≥Q1 is a normal tree on Q1 above Qb1 and ~U≥R1 is a normal tree on R1 above
Rb

1,

3. π
~T≤Q1 exists and π

~T≤R1 exists, and

4. Qb1 = Qb and Rb
1 = Rb.

21From here on, we mean k = k0◦π
~T ,b where k0 is the transitive collapse of HullQ(π

~T ,b[Pb]∪δRb).
22This terminology is so that subsequent statements of lemmas and definitions are uniform.
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Let then k+ be the inverse of the collapse of HullQ1(π
~T≤Q1 [P ] ∪ δRb1). We will show

that k+ � Pb = π
~T≤R1

,b. The claim then follows because k+ � Pb = k and π
~T≤R1

,b =
π
~U ,b.

Without loss of generality we can assume that Q1 = Q and R1 = R. We now
compare (Q,ΣQ) with (R,ΣR). Let (T ,M) ∈ I(Q,ΣQ) and (U ,M) ∈ I(R,ΣR) be
the trees coming from the comparison of the two hod pairs. Because Σ is commuting
we have that

(1) π
~T_T = π

~U_U .

It follow from strong branch condensation that (ΣQ)Rb = ΣRb which in turns
implies that

(2) πT � (Rb|δRb) = πU � (Rb|δRb).

Notice that (1) implies that

(3) k � (Pb|δPb) = π
~U ,b � (Pb|δPb).

To finish the proof, we have to verify (3) for subsets of δP
b
. Let then A ∈ ℘(δP

b
)∩Pb.

We then have that, using (1),

(6) k(A) = π
~T ,b(A) ∩ δRb and π

~U ,b(A) = {ξ < δR
b

: πU(ξ) ∈ π ~T_T ,b(A)}.

(3) and (6) imply that π
~U ,b(A) = k(A). �

Proposition 4.8.4 Suppose (P ,Σ) is a hod pair or an sts hod pair, Γ is a pointclass
and Σ has strong branch condensation and is strongly Γ-fullness preserving. Then
for some (T ,Q) ∈ I(P ,Σ), ΣQ,T is strongly commuting.

Proof. If Σ is an iteration strategy then we can take T = ∅ and use Proposition 4.8.1.
We assume that Σ is a short tree strategy and P is of lsa type. Towards contradiction
assume that there is no (T ,Q) ∈ I(P ,Σ) such that ΣQ,T is strongly commuting.
Let φ be the sentence asserting the existence of (P ,Σ,Γ) as in the hypothesis of
Proposition 4.8.4 with the property that for any (T ,Q) ∈ I(P ,Σ), ΣQ,T is not
strongly commuting.

Let then Γ∗ ⊆ ℘(R) be least such that for some α, Lα(Γ∗,R) � ZF−Replacement+
φ and Γ∗ = ℘(R) ∩ Lα(Γ∗,R). Fix least α witnessing the above statement. Let now
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Φ be a good pointclass such that Γ∗ ⊆ ∆∼ Φ. Fix a triple (S,Λ,Γ∗∗) ∈ Lα(Γ∗,R) such
that Lα(Γ∗,R) � φ[S,Λ,Γ∗∗]. Applying Theorem 4.1.6 to Φ, fix F as in that theo-
rem. Fix x ∈ R such that if F (x) = (N ∗x ,Mx, δx,Σx) then (N ∗x ,Σx) Suslin, co-Suslin
captures Γ∗∗ and Code(Λ).

Applying Theorem 4.7.6 and Corollary 4.6.10 to (S,Λ), we get that the Γ∗∗-hod
pair construction of N ∗x reaches a normal iterate R of S such that if Ψ is the strategy
of R inherited from the background construction then ΛR = Ψstc and Ψ has strong
branch condensation and is strongly Γ∗∗-fullness preserving. Applying Lemma 4.8.3
we get that ΛR is strongly commuting. �

The next lemma will be used in the proof of Theorem 6.1.5.

Lemma 4.8.5 Suppose (P ,Σ) is an sts hod pair or is a hod pair and P is non-meek.
Suppose further that Γ is a pointclass and Σ has strong branch condensation and is
strongly Γ-fullness preserving. Suppose (~T ,Q) ∈ Ib(P ,Σ) and (~U ,R) ∈ B(P ,Σ) ∪
Ib(P ,Σ) are such that

1. if R+ is such that (~U ,R+) ∈ Ib(P ,Σ) then (R+)b = Rb and

2. there is some α ≤ λQ − 1 and a normal tree W on R such that (W ,Q(α)) ∈
I(R,ΣR).

Then (Q(α))b = HullQ
b
(π

~T ,b[Pb] ∪ δ(Q(α))b).

Proof. We first present the proof under an assumptions that makes the matter some-
what simpler.

(1) Suppose that (~T ,Q), (~U ,R+) ∈ I(P ,Σ).

Apply nowW to R+ and let its last model be S. The idea now is to compare (Q,ΣQ)
with (S,ΣS). We have that Q(α) E S. Suppose first the rest of the comparison be-
tween (Q,ΣQ) and (S,ΣS) uses no extenders with critical point δS

b
. The claim then

follows from the simple facts that Qb = HullQ
b
(π

~T ,b[Pb]∪δQb) and α ≥ supπ
~T ,b[λQ

b
].

Suppose then that the rest of the comparison between (Q,ΣQ) and (S,ΣS) uses
an extender with critical point δS

b
. It follows from strong branch condensation and

Γ-fullness preservation that Q(α) /S and letting E ∈ ~ES be the extender with criti-
cal point δS

b
used in the aforementioned comparison, E is the least extender on the

sequence of S with critical point δS
b

such that Q(α) /S1 where S1 = Ult(S, E). The
rest of the comparison is a comparison between (Q,ΣQ) with (S1,ΣS1). It follows
from strong branch condensation of Σ (see Lemma 4.7.5) that
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(2) ΣQ(α) = ΣS1(α).

Let now (T1,K) ∈ I(Q,ΣQ) and (T2,K) ∈ I(S1,ΣS1) be the normal trees that
achieve comparison between (Q,ΣQ) with (S1,ΣS1). It follows from the fact that
Σ is commuting that

(3) πT1,b ◦ π ~T ,b = πT2,b ◦ (πSE � Sb) ◦ πW,b ◦ π ~U ,b

Because of (2) we have that

(4) πT1 � Q(α) = πT2 � Q(α).

Using standard facts about representations of ultrapowers, we also get that

(5) (Q(α))b = Hull(S1)b(πE[(Q(α))b] ∪ δ(Q(α))b).

Using the same standard facts, we also get that

(6) (S1)b = Hull(S1)b(πE◦πW,b◦π ~U ,b[Pb]∪δ(S1)b) andKb = HullK
b
(πT1,b◦π ~T ,b[Pb]∪δKb).

It follows from (3)-(6) that (Q(α))b = HullQ
b
(π

~T ,b[Pb] ∪ δ(Qα)b), finishing the proof
under our assumption that (1) holds.

Suppose next (1) fails. In this case there are a cutpoint Q1 of ~T and a cutpoint

R1 of ~U such that

1. (~T ,Q1) ∈ I(P ,Σ) and (R1, ~U) ∈ I(P ,Σ),

2. ~T≥Q1 is a normal tree T on Q1 that is above (Q1)b and has a drop, and

3. ~U≥R1 is a normal tree U on R1 that is above (R1)b and has a drop.

In this case, we let S = Ult(R1, F ) where F is (δR
b
, δ(Q(α))b)-extender derived from

πW,b. The next step is to compare (Q1,ΣQ1) with (S,ΣS) The rest of the proof
is word by word the same as the one from (1). Indeed, notice that πT ,b = id and
πW,b = πF � (R1)b. We leave the details to the readers. �
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4.9 Solidity and condensation

The main contribution of this section are Theorem 4.9.6 and Theorem 4.9.7 that
can be used to show that fully backgrounded hod pair constructions converge. We
start by the following version of Lemma 4.9.4 for phalanxes that is used in the
proof of solidity and universality. We omit the actual proofs of Theorem 4.9.6 and
Theorem 4.9.7 as, in the light of Lemma 4.9.5, the proofs of solidity and universality
are trivial generalizations of the usual proofs of these facts (see Chapter 5 of [28]).

Definition 4.9.1 (Certified phalanxes) Suppose (P ,Σ) is a hod pair such that
P is non-meek and R is a hod premouse. We say (P ,R, ζ) is a (π,P ,Σ)-certified
phalanx if ζ > o(Pb) and there is an embedding π : R → P such that ζ ≤ crit(π).

Continuing with the set up of Definition 4.9.1, we let π+ : (P ,R, ζ) → (P ,P , ζ) be
given by (id, π), and also, we let Σπ+

be the π+-pullback of Σ.

Lemma 4.9.2 (No strategy disagreement) Suppose (P ,Σ) is a hod pair such
that P is non-meek, Σ has strong branch condensation and Σ is strongly fullness
preserving. Suppose (P ,R, ζ) is a (P ,Σ) certified phalanx as witnessed by π : R →
P. Let Λ = Σπ+

. Then no strategy disagreement appears in the comparison of P and
(P ,R, ζ) where Σ is used on P side and Λ is used on (P ,R, ζ).

Proof. Towards a contradiction suppose not. It follows from the proof of Lemma 4.6.3
that we can find a minimal low level disagreement (~T ,Q) between Σ and Λ. Let

then E = E
~T
Q , the un-dropping extender of ~T restricted to Q. We have that Q Ehod

Ult(P , E).
Our intention now is to find a Σ-iterate S of P and an embedding σ : Ult(P , E)→

S such that ΛQ,~T = Σσ
S, ~W where ~W is a stack on P with last model S. Let first

~W∗ = π+ ~T and let S = Ult(P , E ~W∗), where again E
~W∗ is the un-dropping extender

of ~W . Clearly ~W = ~W∗_{E ~W∗} works. The claim now follows from strong branch

condensation of Σ applied to ( ~W ,S, πE, Ult(P , E), α, σ), where α is such that Q =

Ult(P , E)(α) and σ : Ult(P , E)→ Ult(P , E ~W) is the embedding given by the copying
construction. �

Definition 4.9.3 (Certified pairs) Suppose (P ,Σ) is a hod pair and R is a hod
premouse such that both P and R are of limit type. Suppose that there is π such that
π : Pb → Rb. We say the pair (π,R) is (P ,Σ)-certified by (σ, ~T ,Q, α) if
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1. (~T ,Q) ∈ I(P ,Σ), α ≤ λQ and σ : R → Q(α),

2. (Q(α))b = HullQ(π
~T [Pb] ∪ δ(Q(α))b), and

3. letting k : Pb → (Q(α))b be the inverse of the collapse of HullQ(π
~T [Pb] ∪

δ
(Q(α))b

α ), k = (σ � Rb) ◦ π.

We say (R,Λ) is a (P ,Σ)-certified hod pair if for every (~U ,S) ∈ I(R,Λ) there is some

π, (σ, ~T ,Q, α) such that (π,S) is (P ,Σ)-certified by (σ, ~T ,Q, α) and ΛSb = Σσ
Qb,~T .

Lemma 4.9.4 Suppose (P ,Σ) is a hod pair such that P is non-lsa type non-meek
hod premouse, Γ is a pointclass and Σ has strong branch condensation and is strongly
Γ-fullness preserving. Suppose (~T ,R) ∈ Ib(P ,Σ)23 is such that for some Λ, (R,Λ)
is (P ,Σ)-certified and there is a π : P → R such that (π � Pb,R) is (P ,Σ)-certified

by (σ, ~U ,Q, α). Then π
~T exists and π

~T ≤ π.

Proof. Fix a (P ,Σ)-certificate (σ, ~U ,Q, α) for (R,Λ). Thus, Q(α) = Q and Λ =
Σσ
Q, ~U . Since Σ has strong branch condensation, it follows that ΣR,~T = Λ(= Σσ

Q, ~U).

Let Φ = Σσ◦π
Q, ~U . It follows from strong branch condensation that Φ = Σ. We can now

apply the usual Dodd-Jensen argument to conclude that π
~T exists and that π

~T ≤ π.
�

Lemma 4.9.5 (Dodd-Jensen for certified phalanxes) Suppose (P ,Σ) is a hod
pair such that Σ has strong branch condensation and is strongly fullness preserving.
Suppose that (P ,R, ζ) is a (P ,Σ)-certified phalanx as witnessed by π : R → P.
Suppose that (T ,Q) ∈ I((P ,R, ζ),Σπ+

) and (U ,S) ∈ I(P ,Σ) are such that the last
branch of T is on P and either

1. Q Ehod S and πT exists or

2. S Ehod Q and πU exists.

Then Q = S and πT = πU .

Proof.
Let T ∗ = π+T . Let Q∗ be the last model of T ∗ and let σ : Q → Q∗ come from

the copying construction. Suppose first that Q Ehod S and πT exists. Applying (the

23Thus, π
~T ,b exists, see Definition 2.6.5.
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proof of) Lemma 4.9.4 to σ noting that Qb = Sb, we get that πU exists, S = Q and
πU ≤ πT .

Suppose now S Ehod Q and πU exists. Let Φ be πU ◦π+-pullback of ΣS . We then
have that Φ = Σπ+

. Applying Lemma 4.9.4 to (σ � S) ◦ πU and (T ∗, σ(S)), we get
σ(S) = Q∗ and πT

∗
exists (again, we have here that (Q∗)b = σ(S)b). It follows that

Σσ
Q∗,T ∗ = ΣS . Therefore, the usual Dodd-Jensen argument can be used to get that
S = Q and πT ≤ πU . Putting the two arguments together we see that πU = πT . �

It is clear that it follows from Lemma 4.9.5 and from Lemma 4.9.2 that the usual
proofs of condensation, universality and solidity go through for hod mice. We state
the results without proofs (see Chapter 5 of [28] for the usual proofs of these results.)

Theorem 4.9.6 (Solidity and universality) Suppose k < ω and (P ,Σ) is a hod
pair such that

1. P is k-sound non-meek hod premouse,

2. P is not of lsa type and ρ(P) > o(Pb), and

3. Σ is strongly fullness preserving and has strong branch condensation.

Let r be the k + 1st standard parameter of (P , uk(P)); then r is k + 1-solid and
k + 1-universal over (P , uk(P)).

Theorem 4.9.7 (Condensation) Suppose (P ,Σ) is a hod pair such that

1. P is non-meek hod premouse,

2. P is not of lsa type and ρ(P) > o(Pb), and

3. Σ is strongly fullness preserving and has strong branch condensation.

Suppose (P ,R, ζ) is a (P ,Σ) certified phalanx as witnessed by π : R → P such that
ζ = crit(π) = ρRω . Then either

1. R Ehod P or

2. there is an extender E on the sequence of P such that lh(E) = ρRω and R Ehod
Ult(P , E).
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4.10 Diamond comparison

Our goal here is to provide another comparison argument, diamond comparison,
that doesn’t rely on branch condensation as heavily as our other argument (see
Corollary 4.6.10). The new comparison argument follows the same line of thought
as the proof of a similar comparison argument from [10] (see Theorem 2.47 of [10]).

We have two applications in mind for such a comparison argument. First we
will use it to show that in some instances tails of strategies with hull condensa-
tion get branch condensation and strong branch condensation. This will appear as
Theorem 5.6.8.

Next, as in [10], the diamond comparison argument can be used to show that
AD+ + LSA is consistent relative to a Woodin cardinal that is a limit of Woodin
cardinals. This will appear as Theorem 10.3.1. In [10], a similar argument gave the
consistency of ADR + “Θ is regular” relative to a Woodin cardinal that is a limit of
Woodin cardinals.

Following the proof of Theorem 2.47 of [10], we first define a bad block and a bad
sequence and show that there cannot be such a bad sequence of length ω1. We then
show that the failure of comparison produces such bad sequences of length ω1.

4.10.1 Bad sequences

For the purposes of this subsection, we make a definition of a bad block and a bad
sequence. In later subsections, we will redefine these names for different objects.

Definition 4.10.1 (Bad block) Suppose (P ,Σ) and (Q,Λ) are two hod pairs of
limit type. Then

B = (((Pi,Qi,Σi,Λi) : i < 5), (~Ti, ~Ui : i < 4), (c, d))

is a bad block on ((P ,Σ), (Q,Λ)) if the following holds:

1. (P0,Σ0) = (P ,Σ) and (Q0,Λ0) = (Q,Λ).

2. ~T0 is a stack according to Σ0 on P.

3. ~U0 is a stack according to Λ0 on Q.

4. Let ~T0 = (Mβ, ~Tβ,Rβ, Eβ : β ≤ ν) and ~U0 = (Nβ, ~Uβ,Sβ, Fβ : β ≤ ν). Then ~Tν
and ~Uν are undefined, P1 =Mν and Q1 = Nν.
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5. There is some β+1 < min(λP1 , λQ1) such that P1(β+1) = Q1(β+1), P1(β+1)
is of successor type, ΣP1(β+1),~T0 6= ΛQ1(β+1), ~U0

and ΣP1(β),~T0 = ΣQ1(β), ~U0
.

6. ~T1 and ~U1 are stacks on (P1(β+ 1),ΣP1(β+1),~T0) and (Q1(β+ 1),ΛQ1(β+1), ~U0
) re-

spectively with last models R and S such that both (~T1,R, ~U1,S) are comparison
stacks for (P1(β + 1),ΣP1(β+1),~T0) and (Q1(β + 1),ΛQ1(β+1), ~U0

)24.

7. Keeping the above notation, ~T1 and ~U1 have a last normal component of suc-
cessor length whose predecessor is a limit ordinal25 and ~T −1 = ~U−1 .

8. Again keeping the above notation, c = ΣP1(β+1),~T0(~T −1 ), d = ΛQ1(β+1), ~U0
(~U−1 ),

P2 =M
~T −1
c and Q2 =M

~T −1
d where ~T −1 is applied to P1 and Q1 respectively.

9. Σ1 = ΣP1,~T0, Σ2 = ΣP2,~T_0 (~T −1 )_{P2}, Λ1 = ΣQ1, ~U0
, and Λ2 = ΣQ2, ~U_0 (~U−1 )_{Q2},

10. ~T2 is a stack according to Σ2 on P2 with last model P3 and Σ3 = (Σ2)P3,~T2.

11. ~U2 is a stack according to Λ2 on Q2 with last model Q3 and Λ3 = (Λ2)Q3, ~U2
.

12. ~T3 is a normal tree according to Σ3 on P3 with last model P4 and Σ4 = (Σ3)P4,~T3.

13. ~U3 is a normal tree according to Λ3 on Q3 with last model Q4 and Λ4 =
(Λ3)Q4, ~U3

.

14. Pb3 = Qb3 and (Σ3)Pb3 = (Λ3)Qb3.

15. ~T3 and ~U3 are the trees produced via extender comparison between P3 and Q3.

We set ~T B = ~T _0 ~T _1 ~T _2 ~T3 and ~UB = ~U_0 ~U_1 ~U_2 ~U3. We say ~T B is the stack on the

top of B and ~UB is the stack in the bottom of B.

Next we show that there cannot be a bad sequence of length ω1.

Lemma 4.10.2 (No bad sequences) Suppose (P ,Σ) and (Q,Λ) are two hod pairs
of limit type such that P and Q are countable, and both Σ and Λ are (ω1, ω1, ω1)-
strategies. There is then no bad sequence, i.e., a sequence (Bβ : β < ω1) satisfying
the following holds:

24In particular, the two strategies agree on the last models of ~T1 and ~U1. Because of Theo-
rem 4.6.10 we can take ~T1 and ~U1 to be normal trees. We will always use the diamond comparison
argument in situations where Theorem 4.6.10 applies to low level strategies.

25Recall that in Definition 4.6.4, we required that comparison stacks have a last model.
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1. For all β < ω1, Bβ = (((Pβ,i,Qβ,i,Σβ,i,Λβ,i) : i < 5), (~Tβ,i, ~Uβ,i : i < 4), (cβ, dβ)).

2. For all β < ω1, Bβ is a bad block on ((Pβ,0,Σβ,0), (Qβ,0,Λβ,0)).

3. For all β < ω1, Pβ+1,0 = Pβ,4 and Qβ+1,0 = Qβ,4.

4. For β < α < ω1, let πβ,α : Pβ,0 → Pα,0 be the composition of the embeddings
on the “top” and σβ,α : Qβ,0 → Qα,0 be the composition of the embeddings on
the “bottom”. Then for all limit λ < ω1, Pλ,0 is the direct limit of (Pβ : β < λ)
under the maps πβ,α. Similarly, for all limit λ < ω1, Qλ,0 is the direct limit of
(Qβ : β < λ) under the maps σβ,α.

5. For a limit ordinal λ < ω1, Pbλ,0 = Qbλ,0.

6. For all β < ω1, Σβ,0 = ΣPβ,0,⊕γ<β ~T Bγ and Λβ,0 = ΣQβ,0,⊕γ<β ~UBγ .

Proof. Towards a contradiction, suppose ~B = (Bβ : β < ω1) is a bad sequence. Let
Pω1 be the direct limit of (Pβ,0 : β < ω1) under the embeddings πβ,α and Qω1 be the
direct limit of (Qβ,0 : β < ω1) under the embeddings σβ,α. Let X be a countable

submodel of Hω3 such that letting τ : M → Hω3 be the uncollapse map, ~B ∈ rng(σ).
Let κ = ωM1 and notice that for every β < κ,

B−β =def (((Pβ,i,Qβ,i) : i < 5), (~Tβ,i, ~Uβ,i : i < 4), (cβ, dβ)) ∈M

and B−β is countable in M . It then follows that τ−1(Pω1) = Pκ,0 and τ−1(Q) = Qκ,0.
Let

πβ : Pβ,0 → Pω1 and σβ : Qβ,0 → Qω1

be the direct limit embeddings.
Standard arguments show that for all x ∈ Pκ,0 ∩Qκ,0,

πκ(x) = τ(x) = σκ(x).

Notice that we have that λPκ,0 = λQκ,0 . Letting λ = λPκ,0 , notice that δ
Pκ,0
λ−1 = δ

Qκ,0
λ−1 .

Let then δ = δ
Pκ,0
λ−1 . Let φ = π

~Tκ,0 and ψ = π
~Uκ,0 . It then follows that

(1) ℘(δ)Pκ,0 = ℘(δ)Qκ,0 .

Let β be such that ~T −κ,1 = ~U−κ,1 is based on Pκ,1(β + 1) = Qκ,1(β + 1). Notice
that
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(2) δPκ,1(β+1) = sup{φ(f)(a) : f ∈ Pκ,0 ∧ f : δ → δ ∧ a ∈ (Pκ,1(β))<ω}
(3) δQκ,1(β+1) = sup{ψ(f)(a) : f ∈ Qκ,0 ∧ f : δ → δ ∧ a ∈ (Qκ,1(β))<ω}

Let now p = π
~T −κ,1
cκ , q = π

~T −κ,1
dκ

, j : Pκ,2 → Pω1 and i : Qκ,2 → Qω1 be the itera-

tion embeddings along the top and bottom of ~B. Notice that because

(Σκ,2)Pκ,2(p(β)+1) = (Λκ,2)Qκ,2(p(β)+1),

we have that

(4) j � Pκ,2(p(β) + 1) = i � Qκ,2(q(β) + 1).

Let then

s = {γ < δ
Pκ,1
β+1 : ∃f ∈ (δδ)Pκ,0∃a ∈ (Pκ,1(β))<ω(γ = φ(f)(a))}

t = {γ < δ
Qκ,1
β+1 : ∃f ∈ (δδ)Qκ,0∃a ∈ (Qκ,1(β))<ω(γ = ψ(f)(a))}.

(1) then implies that

(5) j ◦ p[s] = i ◦ q[t].

(4) then implies that

(6) p[s] = q[t].

It follows from (2) and (3) that

(7) s and t are cofinal in δPκ,0(β+1).

It then follows from (6) and (7) that cκ = dκ, contradiction. �

4.10.2 The comparison argument

In this subsection we prove the following comparison theorem under the hypothesis
that the lower level comparison holds. Suppose (P ,Σ) and (Q,Λ) are two hod pairs
of limit type such that Γ(P ,Σ) = Γ(Q,Λ) =def Γ, both Σ and Λ are Γ-fullness
preserving.
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Definition 4.10.3 (Lower Level Comparison) We say low level comparison holds
for (P ,Σ) and (Q,Λ) if

1. for every (~T ,P1) ∈ B(P ,Σ) and (~U ,Q1) ∈ B(Q,Λ), comparison holds for
(P1,ΣP1,~T ) and (Q1,ΛQ1, ~U), and

2. whenever (~T ,P1) ∈ I(P ,Σ), (~U ,Q1) ∈ I(Q,Λ) and β are such that β + 1 ≤
min(λP1 , λQ1), P1(β+1) = Q1(β+1), P1(β+1) is meek and ΣP1(β),~T = ΛQ1(β), ~U ,
there is a normal tree S of limit length according to both ΣP1,~T and ΛQ1, ~U that
is based on P1(β + 1) and is such that letting b = ΣP1,~T (S) and c = ΛQ1, ~U(S),

(a) πSb and πSc exist,

(b) MS
b (πSb (β + 1)) =MS

c (πSc (β + 1)), and

(c) ΣMSb (πSb (β+1)),~T_S_{MSb }
= ΛMSc (πSc (β+1)), ~U_S_{MSc }

.

The following is then the comparison theorem we will prove in this subsection.

Theorem 4.10.4 (Diamond comparison) Suppose (P ,Σ) and (Q,Λ) are two hod
pairs such that Γ(P ,Σ) = Γ(Q,Λ) =def Γ, both Σ and Λ are Γ-fullness preserving
(ω1, ω1, ω1)-strategies, P and Q are countable and are of limit type, and lower level

comparison holds between (P ,Σ) and (Q,Λ). Then there are (~T ,R) ∈ I(P ,Σ) and

(~U ,R) ∈ I(Q,Λ) such that either

1. P and Q are of lsa type and Σstc
R,~T = Λstc

R, ~U or

2. P and Q are not of lsa type and ΣR,~T = ΛR, ~U .

We prove the theorem by showing that the failure of its conclusion produces a
bad sequence of length ω1. Towards showing this, we prove two useful lemmas.

We say that weak comparison holds between (P ,Σ) and (Q,Λ) if there is (~T , ~U ,R,S)
such that

1. (~T ,R) ∈ I(P ,Σ),

2. (~U ,S) ∈ I(Q,Λ),

3. Rb = Sb and ΣRb,~T = ΛSb, ~U .

Our first lemma says that lower level comparison implies that weak comparison holds.
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Lemma 4.10.5 Suppose (P ,Σ) and (Q,Λ) are two hod pairs such that Γ(P ,Σ) =
Γ(Q,Λ) =def Γ, both Σ and Λ are Γ-fullness preserving, P and Q are of limit type,
and that lower level comparison holds between (P ,Σ) and (Q,Λ). Then weak com-
parison holds between (P ,Σ) and (Q,Λ).

Proof. We inductively construct (Pi, ~Ti : i < ω) and (Qi, ~Ui : i < ω) such that the
following conditions hold.

1. P0 = P and Q0 = Q.

2. Suppose i = 2n. Then the following holds.

(a) ~Ti is a stack on Pbi according to ΣPbi ,⊕k<i ~Tk
with last model Pi+1 (when we

apply ~Ti to Pi).

(b) ~Ui is a stack on Qi according to ΛQi,⊕k<i ~Ui with last model Qi+1.

(c) Letting γ = supπ
~Ti [λP

b
i ], Pi+1(γ) Ehod Qbi+1 and ΛPbi+1(γ),⊕k≤i ~Uk = ΣPbi+1(γ),⊕k≤i ~Tk .

3. Suppose i = 2n+ 1. Then the following holds.

(a) ~Ti is a stack on Pi according to ΣPi,⊕k<i ~Tk with last model Pi+1.

(b) ~Ui is a stack on Qbi according to ΛQbi ,⊕k<i ~Ui
with last model Qi+1 (when

we apply ~Ui to Pi).

(c) Letting γ = supπ
~Ui [λQ

b
i ]Qbi+1(γ) Ehod Pbi+1 and ΛQbi+1(γ),⊕k≤i ~Uk = ΣQbi+1(γ),⊕k≤i ~Tk .

We show how to carry out the inductive step. Suppose we have constructed
(Pi,Qi : i ≤ 2n) and (~Ti, ~Ui : i < 2n). We now consider two cases.

Case 1. cfP2n(δP
b
2n) is not a measurable cardinal in P2n.

Notice that in this case, we have that P1 = Q1 and ΣP1,~T0 = ΛQ1, ~U0
. Thus, weak

comparison holds for (P ,Σ) and (Q,Λ).
Let (αi : i < ω) be such that sup(αk : k < ω) = δP

b
2n . By induction we construct

a sequence (~T ∗k ,Wk, ~Sk,Rk, ~S∗k ,R∗k, βk : k < ω) such that the following hold.

1. ( ~S∗0 ,R∗0) ∈ I(Q2n,ΛQ2n,⊕m<2n
~Um) and

Γ(P2n(α0),ΣP2n(α0),⊕m<2n
~Tm) = Γ(R∗0(β0),ΛR∗0(β0),(⊕m<2n

~Um)_ ~S∗0
).



108 CHAPTER 4. COMPARISON THEORY OF HOD MICE

Moreover, (~T ∗0 ,W0) ∈ I(P2n,ΣP2n,⊕m<2n
~Tm), ( ~S0,R0) ∈ I(R∗0,ΛR∗0,(⊕m<2n

~Um)_ ~S∗0
)

and for some ξ, (~T ∗0 ,W0(ξ), ~S0,R0(ξ)) are comparison stacks26 for

(P2n(α0),ΣP2n(α0),⊕m<2n
~Tm) and (R∗0(β0),ΛR∗0(β0),(⊕m<2n

~Um)_ ~S∗0
).

2. For k + 1 < ω, ( ~S∗k+1,R∗k+1) ∈ I(Rk,ΛRk,(⊕m<i ~Um)_(⊕m≤k( ~S∗_m ~Sm))) and

Γ(Wk(α
∗
k+1),ΣWk(α∗k+1),(⊕m<i ~Tm)_⊕m≤k ~T ∗m

) =

Γ(R∗k+1(βk+1),ΛR∗k+1(βk+1),(⊕m<i ~Um)_(⊕m≤k( ~S∗_m ~Sm))).

where α∗k+1 = π⊕i<k
~T ∗k (αk+1). Moreover,

(~T ∗k+1,Wk+1) ∈ I(Wk,ΣWk,(⊕m<i ~Tm)_⊕m≤k ~T ∗m
),

( ~Sk+1,Rk+1) ∈ I(R∗k+1,ΛR∗k+1,(⊕m<i ~Um)_(⊕m≤k( ~S∗_m ~Sm))_ ~S∗k+1
)

and for some ξ, (~T ∗k+1,Wk+1(ξ), ~Sk+1,Rk+1(ξ)) are comparison stacks for

(Wk(α
∗
k),ΣWk(α∗k+1),(⊕m<2n

~Tm)_⊕m≤k ~T ∗m
) and

(R∗k+1(βk+1),ΛR∗k+1(βk+1),(⊕m<2n
~Um)_(⊕m≤k( ~S∗_m ~Sm))_ ~S∗k+1

)

We then let ~T2n = ⊕k<ω ~T ∗k and ~U2n = ⊕m<ω ~S∗_k ~S. Also, we let P2n be the last

model of ~T2n+1 and Q2n+1 be the last model of ~U2n.

Case 2. cfP2n(δP
b
2n) is a measurable cardinal in P .

The difference between this case and the previous case is that here we cannot
start by fixing (αi : i < ω) as above. Here is the outline of the construction of

(~T2n, ~U2n,P2n+1,Q2n+1).
Because Γ(P2n,ΣP2n,⊕i<2n

~Ti) = Γ(Q2n,ΛQ2n,⊕i<2n
~Ui), we can find

( ~S0,R0) ∈ I(Q2n,ΛQ2n,⊕i<2n
~Ui)

and β < λR0 such that letting E ∈ ~EP2n be the extender of Mitchel order 0 with
crit(E) = cfP2n(δP2n),

26In particular, W0(ξ) = R0(ξ).
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Γ(Ult(P2n, E)(λP2n),ΣP2n,(⊕i<2n
~Ti)_{Ult(P2n,E)}) = Γ(R0(β),ΛQ2n,(⊕i<2n

~Ui)_{ ~S0})

Appealing to low level comparison, we can find

(~T ∗2n,P2n+1) ∈ I(Ult(P2n, E),ΣP2n,(⊕i<2n
~Ti)_{Ult(P2n,E)}) and

( ~S1,R1) ∈ I(R0,ΛR0,(⊕i<2n
~Ui)_ ~S0

)

such that

1. ~T ∗2n is based on Ult(P2n, E)(λP2n),

2. ~S1 is based on R0(β),

3. π
~T ∗2n(λP2n) = π

~S1(β) =def ξ, and

4. ΣP2n+1(ξ),(⊕i<2n
~Ti)_{Ult(P2n,E)}_ ~T2n+1

= ΛR1(ξ),(⊕i<2n
~Ui)_ ~S_0 ~S1

Let then ~T2n = {Ult(P2n, E)}_ ~T ∗2n, ~U2n = ~S_0 ~S1 and Q2n+1 = R1.

The two cases above finish the construction of (~T2n, ~U2n,P2n+1,Q2n+1). The con-

struction of (~T2n+1, ~U2n+1,P2n+2,Q2n+2) is very similar and we leave it to the reader.

Notice now that if ~T = ⊕i<ω ~Ti, ~U = ⊕i<ω ~Ui, R is the last model of ~T and S is
the last model of ~U then (~T ,R) and (~U ,S) witness that weak comparison holds for
(P ,Σ) and (Q,Λ). �

Lemma 4.10.6 Suppose (P ,Σ) and (Q,Λ) are two hod pairs such that Γ(P ,Σ) =
Γ(Q,Λ) =def Γ, both Σ and Λ are Γ-fullness preserving, both P and Q are of limit
type and low level comparison holds. Suppose further that Pb = Qb and for all β <
λP − 1, ΣP(β+1) = ΛQ(β+1). Let (T ,R,U ,S) be the trees of the extender comparison
of P and Q27. Suppose that either

1. R 6= S or

2. R = S and ΣR,T 6= ΛS,U .

Then there is a bad block on ((P ,Σ), (Q,Λ)).

Proof. It follows from Lemma 4.6.3 that we can find minimal low level disagreement
(~T ∗, ~U∗,W) between (R,ΣR,T ) and (S,ΛS,U). We then let P1 and Q1 be the last

models of ~T ∗ and ~U∗ when we regard them as stacks on R and S respectively.
Let T1 be a normal tree as in clause 2 of Definition 4.10.3 . Let b = Σ(T _ ~T ∗_T1),

c = Λ(U_ ~U∗_T1), P2 = MT1
b and Q2 = MT1

c (here we apply the stacks to P1 and
Q1 respectively). We thus have that πT1b and πT1c exist, πT1b (W) = πT1c (W) and

27Thus, T is on P with last model R and U is on Q with last model S.
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Σ
π
T1
b (W),T_ ~T ∗_T_1 {P2}

= Λ
π
T1
c (W),U_ ~U∗_T_1 {Q2}

Next (appealing to Lemma 4.10.5) let (~T2,P3) and (~U2,Q3) witness that the weak
comparison holds for

(P2,ΣP2,T_ ~T ∗_T_1 {P2}), and(Q2,ΛQ2,U_ ~U∗_1 T_1 {Q2}).

Finally, let (T3,P4) and (U3,Q4) be the result of extender comparison between P3

and Q3.
Next let P0 = P , Q0 = Q, Σ0 = Σ, Λ0 = Λ, ~T0 = T _ ~T ∗, and ~U0 = U_ ~U∗. Also,

for i ∈ {1, 2, 3, 4} let Σi = ΣPi,⊕k<i ~Tk and Λi = ΛQi,⊕k<i ~Uk , . It is then easy to see
that

(((Pi,Qi,Σi,Λi) : i < 5), (~Ti, ~Ui : i < 4), (b, c))

is a bad block on ((P ,Σ), (Q,Λ)). �

We now start proving Theorem 4.10.4. Suppose that the conclusion of Theo-
rem 4.10.4 fails. This means that

(1) whenever (~T ,R) ∈ I(P ,Σ) and (~U ,R) ∈ I(Q,Λ),

1. if P and Q are of lsa type then Σstc
R,~T 6= Λstc

R, ~U or

2. if P and Q are not of lsa type then ΣR,~T 6= ΛR, ~U .

It follows from Lemma 4.10.5 that, without loss of generality, we can assume that
Pb = Qb and for all β+ 1 < λP

b
, ΣP(β+1) = ΛQ(β+1). We now by induction construct

a bad sequence (Bα : α < ω1) on ((P ,Σ), (Q,Λ)).
It follows from Lemma 4.10.6 that there is a bad block on ((P ,Σ), (Q,Λ)). Let

B0 be any bad block on ((P ,Σ), (Q,Λ)). Suppose next that we have constructed
(Bβ : β < λ) for λ a limit. Let Pλ and Qλ be the direct limit of respectively
(Pβ : β < λ) and (Qβ : β < λ) under the corresponding iteration embeddings. Then
letting Σλ,0 and Λλ,0 be the corresponding tails of Σ and Λ, we have that (Pλ,Σλ)
and (Qλ,Λλ) satisfy the hypothesis of Lemma 4.10.6. Let then Bλ be a bad block
on ((Pλ,Σλ), (Qλ,Λλ)).

Next suppose that we have constructed (Bβ : β < λ + 1). Let Pλ+1 = Pλ,4,

Qλ+1 = Qλ,4 and let ~T and ~U be the stacks respectively on the top of (Bβ : β < λ+1)
and in the bottom of (Bβ : β < λ+ 1). We then again can find, using Lemma 4.10.6,
a bad block Bλ+1 on ((Pλ+1,ΣPλ+1,~T ), (Qλ+1,ΛQλ+1, ~U)). It then follows that the

resulting sequence (Bβ : β < ω1) is a bad sequence on ((P ,Σ), (Q,Λ)). This is a
contradiction to Lemma 4.10.2.



Chapter 5

Hod mice revisited

In this section we generalize the result of [10, Chapter 3] to our current context. As
in [10], these results lead towards showing that given a hod pair (P ,Σ), Γ(P ,Σ) is
an OD-full pointclass (see Definition 3.16 of [10]).

Recall the effect of Proposition 4.8.1; if (P ,Σ) is a hod pair such that Σ has
strong branch condensation and if Q ∈ pI(P ,Σ), then the strategy of Q induced
by Σ is independent of the particular iteration producing Q. In Section 4.8, this
strategy was denoted by ΣQ. In this chapter, whenever the strategy of a hod mouse
has a strong branch condensation, we will make use of the aforementioned notation
without giving any further explanation.

5.1 The uniqueness of the internal strategy

The first theorem, Theorem 5.1.2, is just a direct generalization of [10, Theorem 3.3].
It says that the internal strategies are unique. First we prove a useful lemma.

Lemma 5.1.1 Suppose P is a hod premouse and Q ∈ Y P . Suppose ~U ∈ P is a
stack on Q and suppose R is its last model. Then for all ν ≤ λR such that R � “δRν
is a Woodin cardinal”, cfP(δRν ) > ω.

Proof. Towards a contradiction, assume not. Notice that it cannot be the case that
δRν has a pre-image in P . Therefore, by minimizing Q, we can assume that Q is of

limit type. We give the proof assuming that Q is of limit type. Let (Nα, ~Uα,Qα, Eα :

α ≤ η) be the components of ~U . Without loss of generality we can assume that for

every cutpoint S of ~U , ~U≤S is not a counterexample to our claim.

111
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Let S be the least model in ~U such that π
~U
S,R exists and δRν ∈ rng(π

~U
S,R). It

follows that there isM in ~U such that for some extender F in ~U , F is applied toM
and S = Ult(M, F ). Let µ be such that π

~U
S,R(µ) = ν. Since π

~U
S,R is cofinal at δSµ , we

have that cfP(δSµ ) = ω.

Let E = E
~U≤M
M(µ) (see Definition 2.7.2) and let M+ = Ult(Q, E). We have that

(1) Ult(M+, F ) � “δSµ is a Woodin cardinal and hence is a regular cardinal”, and
(2) there is a sequence (hi : i < ω) ∈ Q such that for some (ai : i < ω) ∈ (ν<ωF )ω,

supi<ω π
M+

F (πE(hi))(ai) = δSµ .

Notice that

(3) G =def (πM
+

F (πE(hi)) : i < ω) ∈ Ult(M+, F ).

Hence,

(4) Ult(M+, F ) � δSµ = supa∈ν<ωF ,i<ω G(i)(a).

(4) implies that Ult(M+, F ) � cf(δSµ ) ≤ νF . Clearly this contradicts (1) and the
fact that δSµ > νF . �

Theorem 5.1.2 (Uniqueness of internal strategies) Suppose P is a hod pre-
mouse and W ∈ Y P . Then P � “W has a unique iteration strategy”.

Proof. Working in P , suppose Λ 6= ΣPW is another iteration strategy for W . Let
Σ = ΣPW . Since W is not of lsa type, it follows from Lemma 4.6.3 that we can

find (~T ,Q) that constitutes a minimal low-level disagreement between (W ,Σ) and

(W ,Λ). Let b = Σ(~T ) and c = Λ(~T ). Let ~S ∈ P be a stack on Q according to both

ΣQ,~T and ΛQ,~T and such that ΣQ,~T ( ~S) 6= ΛQ,~T ( ~S). Let R be a strong cutpoint of ~S
such that ~S≥R is a normal tree on R that is above δRλR−1. We now have that

(1) ΣR(λR−1),~T_ ~S≤R = ΛR(λR−1),~T_ ~S≤R and

(2) ΣR(λR−1),~T_ ~S≤R( ~S≥R) 6= ΛR(λR−1),~T_ ~S≤R( ~S≥R).

It then follows that
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(3) cfP(δ( ~S≥R)) = ω.

Let now e = ΣR(λR−1),~T_ ~S≤R( ~S≥R) and d = ΛR(λR−1),~T_ ~S≤R( ~S≥R).

Notice that it is a consequence of (1) that it cannot be the case that both

Q(e, ~S≥R) and Q(d, ~S≥R) exist as otherwise, since they are hybrid mice with re-

spect to the same strategy, we would get that Q(e, ~S≥R) = Q(d, ~S≥R) which implies
that d = e.

Without loss of generality, we assume thatQ(e, ~S≥R) does not exist and π
~S≥R
e (δR) =

δ( ~S≥R). It then follows from (3) that cfP(δR) = ω, contradicting Lemma 5.1.1. �

The proof of Theorem 5.1.2 can be used in the context of lsa hod premice as
well. We will state this result after proving the fullness preservation of the internal
strategies. Essentially the internal short tree strategy is the unique short tree strategy
which is internally fullness preserving. For now, we state the following corollary of
the proof of Theorem 5.1.2.

Corollary 5.1.3 Suppose P is an lsa type hod premouse and Λ is its internal short
tree strategy. Suppose (~T ,Q) ∈ I(P ,Λ) and β+ 1 < λQ. Then P � “ΛQ(β+1),~T is the

unique strategy of Q(β + 1)”.

5.2 Generic interpretability

We now move to generic interpretability. We start by recalling and generalizing the
definition of a pre-hod pair (see [10, Definition 3.7]).

Definition 5.2.1 (Prehod pair) (P ,Σ) is a prehod pair if

1. P is a countable hod premouse,

2. λP is a successor but P is not of lsa type,

3. Σ is an (ω1, ω1, ω1)-strategy for P acting on stacks based on P(λP − 1) such
that (P(λP − 1),Σ) is a hod pair and that whenever i : P → Q comes from an
iteration according to Σ, ΣQQ(λQ−1)

= Σ � Q,

4. for any P-cardinal η ∈ (δPλP−1, δ
P
λ ), considering P|η as a Σ-mouse over P(λP−

1), there is an ω1-strategy Λ for P|η.
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Notice that there must be a unique strategy Λ as in 5 of Definition 5.2.1.1 Also,
recall the definition of Generic Interpretability, [10, Definition 3.8]. In our current
context it takes the following form.

Definition 5.2.2 (Generic Interpretability) Suppose (P ,Σ) is a pre-hod pair, a
hod pair such that λP is a limit ordinal or an sts hod pair. We say generic inter-
pretability holds for (P ,Σ) if there is a function F such that

1. F is definable over P with no parameters,

2. dom(F ) consists of pairs (Q, κ) such that Q ∈ Y P , Q E P|δP and κ ∈ (δQ, δP)
is a P-cardinal,

3. for (Q, κ) ∈ dom(F ), F (Q, κ) = (Ṫ , Ṡ) such that ,

(a) Ṫ , Ṡ ∈ PColl(ω,o(Q)),

(b) P � “ 
Coll(ω,o(Q)) Ṫ and Ṡ are κ-complementing”,

(c) for any ν ∈ (o(Q), κ) and any P-generic g ⊆ Coll(ω, o(Q)),

P [g] � “p[Ṫg] is an (ω1, ω1, ω1)-iteration strategy for Q which extends
ΣPQ”

and

(p[Ṫg])
P[g] = ΣQ � HCP[g].

The proof that the generic interpretability holds is just like the proof of [10,
Theorem 3.10] using Theorem 4.6.8 and Theorem 5.1.2 instead of [10, Lemma 2.15]
and [10, Theorem 3.3]. First the proof of [10, Lemma 3.9] can be used with no
changes to establish the following useful lemma.

Lemma 5.2.3 Suppose (P ,Σ) is a prehod pair and α+ 1 = λP . Let κ < δP be a P-
cardinal such that P has no extenders on its sequence with critical point δPα and index
greater than κ. Let Λ∗ be the iteration strategy of P|κ as in 5 of Definition 5.2.1. Let
Λ be the fragment of Λ∗ that acts on non-dropping stacks. Let g ⊆ Coll(ω, κ) be P-
generic. Then P [g] locally Suslin, co-Suslin captures Code(Λ∗) and its complement
at any cardinal of P greater than κ.2

1Λ is the Q-structure guided strategy.
2Recall that this means that for every P-cardinal ν > κ, there are ν-complementing trees

U, V ∈ P[g] such that for any < ν-generic h, Code(Λ∗) ∩ P [g][h] = (p[U ])P[g][h].
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Fix now a prehod pair (P ,Σ) and let Q ∈ Y P . Let κ < δP be a P-cardinal
such that κ > o(Q) and P has no extenders with critical point δQ and index greater
than κ. Let (Rβ,Φβ : δP) be the models and strategies of the hod pair construction
of P|δP in which extenders used have critical point > κ (notice that we can view
(P , δP ,Σ) as a self-capturing background triple). Here we abuse the notation and
write Φβ both for the strategy of Rβ that is internal to P and also for the external
strategy. It follows from Theorem 4.6.8 , Lemma 5.1.2 and Lemma 5.2.3 that for
some β, (Rβ,Φβ) is a tail of (Q,ΣQ). We then set

NPκ,Q = Rβ and Λκ,Q = Φβ.

In what follows, we will omit superscript P , but ask the reader to keep in mind that
certain notions depend on P . Also let πκ,Q : Q → Nκ,Q be the iteration embedding
according to ΣQ and let Tκ,Q be the tree on Q with last model Rβ. The following is a
consequence of Lemma 5.2.3, hull condensation of Σ and the proof of Theorem 4.6.8.

Corollary 5.2.4 Whenever η ∈ (κ, δP) is such that η > o(Nκ,Q) and n < ω, there
are names (Ṫ , Ṡ) ∈ PColl(ω,η), such that

1. Ṫ , Ṡ ∈ PColl(ω,η),

2. P � “ 
Coll(ω,µPβ,ξ,γ) Ṫ and Ṡ are (δP)+n-complementing”,

3. for any λ < (η, ((δP)+n)P) and any P-generic g ⊆ Coll(ω, λ),

P [g] � “p[Ṫg] is an (ω1, ω1, ω1)-iteration strategy for Nκ,Q”

and letting Φ be the πPκ,Q-pullback of the strategy given by (p[Ṫg])
P[g] then

Φ = ΣQ � HCP[g].

Our generic interpretability result can now be proved using the tree production
lemma ([6, Theorem 3.3.15 ]) and Corollary 5.2.4. We leave the details to the reader.

Theorem 5.2.5 (The generic interpretability) Suppose (P ,Σ) is a prehod pair,
is a hod pair such that λP is limit or is an sts hod pair. Assume that for every
Q ∈ Y P , ΣQ has branch condensation. Then generic interpretability holds for (P ,Σ).

Next, we present our result on internal fullness preservation. The proof follows
the same line of thought as the proof of [10, Theorem 3.12 ]. Below S∗(R) is the
∗-transform of S into a hybrid mouse over R, it is defined when R is a cutpoint of
S (cf. [18]).
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Definition 5.2.6 Suppose P is a hod premouse and Q ∈ Y P . We say Λ = ΣPQ is

internally fullness preserving if the following holds for (~T ,R) ∈ I(Q,Λ) such that

(|~T |+)P exists.

1. For all limit type S ∈ Y R, if M ∈ P is a sound max(δP + 1, (|~T |+)P)-iterable
⊕K∈Y SbΛK,~T -mouse over S|δSb then M E S.

2. Suppose W /hod S is of lsa type and is such that W = M+(W|δW). Suppose

M∈ P is a sound max(δP+1, (|~T |+)P)-iterable ΛW,~T -sts mouse overW. Then
M E S.

3. Suppose η is a cardinal cutpoint of R and suppose there are R1,R2 ∈ Y R such
that R2 is the R-successor of R1 (see Definition 3.9.2), R1 is a cutpoint of R
and η ∈ (δR1 , o(R2)). SupposeM∈ P is a sound max(δP+1, (|~T |+)P)-iterable
ΛR1,~T -mouse over R2|η. Then M E R∗2(R2|η).

Theorem 5.2.7 (Internal fullness preservation) Suppose P is a hod premouse
and Q ∈ Y P . Then ΣPQ is internally fullness preserving.

5.3 The derived models of hod mice

In this section, we state, without a proof, a version of [10, Theorem 3.19]. Suppose
(P ,Σ) is a hod pair such that Σ has strong branch condensation and is fullness
preserving. Suppose α ≤ λP is a limit ordinal such that cfP(α) isn’t a measurable
cardinal in P . We then let D∗(P ,Σ, α) be the set of all A ⊆ R such that for some
β < α and g ⊆ Coll(ω, δPβ ) generic over P(α) there are δPα -complementing trees
T, U ∈ P(α)[g] such that

x ∈ A if and only if there is ( ~S,R) ∈ I(P(α),ΣP(α)) such that π
~S is above δPβ and

for some γ < λR, δRγ+1 is a Woodin cardinal in R, x is generic for the extender

algebra of R[g] at δRγ+1 and R[g, x] � x ∈ p[π ~S(T )].

Equivalently, A is Suslin, co-Suslin captured by (P(α)[g],ΣP(α)). It follows from
Corollary 4.6.10 and Theorem 4.8.1 that for x ∈ R, the right hand side of the above
equivalence is independent of the choice of ( ~S,R).

We let D(P ,Σ, α) be the derived model of P(α) as computed by Σ, i.e., for A ⊆ R,

A ∈ D(P ,Σ, α) if there is ( ~S,Q) ∈ I(P(α),Σ) such that A ∈ D∗(Q,ΣQ, π ~S(α)).



5.3. THE DERIVED MODELS OF HOD MICE 117

Next recall [10, Definition 3.18]. Essentially a pointclass is completely mouse-full
if the next model of determinacy has the same mice relative to common iteration
strategies. We introduce this notion more carefully.

Given a set of reals A ⊆ R, we let WA = {B ⊆ R : B ≤w A}. Next following
Definition 3.13 of [10], we say A ⊆ R is a new set if

1. L(A,R) � AD+,

2. ℘(R) ∩ L(WA,R) = WA,

3. ΘL(WA,R) is a Suslin cardinal of L(A,R).

The following is [10, Definition 3.17].

Definition 5.3.1 Given a pointclass Γ, we say Γ is completely mouse full if either
Γ = ℘(R) or there is a new set A such that

1. Γ = WA,

2. if (P ,Σ) is a hod pair such that Code(Σ) ∈ Γ and L(A,R) � “Σ has strong
branch condensation and is fullness preserving” then for every a ∈ HC,

LpΓ,Σ(a) = (LpΣ(a))L(A,R).

Given two pointclasses Γ1 and Γ2, we write Γ1 Emouse Γ2 if Γ1 ⊆ Γ2 and Γ2

has the same mice as Γ1 relative to common iteration strategies. More precisely, if
(P ,Σ) ∈ Γ1 is a hod pair such that L(Γ2,R) � “Σ has strong branch condensation
and is fullness preserving” then for any a ∈ HC,

LpΓ1,Σ(a) = LpΓ2,Σ(a).

Finally, following [10, Definition 3.18],

Definition 5.3.2 Γ is mouse full if either it is completely mouse full or is a union of
completely mouse full pointclasses (Γα : α < Ω) such that for all α, Γα Emouse Γα+1

and for all limit α, Γα =
⋃
β<α Γβ.

We can now state our generalization of [10, Theorem 3.19].

Theorem 5.3.3 Suppose (P ,Σ) is a hod pair and Γ is a pointclass. Suppose fur-
ther that P is of limit type and Σ has strong branch condensation and is Γ-fullness
preserving. Then
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1. Γ(P ,Σ) =
⋃
Q∈pI(P,Σ),β<λQ D(Q,ΣQ, β).

2. For any Q ∈ pI(P ,Σ), if β + ω < λP then D(Q,ΣQ, β) is completely mouse
full and if β + ω = λP then D(Q,ΣQ, β) is mouse full.

3. For any Q ∈ pI(P ,Σ), if β < λP then letting Γ∗ = D(Q,ΣQ, β + ω), if ξ is
such that θΓ

Code(ΣQ(β))
= θΓ

ξ then for every n,

θΓ
Code(ΣQ(β+n))

= θΓ
ξ+n and ΩΓ = ξ + ω.

4. Γ(P ,Σ) is a mouse full pointclass.

We can also prove a version of Theorem 5.3.3, via exactly the same proof, for sts
hod pairs.

Theorem 5.3.4 Suppose (P ,Σ) is an sts hod pair and Γ is a pointclass. Suppose
further that Σ has strong branch condensation and is Γ-fullness preserving. Then

1. Γb(P ,Σ) =
⋃
Q∈pIb(P,Σ),β<λQ D(Q,ΣQ, β).

2. For any Q ∈ pIb(P ,Σ), D(Q,ΣQ, β) is completely mouse full.

3. For any Q ∈ pIb(P ,Σ), if β < λP then letting Γ∗ = D(Q,ΣQ, β + ω), if ξ is
such that θΓ

Code(ΣQ(β))
= θΓ

ξ then for every n,

θΓ
Code(ΣQ(β+n))

= θΓ
ξ+n and ΩΓ = ξ + ω.

4. Γb(P ,Σ) is a mouse full pointclass.

We finish with a theorem generalizing [10, Theorem 3.20]. It shows that Γ(P ,Σ)
satisfies mouse capturing for any ΣQ where Q ∈ pI(P ,Σ). Recall from [10] (the
first page of the introduction of [10]) that MC stands for mouse capturing, i.e., for
the statement that for x, y ∈ R, x ∈ ODy if and only if there is an ω1-iterable y-
mouseM such that x ∈M. Given a hod pair (P ,Σ) such that Σ has strong branch
condensation and is fullness preserving, we say MC holds for Σ if for x, y ∈ R,
x ∈ ODy,Σ if and only if there is an ω1-iterable Σ-mouseM over y such that x ∈M.
Given a mouse full pointaclass Γ and a hod pair (P ,Σ) ∈ Γ such that Σ is Γ-fullness
preserving and has strong branch condensation, we write

Γ � “MC for Σ”
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if one of the following holds:

1. Γ is completely mouse full and whenever A is a new set such that Γ = WA then
L(A,R) � “MC for Σ”.

2. Γ is not completely mouse full and if (Γα : α < Ω) are the completely mouse full
pointclasses witnessing that Γ is mouse full then for some α < Ω, L(Γα,R) �
“MC for Σ”.

Theorem 5.3.5 Suppose (P ,Σ) is a hod pair such that λP is limit and Σ has strong
branch condensation and is fullness preserving. Suppose further that there is a good
pointclass Γ such that Code(Σ) ∈ ∆Γ∼

. Then for every Q ∈ pB(P ,Σ),

Γ(P ,Σ) � “MC for ΣQ”.

5.4 Anomalous hod premice

In this paper, we use anomalous hod premice the same way we used them in [10], to
generate pointclasses that are mouse full but not completely mouse full.

Definition 5.4.1 (Anomalous hod premouse of type I) P is an anomalous hod
premouse of type I if there is a hod premouse Q E P such that Q is of successor
type, P � “δQ is Woodin”, P can be organized as J ~E,f (Q) where f codes a fragment
of a strategy for Q and either ρ(P) < δQ or J1[P ] � “δQ is not a Woodin cardinal”.

Definition 5.4.2 (Anomalous hod premouse of type II) P is an anomalous hod
premouse of type II if for some limit ordinal λ and some δ there is a sequence
(Pα : α < λ) such that

1. Pα is a hod premouse such that λPα = α,

2. for α < β < λ, Pα Ehod Pβ and Pα = Pβ(α),

3. P|δ =
⋃
α<λPα,

4. P is a ⊕α<λΣPP(α)-premouse over P|δ,

5. ρ(P) < δP but for every ξ ∈ (δ, o(P)), ρ(P|ξ) ≥ δ.

Definition 5.4.3 (Anomalous hod premouse of type III) P is an anomalous
hod premouse of type III if it is of limit type, it is not an anomalous hod premouse
of type II and ρ(P) < δP

b
.
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We say P is an anomalous hod premouse if it is an anomalous hod premouse of
type i where i ∈ {I, II, III}. If P is an anomalous hod premouse then we let δP

and λP be as in the above definitions. We then let ΣP be the strategy that is on the
sequence of P .

Definition 5.4.4 (Anomalous hod pair) (P ,Σ) is an anomalous hod pair if P is
an anomalous hod premouse, Σ is an iteration strategy with hull condensation and
whenever Q is a Σ iterate of P, ΣQ ⊆ Σ � Q.

The following lemma is due to Mitchell and Steel. It appears as Claim 5 in the
proof of Theorem 6.2 of [8]. In the current work, the lemma is used to show that
certain hod pair constructions converge, which leads to showing that generation of
pointclasses holds (see Theorem 10.1.1). It was used in [10] in a similar fashion (see
[10, Lemma 3.25]).

Lemma 5.4.5 Suppose (P ,Σ) is a an anomalous hod pair, (~T ,Q) ∈ I(P ,Σ) and n
is least such that if P is anomalous of type I or II then ρn(P) < δP and otherwise
ρn(P) < δP

b
. Then ρn(Q) < δQ.

The next theorem is the adaptation of [10, Theorem 3.27] to our current setting.
It generalizes our results from previous sections to anomalous hod pairs.

Theorem 5.4.6 Suppose (P ,Σ) is an anomalous hod pair of type II or III. Sup-

pose that there is a pointclass Γ such that for any (~T ,Q) ∈ B(P ,Σ) there is a hod
pair (R,Λ) such that Λ has (strong) branch condensation and is Γ-fullness fullness
preserving, and there is π : Q → R such that Λπ = ΣQ,~T . Then

1. For every (~T ,Q) ∈ B(P ,Σ), ΣQ,~T has (strong) branch condensation, is posi-
tional and is commuting.

2. Σ is strongly Γ(P ,Σ)-fullness preserving and Γ(P ,Σ) is a mouse full pointclass.

We omit the proof of Theorem 5.4.6 as it is only notationally more complicated
than the proof of [10, Theorem 3.10]. We remind the reader that the proof of [10,
Theorem 3.27] depended on generic interpretability result, which appeared as [10,
Theorem 3.10]. In our current context we need to use Theorem 5.2.5. The general
idea is that we can translate the properties of Σ into the derived model of P as
computed via Σ. This fact then just gets preserved under pull-back embeddings.

It is also possible to prove a version of Theorem 5.4.6 for sts hod pairs. To prove
it, we again need to use Theorem 5.2.5. We state it without a proof.
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Theorem 5.4.7 Suppose (P ,Σ) is an sts hod pair and Γ is a pointclass. Suppose

that for any (~T ,Q) ∈ B(P ,Σ) there is a hod pair (R,Λ) such that Λ has strong
branch condensation and is (strongly) Γ-fullness fullness preserving, and there is
π : Q → R such that Λπ = ΣQ,~T . Then

1. For every (~T ,Q) ∈ B(P ,Σ), ΣQ,~T has (strong) branch condensation, is posi-
tional and is commuting.

2. Σ is strongly Γb(P ,Σ)-fullness preserving and Γb(P ,Σ) is a mouse full point-
class.

The following is an easy corollary of Theorem 5.4.6.

Corollary 5.4.8 (Branch condensation pulls back) Suppose (P ,Σ) is a hod pair
such that λP is limit and Σ has (strong) branch condensation. Suppose π : Q → P
is elementary. Then for every β < λQ, (Σπ)Q(β) has (strong) branch condensation.

5.5 Strong branch condensation and correctness

of Q-structures

Suppose (P ,Σ) is an sts hod pair. There is one potential problem with our definition
of short tree strategy indexing scheme (see Definition 3.8.2). Suppose M is an
unambiguous Σ-sts premouse and T is an ambiguous tree on P . Suppose there is
an M-shortness witness (β, γ, b) for T and let Q = Q(b, T ). It is not immediately
clear that Q is a ΣM+(T ),T -sts premouse. More precisely, it is not clear that ΣQ ⊆
ΣM+(T ),T � Q. In this section, we show that if Σ has strong branch condensation
then Q is indeed ΣM+(T ),T -sts premouse. The following lemma is the crux of our
argument.

Lemma 5.5.1 Suppose (P ,Σ) is an sts hod pair and Γ is a pointclass. Suppose
further that Σ has a strong branch condensation and is strongly Γ-fullness preserving.

Suppose t = (P0,U0,P1,U1,P2, ~U) is a stack of length 3 on P such that U0 is ac-

cording to Σ and (P1,U1,P2, ~U) is (P ,Σ)-authentic. Then (P1,U1,P2, ~U) is according
to ΣP1,U0.

Proof. The proof is a routine application of strong branch condensation. We first
prove that U1 is according to ΣP1 .
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Fix a cutpoint S of U1 such that π(U1)≤S ,b exists and (U1)≤S is according to ΣP1,U0 .

Let K be the longest initial segment of (U1)≥S that is above δS
b
. We claim that

Claim 1. K is according to ΣS .

Proof. Suppose first that K doesn’t have fatal drops. Fix a limit ordinal γ < lh(K)
such that K � γ is according to ΣS and let b be the branch of K � γ in K. We want
to see that b is according to ΣS .

We have that Q(b,K � γ) exists and is (P ,Σ)-authentic. Let then T be a tree
on P according to Σ that authenticates Q(b,K � γ). Let W = πT ,b(Pb). Also let
U be the T -authentication tree on Q(b,K � γ) and (α, ξ) be the T -authentication
ordinals. Thus, ξ ≤ o(W(α)) andW||ξ is the last model of U . Let k : Pb → (W(α))b

be the uncollapse map of HullW(πT ,b[Pb] ∪ δ(W(α))b). It follows from clause 3 of
Definition 3.7.1 and Lemma 4.8.3 that k = πU ,b ◦ πU_0 (U1)≤S ,b.

We now want to show that Q(b,K � γ) is a Q-structure of a correct kind, a kind

that ΣS chooses. Let e = ΣS(K � γ), Q =MK�γ
e |(δ(K � γ)+)M

K�γ
e , and let Λ be the

πU -pullback of ΣW||ξ. We now compare Q with Q(b,K � γ) using respectively ΣQ
and Λ. Because Σ is strongly Γb(P ,Σ)-fullness preserving (see Theorem 5.4.7) and
Λ ∈ Γb(P ,Σ) (see Definition 3.9.7), if the comparison halts then Q(b,K � γ) must be
an initial segment of Q implying that b = e. Therefore, the comparison cannot halt.

Using the proof of Lemma 4.6.3, we can find a low level disagreement between Λ
and ΣQ. Let then (~T0,R) ∈ B(Q,ΣQ) and (~T1,R) ∈ B(Q(b,K � γ),Λ) constitute a
low level disagreement between ΣQ and Λ. Let R+

0 and R+
1 be the last models of

~T0 and ~T1 when we regard them as stacks on Q and Q(b,K � γ). Notice that π
~T0,b

and π
~T1,b exists. Let ~T ∗1 = πU ~T1 be the stack on W||ξ constructed via a copying

construction using πU and let R∗ be its last model. There is then

σ : (R+
1 )b → (R∗)b

such that

π
~T ∗1 ,b ◦ k = σ ◦ π ~T1,b ◦ πU_0 (U1)≤S ,b,

and ΛR,~T1 is σ-pullback of Σσ(R). It follows from strong branch condensation that
ΛR,~T1 = ΣR.

Suppose now that K has a fatal drop. The proof is very similar to the proof given
above. Without loss of generality we can assume that K has a fatal drop at S. Fix
then η such that K is a normal tree on OSη above η. We can then mimic the above
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proof using OSη instead of Q(b,K � γ). �

To finish proving that U1 is according to ΣP1 , it is enough to establish the follow-
ing claim.

Claim 2. Suppose S is a cutpoint of U1 such that π(U1)≤S ,b exists and (U1)≤S is
according to ΣP1,U0 . Let K be the longest initial segment of (U1)≥S that is based on
Sb. Then K is according to ΣSb .

Proof. We know that Sb is (P ,Σ)-authentic. Fix then a normal iteration tree T
on P according to Σ that authenticates Sb. Let W = πT ,b(Pb), and let U be the
T -authentication tree on Sb. Let α be such that W(α) is the last model of U . Then
K is according to πU -pullback of ΣW(α).

Let k : Pb →W(α) be the inverse map of the collapse of HullW(πT ,b[Pb] ∪ δWα ).
We then have that k = πU ◦ πU_0 (U1)≤S ,b. It now easily follows from strong branch
condensation that K is according to ΣSb . �

Finally we want to see that ~U is according to ΣP2 . The proof is very similar to the
proof given above. Fix T that authenticates Pb2, and let S be the T -authentication
tree on Pb2. Let W = πT ,b(Pb). Let α be such that W(α) is the last model of S.

Then ~U is according to πS-pullback of ΣW(α).
Let k : Pb →W(α) be the inverse map of the collapse of HullW(πT ,b[Pb] ∪ δWα ).

We then have that k = πS ◦ πU_0 U1,b. It now easily follows from strong branch
condensation that ~U is according to ΣPb2 , as it is according to πU -pullback of ΣW(α).

�

Corollary 5.5.2 Suppose (P ,Σ) is an sts hod pair, Γ is a pointclass and Σ has a
strong branch condensation and is strongly Γ-fullness preserving. Suppose further
that M is an unambiguous Σ-sts mouse, T ∈ M is a normal M-ambiguous tree on
P according to ΣM and (β, γ, b) is an M-shortness witness for T . Then b = Σ(T ).

Proof. It is enough to show that Q(b, T ) is a ΣM+(T )-sts mouse over M+(T ). Let
Φ be the iteration strategy ofM|β induced from the iteration strategy ofM. Thus,
Φ witnesss that M|β is a Σ-sts mouse. Let (δi : i < ω) be a sequence of Woodin
cardinals of M|β witnessing that that clause 4 of Definition 3.8.2 holds. Also, let
Λ ∈M|β be an iteration strategy for Q(b, T ) as in clause 4 of Definition 3.8.2.

Notice that it follows from minimality of β that ρ(J1(M|β)) < δ0, implying that
Φ is commuting. It then follows (using clause 4 of Definition 3.8.2) that Λ has an
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extension Λ+ that acts on all trees in V . It is then enough to show that Λ+ witnesses
that Q(b, T ) is a ΣM+(T )-sts mouse.

Let U be a tree on Q(b, T ) above δ(T ) according to Λ+. Let R be the last
model of U . We need to see that R is a ΣM+(T )-premouse. Let P1 =M+(T ) and fix

(P1, T1,P2, ~T ) ∈ R a finite stack of length 2 on P1 that is according to ΣR. It follows

from clause 4 of Definition 3.8.2 that for some Φ-iterate N ofM|β, (P1, T1,P2, ~T ) is

(P ,ΣN )-authentic. It then follows that (P , T ,P1, T1,P2, ~T ) satisfies the hypothesis

of Lemma 5.5.1. Hence, (P1, T1,P2, ~T ) is according to ΣP1,T . �

Remark 5.5.3 (On hod pair constructions) Suppose (P ,Λ) is an sts hod pair.
Recall Definition 4.2.1, which introduces fully backgrounded constructions relative to
Λ. In particular, recall the Important Anomaly in clause 2.c of Definition 4.2.1.
The main point of Corollary 5.5.2 is to show that this anomaly cannot occur. What
follows is an explanation of how fully backgrounded constructions relative to Λ and
in general, hod pair constructions are carried out (the Important Anomaly appears
in such constructions as well, for instance, see clause 3.a of Definition 4.3.9).

Suppose (M, δ,Σ) is a background triple and we want to show that the hod pair
construction of M doesn’t break down because of Important Anomaly. Let (P ,Λ) be
some pair that appears in the fully backgrounded hod pair construction of M . Suppose
further that P is of lsa type. It follows from Theorem 4.5.4 that Λsts is strongly Γ-
fullness preserving for some Γ. It also follows from Theorem 4.7.4 that Λsts has strong
branch condensation. It then follows from Corollary 5.5.2 that Important Anomaly
cannot happen in fully backgrounded constructions relative to Λsts.

5.6 From condensation to strong condensation

In this section we show that strategies with branch condensation acquire strong
branch condensation on a tail. However, we don’t quite get strong branch conden-
sation for lsa type hod pairs. Nevertheless, in the case of lsa type hod pairs we get
low level strong branch condensation. In the case of limit type hod premice that are
not of lsa type, low level strong branch condensation and strong branch condensa-
tion coincide. The difference between Definition 4.7.1 and Definition 5.6.1 is just the
requirement in clause 3 that α + 1 < λR.

Definition 5.6.1 (Low level strong branch condensation) Suppose (P ,Σ) is a
hod pair such that P is of limit type. We say Σ has low level strong branch conden-
sation if Σ has branch condensation and whenever (~T ,Q, π,R, α, σ) is such that
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1. (~T ,Q) ∈ I(P ,Σ) and R is a hod premouse,

2. π : P → R, σ : R → Q and π
~T = σ ◦ π,

3. α + 1 < λR is such that for some ~U , (~U ,R(α + 1)) ∈ B(P ,Σ) ∪ I(P ,Σ)

then letting Λ = σ-pullback of ΣQ,~T , whenever ~W is such that ( ~W ,R(α + 1)) ∈
B(P ,Σ)∪I(P ,Σ), if there is no low level disagreement between ΛR(α+1) and ΣR(α+1), ~W
then ΛR(α+1) = ΣR(α+1), ~W .

Theorem 5.6.2 (From condensation to strong condensation) Suppose (P ,Σ)
is a hod pair such that Σ has branch condensation and P is of limit type. Then there
is some (~T ,Q) ∈ I(P ,Σ) such that (Q,ΣQ,~T ) has a low level strong branch conden-
sation.

We spend the rest of this section proving Theorem 5.6.2. The idea is just like
the idea behind the diamond comparison proof. If there is no tail with (low level)
strong branch condensation then we obtain a certain bad sequence of length ω1. As
is expected, such sequences cannot exist. We start by describing the blocks of our
bad sequences.

Definition 5.6.3 (A bad diamond) Suppose (P ,Σ) is a hod pair of limit type.

We say ((Pi : i < 2), (~Ti : i < 3), (~Ui : i < 3), (Ri : i < 2), (Si : i < 2), k, ξ) is a bad
diamond on (P ,Σ) if it satisfies the following conditions:

1. P0 = P, for i < 2, Pi,Ri and Si are hod premice and k : P0 → R0.

2. (~U0,S0) ∈ I(P ,Σ), (~U1,S1) ∈ I(S0,ΣS0, ~U0
), (~U2,P1) ∈ I(S1,ΣS1, ~U_0 ~U1

), and ~U1

is a normal tree on S0.

3. ~T0 = ∅, ~T1 is a normal tree on R0 with last model R1 and ~T2 is a stack on R1

with last model P1,.

4. ξ + 1 < λS0, S0(ξ + 1) = R0(ξ + 1), ~T −1 = ~U−1 3 is a normal tree based on

S(ξ + 1) such that it has a �~T −1 ,s-maximal cutpoint N such that (~T −1 )≥N is

based on N (ν + 1) where ν = π(~T −1 )≤N (ξ).

5. δR0
ξ+1 = sup{k(f)(a) : f ∈ P0 ∧ a ∈ (R(ξ))<ω}.

6. If b is the branch of ~T −1 in ~T1 then b 6= ΣS0(~U−1 ).

3Recall that this is just ~T1 without its last model.
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7. Letting γ = π
~T1(ξ) = π

~U1(ξ), R1(γ + 1) = S1(γ + 1). If ~W is the part of ~T2

based on R1(γ + 1) then ~W is according to ΣS1(γ+1).

Lemma 5.6.4 Suppose (P ,Σ) is a hod pair such that Σ has branch condensation
and P is of limit type. Suppose further that Σ doesn’t have low level strong branch
condensation. Then there is a bad diamond on (P ,Σ).

Proof. Let (~T ,Q, π,R, α, σ) be a witness to the failure of low level strong branch

condensation of (P ,Σ). Let (~U0,S0) ∈ I(P ,Σ) be such thatR(α+1) = S0(α+1). We
let π = k, R0 = R and ξ = α. Let Λ = Σσ

Q,~T . Notice that clause 5 of Definition 5.6.3

is satisfied because δRα+1 is the least ν > δRα such that LpΓ(P,Σ),ΛR(α)(R|ν) � “ν is a
Woodin cardinal” (to see this, we use Theorem 5.4.6 and Corollary 5.4.8).

Let T be a normal tree on R(α+1) according to both ΣS0, ~U0
and Λ and such that

ΣS0, ~U0
(T ) 6= Λ(T ) but letting b = ΣS0, ~U0

(T ), c = Λ(T ), S1 = MT
b and R1 = MT

c

then

ΣS1(πTb (α+1)), ~U_0 T_{S1} = ΛR1(πTc (α+1)),T .

Such a T can be found using the Theorem 4.6.10. Notice that Theorem 4.6.10 is
applicable because both Σ and Λ are Γ(S0(α + ω),ΣS0, ~U0

)-fullness preserving (here
we need to use Corollary 5.4.8 to conclude that ΛR(α+ω) has branch condensation).

Let ~T1 = T _{MT
c }, ~U1 = T _{MT

b }, R1 =MT
c and S1 =MT

b .
Next we would like to compare (R1,ΛR1,~T1) and (S1,ΣS1, ~U_0 T_{S1}). To do this,

we can use Corollary 5.4.8 and Theorem 4.10.4. Let then (~T2,P1) ∈ I(R1,ΛR1,~T1)

and (~U2,P1) ∈ I(S1,ΣS1, ~U_0 T_{S1}) be such that ΣP1, ~U_0 T_{S1}_ ~U2
= ΛP1,~T_1 ~T2 . It is

then not hard to see that

((Pi : i < 2), (~Ti : i < 3), (~Ui : i < 3), (Ri : i < 2), (Si : i < 2), k, ξ)

is a bad diamond on (P ,Σ). �

Now we want to show that there cannot be an ω1-sequence of bad diamonds on
P .

Definition 5.6.5 (A bad diamond sequence of length β) Suppose (P ,Σ) is a

hod pair such that λP is limit. We say ~D = 〈Dα : α < β〉 is a bad diamond sequence

of length β if Dα = ((Pαi : i < 2), (~T αi : i < 3), (~Uαi : i < 3), (Rα
i : i < 2), (Sαi : i <

2), kα, ξα) and the following holds:

1. D0 is a bad diamond on (P ,Σ) and P1
0 = P0

1 .
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2. For all α < β, P0
α ∈ pI(P ,Σ), Dα is a bad diamond on (Pα0 ,ΣPα0 ,⊕γ<α ~Uγ ) and

Pα+1
0 = Pα1 .

3. For ν < α < β, let πν,α : Pν0 → Pα0 be the embedding obtained by composing

the embeddings kγ ◦ π ~T
γ_
1

~T γ2 for ν ≤ γ < α, and let σν,α : Pν0 → Pα0 be

the iteration embedding obtained by composing the embeddings π
~Uγ_0

~Uγ_1
~Uγ2 for

ν ≤ γ < α. Then for limit λ < β, Pλ0 is the direct limit of (Pγ0 : γ < λ) under
the embeddings σν,α, and (Pλ0 )b is the direct limit of ((Pγ0 )b : γ < λ) under the
embeddings πν,α.

We say that π embeddings are the top embeddings of ~D and σ embeddings are the
bottom embeddings of ~D.

Lemma 5.6.6 (No bad diamond sequence of length ω1) Suppose (P ,Σ) is a
hod pair such that λP is limit and Σ has a branch condensation. Then there is no
bad diamond sequence of length ω1 based on (P ,Σ).

Proof. Suppose not and let ~D = (Dβ : β < ω1) be a bad diamond sequence of length

ω1. Let τ : H → Hω2 be a countable submodel such that { ~D, (P ,Σ)} ∈ rng(τ).
Let κ = ωH1 . Notice that κ = crit(τ). Let for ξ < β ≤ ω1, πξ,β : Pξ0 → P

β
0 be the

composition of the top embedding of ~D and let σξ,β : Pξ0 → P
β
0 be the composition

of the bottom embeddings of ~D. Let Pω1 = τ(Pκ0 ). Standard arguments show that

(1) τ � (Pκ0 )b = πκ,ω1 � (Pκ0 )b = σκ,ω1 � (Pκ0 )b.

Let j : Rκ
1 → Pω1 and m : Sκ1 → Pω1 be the composition of respectively the top

and the bottom embeddings of ~D. Let γ = π
~T κ1 (ξκ). Because the top and bottom

embeddings of ~D move Rκ
1(γ + 1) and Sκ1 (γ + 1) correctly (this is a consequence of

our choice of ~T1 and ~U1), we have that

(2) j � Rκ
1(γ + 1) = m � Sκ1 (γ + 1).

Notice also that

(3) δ
Rκ1
γ+1 = sup{π ~T κ1 ◦kκ(f)(a) : a ∈ (Rκ

1(γ))<ω∧f ∈ Pκ0 } and δ
Sκ1
γ+1 = sup{π ~Uκ_0

~Uκ1 (f)(a) :
a ∈ (Sκ1 (γ))<ω ∧ f ∈ Pκ0 }
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The first equality in (3) follows from standard iteration facts and clause 5 of Defini-
tion 5.6.3. It follows from (1) and (2) that

(4) for all f ∈ (Pκ0 )b and a ∈ (Sκ1 (γ))<ω, π
~T κ_0

~T κ1 (f)(a) = π
~Uκ_0

~Uκ1 (f)(a).

It then follows from (2) and (3) that

(5) δR1
γ+1 = sup(rng(π

~T1) ∩ rng(π
~U1))

contradicting the fact that ~T1 isn’t according to ΣSκ0 ,(⊕α<κ(~Uα0 _~Uα1 _~Uα3 ))_ ~Uκ0
. �

The next lemma finishes the proof of Theorem 5.6.2. Its proof is straightforward,
and can be obtained by a consecutive application of Lemma 5.6.4.

Lemma 5.6.7 Suppose (P ,Σ) is a hod pair such that λP is limit, Σ has branch

condensation and for every (~T ,Q) ∈ I(P ,Σ), (Q,ΣQ,~T ) doesn’t have low level strong
branch condensation. Then there is a bad diamond sequence on (P ,Σ) of length ω1.

We end this section with a statement of a generalization of Theorem 3.28 of [10].
The theorem shows that we can get branch condensation on a tail by starting with a
pair that has only hull condensation. Just like in [10], this result will be used when
proving generation of pointclasses (Theorem 10.1.1). The proof is very much like the
proof of Theorem 5.6.2, and the proof of Theorem 3.28 of [10].

Theorem 5.6.8 (Getting branch condensation) Suppose (P ,Σ) is a hod pair
or an anomalous hod pair of type II or III with the property that cfP(λP) is mea-

surable in P. Suppose further that whenever (~T ,Q) ∈ B(P ,Σ), ΣQ,~T has branch

condensation. Then there is (~T ,Q) ∈ I(P ,Σ) such that ΣQ,~T has branch condensa-
tion.



Chapter 6

The internal theory of lsa hod mice

A major shortcoming of our treatment of short-tree-strategy mice is that we did not
add branches to all trees. Suppose (P ,Σ) is an sts hod pair, X is a self-well-ordered
set such that P ∈ X and M is a Σ-sts premouse over X based on P . Recall short
tree strategy indexing scheme Definition 3.8.2. Recall that our strategy for indexing
branches was to consider two kinds of iterations, unambiguous and ambiguous. We
outright index the branches of unambiguous iterations. However, we only consider
a subclass of ambiguous trees. If for some β < o(M), T ∈ dom(ΣM|β) is an M|β-
ambiguous tree then (i) T is a result of comparing P with a certain background
construction of M|β and (ii) we index the branch of T after we find a certain cer-
tificate of shortness (recall Definition 3.8.2). It is then not clear from our definition
that Σ �M⊆M has branches of all trees. The main goal of this chapter is to show
that, providedM is sufficiently closed, Σ �M⊆M. Below we make our goal more
precise.

Motivational Question. Suppose (P ,Σ) is a hod pair or an sts hod pair, X is
a self-well-ordered set such that P ∈ X and M is a Σ or Σ-sts mouse over X (see
Definition 3.8.6). Is Σ � N definable over N ? Is Σ � N [g] definable over N [g] where
g is N -generic?

In Section 5.2 we gave an answer to Motivational Question in the case M is P
itself (see Theorem 5.2.5). Another answer was given by [10, Lemma 3.35], where it
was shown that Σ � N [g] is definable over N [g] provided P is doesn’t have non-meek
levels. Here, we are mainly concerned with proving a version of [10, Lemma 3.35]
in the case of a non-meek hod premice. Because of this we will state many of our
definitions and theorems for hod pairs or sts hod pairs (P ,Σ) such that P is non-
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meek (see Definition 2.4.8, recall that non-meek means that λP is a successor ordinal
and δPλ−1 is a measurable cardinal). To simplify our terminology, we will say (P ,Σ)
is a non-meek hod pair if P is a non-meek hod premouse and Σ is either an iteration
strategy or a short-tree-strategy (this is only allowed in the case P is of lsa type).

While a positive answer to the Motivational Questions is desirable, it is naive
to hope that one exists for all such N . A positive answer depends on how closed
N is. If for instance the branch of T is given via a Q-structure that is beyond the
#-operator while our N is only closed under the #-operator then, in most cases,
identifying the correct branch of T inside N via a procedure that is uniform in T
will be impossible. In this chapter, we give a positive answer to the Motivational
Question provided our N is sufficiently closed. We make this notion more precise.

Suppose (P ,Σ) is a non-meek hod pair and N is a Σ-mouse such that N �
ZFC−Replacement. We say N is Σ-closed if Σ � N ⊆ N . We say N is generically
Σ-closed if N is Σ-closed and whenever g is N -generic, Σ � N [g] is definable over
(N [g],∈) (in the language of Σ-premice) without parameters. It is worth remark-
ing that the structure (N [g],∈) is a structure in the language of Σ-premice and in

particular, there are names for ~EN and ΣN .

Definition 6.0.9 We say N is uniformly generically Σ-closed if N is generically
Σ-closed and there are formulas φ and ψ (in the language of Σ-premice) such that

for any N -generic g, any stack ~T ∈ N [g] on P and any b ∈ N [g],

~T ∈ dom(Σ)↔ (N [g],∈) � φ[~T ]

Σ(~T ) = b↔ (N [g],∈) � ψ[~T , b]

The main theorem of this chapter is Theorem 6.1.5. It gives a positive answer
to our Motivational Question in the case N is Σ-closed and has fullness preserving
iteration strategy (see Definition 6.1.1 and Definition 6.1.3). The main idea behind
the proof of Theorem 6.1.5 is that the branch of an iteration tree T on P can be
identified by the authentication process introduced in Definition 3.7.2.

Recall that given a transitive set X, we let M+(X) be the least sound active
mouse over X. Also recall that if X is any set and A ⊆ X2 then p[A] is the
projection of A onto one of the coordinates of A. The specific coordinate onto which
we project will always be clear from the context. Also, if X is a transitive set then
o(X) = Ord ∩X.
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6.1 Internally Σ-closed mice

In this section we introduce a kind of closure property of hybrid mice for which we can
give a positive answer to our motivational question. The first such closure property
is internal closure, which postulates that our mouse has enough of the strategy.

Definition 6.1.1 (Internally Σ-closed mouse) Suppose (P ,Σ) is a non-meek hod
pair (possibly an sts hod pair) and N is a Σ-premouse.

1. We say N is an internally Σ-closed premouse if for every N -cardinal κ there is
M E N such thatM � ZFC, N||κ EM and for every η ∈ [κ, o(M)), letting S
be the output of the (P ,ΣM)-hod pair construction of M (cf. Definition 3.5.1)
in which extenders used have critical points > η reaches a ΣM-iterate Q of P
via a normal tree T such that πT ,b exists, λS = πT ,b(λP) and in the case Σ is
an iteration strategy, πT -exists.

2. If M,N and κ are as above then we say M witnesses the internal Σ-closure
of N at κ.

3. We say N is an internally Σ-closed mouse if it an internally Σ-closed premouse
and has a (k, ω1)-iteration strategy Λ witnessing that N is a Σ-mouse.

Two remarks are in order. First notice that internal Σ-closure is a first order
property of N , and in clause 3 above we do not need to require that Λ-iterates of N
are internally Σ-closed as this is just a consequence of elementarity.

Secondly, we cannot in general hope to prove that generic interpretability holds
for internally Σ-closed mice. The reason is that there might be Q ∈ B(P ,Σ) such
that ΣQ is beyond the iteration strategy of N (in the sense that Λ <w ΣQ), and
if such a Q is generic over N then it is not wise to hope that ΣQ � N would be
definable over N [Q]. In order to prove generic interpretability result for internally
Σ-closed premice we need to find a fullness condition that would let us take care of
examples as above. In particular, we seem to need to require that any ΣQ as above is
strictly below the strategy of N . The next couple of paragraphs make this intuitive
notion more precise.

Suppose N is an internally Σ-closed mouse, κ is an N -cardinal and M is as
in Definition 6.1.1. We then let SMη be the ΣM-iterate of P constructed via the
(P ,ΣM)-coherent fully backgrounded construction where critical points of extenders
used are > η. We let UMη be the normal tree on P with last model SMη and

πMη =

{
πU
M
η ,b : P is of lsa type

πU
M
η : otherwise.
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Notice that πMη ∈ N .
Keeping the notation and terminology of Definition 6.1.1, suppose Λ is an itera-

tion strategy for N (witnessing that N is an internally Σ-closed mouse). We then

let Γ(N ,Λ) be the collection of all sets A ⊆ R such that for some (~T ,R) ∈ I(N ,Λ),
there are

1. an R-cardinal κ,

2. M E R witnessing that R is internally Σ-closed at κ,

3. η ∈ [κ, o(M)),

4. α < λS
M
η − 1 and

5. SMη � “δ
SMη
α is a Woodin cardinal”

such that

A ≤w Code(ΣSMη (α),UMη )

Remark 6.1.2 For convenience, we will use the notation Γ(P ,Σ) for both sts pairs
and hod pairs. In the case of sts hod pairs, it is just Γb(P ,Σ).

Definition 6.1.3 We then say that Λ is a fullness preserving iteration strategy for
N if for every N -cardinal η, letting Λη be the fragment of Λ that acts on stacks above
η, Γ(N ,Λη) = Γ(P ,Σ).

The following is a useful lemma.

Lemma 6.1.4 Suppose (P ,Σ) is a non-meek hod pair and N is a Σ-closed mouse
with a fullness preserving iteration strategy Λ. Fix an N -cardinal κ and M E N
such that M witnesses the internal closure of N at κ. Let η ∈ [κ, o(M)) and let
α < λS

M
η − 1. Then there is an N -cardinal ν > η, M1 E N witnessing the internal

Σ-closure of N at ν and an increasing sequence of M1-cardinals (ηi : i < ω) such
that letting ηω = supi<ω ηi and Q = SMη ,

1. for every i < ω, LpΓ(P,Σ),ΣQ(α)(M1|ηi) � “ηi is a Woodin cardinal”,

2. Lp
Γ(P,Σ),ΣQ(α)
ω (M1|ηω) ∈M1, and

3. letting S =M1|(η+ω
ω )M1 and Φ be the fragment of ΛS that acts on non-dropping

trees that are above ν, whenever R ∈ I(S,Φ) and ξ > ν is a cardinal of R,
then LpΓ(P,Σ),ΣQ(α)(R|ξ) ∈ R.
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Proof. Fix ν0 > η such that there is M1 E N witnessing the internal Σ-closure of

N at ν0 and such that for some ν ∈ [ν0, o(M1)] and some β < λS
M1
ν − 1,

(1) Code(ΣQ(α+2)) <w Code(ΣSM1
ν (β)

) and SM1
ν � “δS

M1
ν

β is a Woodin cardinal”.

Fix ν satisfying (1). We claim that M1 is as desired. Clearly M1 witnesses the
internal Σ-closure of N at ν. It is then enough to show that there is a sequence

(ηi : i ≤ ω) satisfying clause 1-3 above. Let δ = δS
M1
ν

β and R = SM1
ν . Because δ is

a Woodin cardinal inside R, it follows from standard S-construction arguments (see
[10, Proposition 3.39]) that

(2) LpΓ(P,Σ),ΣR(β)(M1|δ) � “δ is a Woodin cardinal” and LpΓ(P,Σ),ΣR(β)(M1|δ) ∈M1.

Moreover, it follows from fullness preservation of Λ that

(3) the fragment of Λ acting on non-dropping stacks based on M1|(δ+)M1 that are
above ν is (Σ2

1(Code(ΣR(β))))
Γ(P,Σ)-fullness preserving.

Next, notice that it follows from (1) that

(4) for some γ < β, R(γ) is a ΣQ(α)-iterate of Q(α).

It follows from (2) and (4) that if K is the output of the ΣR(γ)-fully backgrounded
construction of R|δ in which all extenders used have critical point > δRβ−1, then

(5) K � “the least < δ-strong cardinal is a limit of Woodin cardinals”.

(5) is a standard fact. It can be proven as follows. First it follows from standard
genericity iteration arguments that

(6) R � cf(LpΓ(P,Σ),ΣR(γ)(K)) ≤ δRγ+2.

It follows from (1) that δRγ+2 < δRβ . Using (6), a Skolem hull argument and full-
ness preservation of ΣR(γ+2), we get that

(7) there are unboundedly many ξ < δ such that LpΓ(P,Σ),ΣR(γ)(K|ξ) � “ξ is a Woodin
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cardinal”.1

It can be shown using S-constructions (see [10, Proposition 3.39]) and (7) that

(8) there are unboundedly many ξ < δ such that LpΓ(P,Σ),ΣR(γ)(M1|ξ) � “ξ is a
Woodin cardinal”.

(5) easily follows from (8). Continuing with the proof, let (ηi : i < ω) be the first
ω many cardinals of K such that for each i, LpΓ(P,Σ),ΣR(γ)(M|ηi) � “ηi is Woodin”.
Let ηω = supi<ω ηi. We claim that (ηi : i < ω) is as desired. It can be shown using
S-constructions that

(9) for every i < ω, LpΓ(P,Σ),ΣR(γ)(M1|ηi) � “ηi is a Woodin cardinal”.

It also follows from (2) and (3) that

(10) the fragment of Λ acting on non-dropping stacks based on M1|(δ+
ω )M1 that

are above ν is (Σ2
1(Code(ΣR(γ))))

Γ(P,Σ)-fullness preserving.

It follows from the fact that the iteration embedding π : Q(α)→ R(γ) is inM1 and
(10) that

(11) the fragment of Λ acting on non-dropping stacks based on M1|(δ+
ω )M1 that

are above ν is (Σ2
1(Code(ΣQ(α))))

Γ(P,Σ)-fullness preserving.

(11) finishes the proof of lemma.
�

We will state our generic interpretability result for internally Σ-closed mice N
that have a fullness preserving iteration strategy.

Theorem 6.1.5 Suppose (P ,Σ) is a non-meek hod pair , Γ is a pointclass and N
is an internally Σ-closed premouse. Suppose Σ is strongly Γ-fullness preserving and
has strong branch condensation. Then the following hold.

1. If (P ,Σ) is a hod pair then for any N -generic g, N [g] is Σ-closed and Σ � N [g]
is uniformly in g definable over N [g].

1To prove (7), simply iterate R(γ+1) (above δRγ ) to make K generic. Then the Woodin cardinal

has to be mapped to o(LpΓ(P,Σ),ΣR(γ)(K)). Then take Skolem hulls that are transitive below δRβ
and contain the embedding coming from the aforementioned genericity iteration.
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2. If (P ,Σ) is an sts hod pair and N has fullness preserving iteration strategy
then for any N -generic g, N [g] is Σ-closed and Σ � N [g] is uniformly in g
definable over N [g].

In the next few sections, we will develop the terminology we need to prove Theo-
rem 6.1.5. We will not give the proof of clause 1 of Theorem 6.1.5. It is much easier
than the proof of clause 2 of Theorem 6.1.5 and it is very much like the proof of [10,
Theorem 3.10]. Thus, we only concentrate on sts hod pairs.

6.2 Authentication procedure revisited

Suppose (P ,Σ) is an sts hod pair, N is an internally Σ-closed premouse, g is N -
generic and T ∈ dom(Σstc) ∩N [g] is an irreducible tree on P above Pb such that T
doesn’t have fatal drops. Suppose first that T ∈ b(Σstc). In this case, we would like
to identify Q(b, T ) in N [g] via a procedure that is uniform in T . Here b = Σ(T ).
Clearly if Q(b, T ) E M+(T ) then we can easily identify Q(b, T ). Suppose then
M+(T ) /Q(b, T ). We now face two problems.

The first problem is showing that Q(b, T ) ∈ N [g] and the second is showing that
Q(b, T ) can be identified by N in a uniform manner. Both of these require more of
N than just internal Σ-closure. To prove both of these facts, we will need that N
has a fullness preserving iteration strategy. Our strategy for finding Q(b, T ) in N is
that if N is sufficiently rich then some backgrounded construction will reach Q(b, T ).
To execute this plan, we first need to describe the sort of backgrounded construc-
tions that we will consider. In what follows, we borrow ideas from Section 3.7. In
particular, it will be helpful to recall Definition 3.7.3 and other definitions from that
section.

Definition 6.2.1 ((N , X)-authenticated iteration strategy) Suppose (P ,Σ) is
an sts hod pair, X ⊆ Pb and N is a Σ-sts premouse such that X ∈ N . Suppose
that g ⊆ P is N -generic for some poset P ∈ N and R ∈ N [g] is an lsa type hod
premouse. We define a partial short tree strategy ΦN ,X,gR without a model component
for R as follows. ΦN ,X,gR acts on finite stacks of length 2.

1. t = (R0, T ,R1, ~U) ∈ dom(ΦN ,X,gR )∩N [g] if and only if t is (P ,ΣN , X) authen-
ticated.

2. Given t = (R0, T ,R1, ~T ) ∈ dom(ΦN ,X,gR ) ∩ N [g], ΦN ,X,gR (~T ) = b if and only if
t_{Mt

b} is (P ,ΣN , X)-authenticated, where Mt
b is the direct limit of models

along b.
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When X = Pb we simply omit it from our terminology.

Continuing with the R,N of Definition 6.2.1, we next define an N -authenticated
backgrounded construction over R. This is essentially a fully backgrounded con-
struction relative to ΦN ,gR (see Definition 4.2.1).

Definition 6.2.2 ((N , X)-authenticated backgrounded constructions) Suppose
(P ,Σ) is an sts hod pair, X ⊆ Pb∩N and N is a Σ-sts premouse such that X ∈ N .
Suppose that g ⊆ P is N -generic for some poset P ∈ N and Y,R ∈ N [g] are such
that Y is a self-well-ordered set and R ∈ Y is an lsa type hod premouse. Suppose
further that κ is an N -cardinals such that {P,R, Y } ∈ N |κ[g].

We then say that ((Mγ,Nγ : γ ≤ η), (Fγ : γ < η)) is the ηth initial segment of the
output of the (N , X)-authenticated fully backgrounded construction over Y based on
R in which extenders used have critical points > κ if ((Mγ,Nγ : γ ≤ η), (Fγ : γ < η))
is the ηth initial segment of the output of the fully backgrounded construction of N
over Y relative to ΦN ,X,gR in which all extenders used have critical points > κ.

Finally, we say Q is an (N , X)-authenticated sts mouse over Y based on R if
Q ∈ N and for some ν, {P,R, Y,Q} ∈ N|ν[g] and Q appears as a model in the
(N , X)-authenticated fully backgrounded construction over Y based on R in which
extenders used have critical points > ν. When X = Pb we simply omit it from our
terminology.

Suppose now that (P ,Σ) is an sts hod pair, X ⊆ Pb and N is an internally
Σ-closed mouse with a fullness preserving iteration strategy Λ such that X ∈ N . We
let

LpN ,X,sts(Y,R) =
⋃
{Q ∈ N [g] : there is an N -cardinal κ such that

{P,R, Y,Q} ∈ N|κ[g] and an M E N witnessing that Λ is fullness preserving at κ
such that Q is an (M, X)-authenticated sound sts mouse over Y based on R such

that ρ(Q) = o(Y )}

Again, if X = Pb, then we omit it from the notation.
Notice that we do not know that LpN ,X,sts(Y,R) is a meaningful object, since we

do not know that if Q0 and Q1 are authenticated by M0 and M1 respectively then
they are compatible. This, however, is true when R is an iterate of P and Σ has
strong branch condemnation and is strongly Γ-fullness preserving for some Γ (see,
for instance, Corollary 5.5.2). This fact will also be verified in the next section.

We can then define (LpN ,X,stsα (Y,R) : α < o(N )) by induction as usual. More
precisely, the sequence is defined via the following recursion.
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1. LpN ,X,sts0 (Y,R) = LpN ,Xsts(Y,R).

2. LpN ,X,stsα+1 (Y,R) = LpN ,X,sts(LpN ,X,stsα (Y,R)).

3. LpN ,X,stsλ (Y,R) = ∪α<λLpN ,X,stsα (Y,R).

When Y = R or X = Pb, we omit them from the above notation. We can now
describe the N -authenticated iterations of P .

Definition 6.2.3 (N -authenticated iteration) Suppose (P ,Σ) is an sts pair, Γ
is a pointclass and N is an internally Σ-closed mouse with a fullness preserving
iteration strategy Λ. Suppose further that Σ has strong branch condensation and
is strongly Γ-fullness preserving. Also suppose that g ⊆ P is N -generic for some
poset P ∈ N and ~T = (Si, ~Ti : i ≤ m) ∈ N [g] is a stack on P. We say ~T is
N -authenticated if the following conditions hold.

1. For every i ≤ m, Si is an lsa type hod premouse such that

Si = LpN ,stsω (M+(Si|δSi)).

2. For every i < m, π
~Ti,b exists.

3. For all cutpoints S of ~T such that π
~T≤S ,b exists, lettingW be the longest normal

initial segment of ~T≥S that is based on S and is above δS
b
, for all limit ordinal

γ < lh(W) such that W � γ is N -ambiguous,

(a) if LpN ,sts(M+(W � γ)) � “δ(W � γ) is a Woodin cardinal” thenW doesn’t
have a branch for W � γ and MW

γ = Si for some i ≤ m, and

(b) if LpN ,sts(M+(W � γ)) � “δ(W � γ) is not a Woodin cardinal” then W
has a branch b for W � γ such that Q(b,W � γ) exists and Q(b,W � γ) E
LpN ,sts(M+(W � γ)).

4. For every cutpoint S of ~T such that π
~T≤S ,b exists, letting ~U be the largest ini-

tial segment of ~T based on Sb, (Sb, ~U) is an N -authenticated iteration (see
Definition 3.7.2).

5. For every cutpoint S of ~T such that π
~T≤S ,b exists, letting U be the longest normal

initial segment of ~T that is based on S and is above δS
b

and is such that for
some η ∈ (δS

b
, δS), U is based on OSη,η,η and is above η, then (OSη,η,η,U) is an

N -authenticated iteration (see Definition 3.7.2).
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6. For every cutpoint S of ~T such that π
~T≤S ,b exists and ~T≥S is a normal tree on Sb

above δS
b
, then (Sb, ~T≥S) is an N -authenticated iteration (see Definition 3.7.2).

7. If for some k < ω, ~Tm is a normal tree T on some Q E Sm|((δSm)+k+1)Sm

above ((δSm)+k)Sm such that ρ(Q) = ((δSm)+k)Sm then there is an N -cardinal

κ such that {P, ~T } ∈ N|κ[g] and M E N such that letting W = SMκ ,

(a) M witnesses internal Σ-closure of N at κ,

(b) for some β < λW−1, Q appears as a model inM|δWβ+ω-authenticated fully

backgrounded construction over Sm|((δSm)+k)Sm in which extenders used
have critical points > δRβ ,

(c) there is β as in clause 7.b such that letting K =M|((δWβ+ω)+)W , K � “Q is

< Ord-iterable above ((δSm)+k)Sm via a strategy Φ such that T is according
to Φ and for every generic h ⊆ Coll(ω,< δWβ+ω), Φ has an extension
Φ+ ∈ D(K, δWβ+ω, h) such that D(K, δWβ+ω, h) � “Φ+ is an ω1-iteration
strategy” and whenever R ∈ D(K, δWβ+ω, h) is a Φ+-iterate of Q and t ∈ R
is a stack on M+(Sm|δSm) of length 2 then t is (P ,ΣK)-authenticated”.

6.3 Generic interpretability in internally Σ-closed

premice

In this section, we prove our main theorem, Theorem 6.1.5. As we said before, we will
only prove clause 2. We start by fixing an sts hod pair (P ,Σ) such that Σ has strong
branch condensation, a pointclass Γ such that Σ is strongly Γ-fullness preserving and
an internally Σ-closed premouse N such that N has a fullness preserving iteration
strategy Λ. We want to show that N is uniformly generically Σ-closed.

Fix a poset P ∈ N and an N -generic g ⊆ P. We start by defining a short tree
iteration strategy Φ for P . Φ will be defined over N [g] in a uniform manner. Its
domain consists of N -authenticated iterations (see Definition 6.2.3). Given an N -

authenticated iteration ~T = (Si, ~Ti : i ≤ m) ∈ N [g] of limit length, we set Φ(~T ) = x
if and only if the following conditions hold.

1. There is a cutpoint S of ~T such that π
~T≤S ,b exists, ~T≥S is a normal tree on S

above Sb, LpN ,sts(~T≥S) � “δ(~T≥S) is a Woodin cardinal” and x = LpN ,stsω (~T≥S).

2. There is no cutpoint S as in clause 1, x ∈ N is a branch of ~Tm such that N � “x
is a cofinal well-founded branch of ~T ” and ~T _{M~T

b } is N -authenticated.
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To complete the proof of Theorem 6.1.5 we need to show that

(1) whenever ~T ∈ dom(Φ) ∩ dom(Σ), Φ(~T ) is defined and is equal to Σ(~T ).

Fix then ~T = (Si, ~Ti : i ≤ m) ∈ N [g] such that ~T ∈ dom(Φ) ∩ dom(Σ). Sup-

pose first that clause 1 in the definition of Φ holds. Fix then a cutpoint S of ~T
such that ~T≥S is a normal tree on S above δS

b
such that LpN ,sts(~T≥S) � “δ(~T≥S) is a

Woodin cardinal”. Let T = ~T≥S . We need to show that

(2) Lp
Γb(P,Σ),ΣM+(T )
ω (M+(T )) = LpN ,stsω (M+(T ))

We prove notationally less cumbersome version of (2) and leave the full proof of
(2), which is only notationally more complicated, to the reader. The following is
what we will prove.

(3) LpΓb(P,Σ),ΣM+(T )(M+(T )) = LpN ,sts(M+(T ))

Towards proving (3), let W E LpΓb(P,Σ),ΣM+(T )(M+(T )) be such that ρ(W) = δ(T ).
We want to show that

Claim 1. W E LpN ,sts(M+(T )).

Proof. Recall from Definition 3.9.7 that W has a strategy in Ψ ∈ Γb(P ,Σ) wit-
nessing that W is a ΣM+(T )-sts mouse over M+(T ). Let κ be an N -cardinal such

that {P, ~T } ∈ N|κ[g]. Using fullness preservation of Λ, fix an iteration tree U on N
above κ and according to Λ with last model N1 such that πU exists and there is an
M E N1 such that

1. M witnesses internal Σ-closure of N1 at κ and

2. for some α < λ(SMκ )b , Γ(W ,Ψ), Code(Ψ) <w Code(ΣSMκ (α)).

Fix a real x that witnesses that Code(Ψ) <w Code(ΣSMκ (α)). Let ν, M1 and (ηi :
i ≤ ω) be as in Lemma 6.1.4 applied to N1, M, α and κ (we take η = κ). Let Φ be
the fragment of ΛN1,U that acts on non-dropping trees that are above ν. Recall from
Definition 6.1.3, Φ is Γ(P ,Σ)-fullness preserving.

Let U1 be an iteration tree on M1|(η+
ω )M1 based on M1|η0 according to Φ and

above ν that is constructed according to the rules of x-genericity iteration. Let
π = πU1 and let M2 be the last model of U1. Then we have that x is generic for the
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extender algebra of M2 at π(η0). It follows that

(4) Ψ �M2|π(ηω)[g][x] ∈M2.

Finally, let S be the output of theM2-authenticated fully backgrounded construction
over M+(T ) done inside M2|π(η1)[g][x] using extenders with critical points above
π(η0). Next we make the following assumption.

(5) Coiteration of W and the construction producing S halts.

We then compare W with S. It follows from (4) that S doesn’t move. We then
have two cases. Suppose first that W side loses. It follows that W E S. By elemen-
tarity of π, it follows that W E π−1(S), and further, using elementarty of πU , we
conclude that W E LpN ,sts(M+(T )).

Suppose next that W wins the coiteration with S. Let U2 be a tree on W such
thatM(U2) = S. Let e = Ψ(U2). It follows from (4) that e ∈M2[g][x], contradicting
universality of S.

It follows that it is enough to show that (5) holds. Suppose then (5) fails. Let
((Mγ,Nγ : γ ≤ η), (Fγ : γ < η)) be the models of the construction producing S.
Since (5) fails, we must have that there is an iteration tree K on W according to Ψ
with last model K1 such that for some β and γ < η, K1|β = Nγ|β, K1||β 6= Nγ||β
and β 6∈ dom( ~EK1).

It follows that there is a stack t = (M+(T ), T0,Q, ~U) ∈ K1|β of length 2 such
that either the K1 side or the Nγ side has a branch of t indexed at β. Notice that it

follows from sts indexing scheme that it is not the case that ~U = ∅ and T0 is K1|β-

ambiguous. Indeed, suppose that ~U = ∅ and T0 is K1|β-ambiguous. But then the
branch indexed at β, either in K1 or in Nγ, depends only on K1|β = Nγ|β. Hence,
these two branches have to be the same.

We thus have that ~U 6= ∅. Notice that, because Code(ΣQb) <w Code(ΣSMκ (α)), we

have that (Qb, ~U) is indeedM2-authenticated iteration. It follows that Nγ side must
have a branch of t indexed at β. Because K1 is a ΣM+(T )-sts mouse, it follows that K1

also has a branch of t indexed at β. Moreover, because (Qb, ~U) isM2-authenticated
iteration, it follows that the branch on the Nγ side is ΣM+(T )(t), which is exactly
the same branch on K1-side. �

Claim 1 implies that LpΓb(P,Σ),ΣM+(T )(M+(T )) E LpN ,sts(M+(T )). Let now
W E LpN ,sts(M+(T )) be such that ρ(W) = δ(T ). We want to show that
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Claim 2. W E LpΓb(P,Σ),ΣM+(T )(M+(T )).

Proof. To prove the claim, we need to show thatW is a ΣM+(T )-mouse overM+(T ).
Let ((Mγ,Nγ : γ ≤ η), (Fγ : γ < η)) be the models of N -certified fully backgrounded
construction over M+(T ). It is enough to show that for every γ, Nγ is a ΣM+(T )-
mouse.

Fix γ ≤ η and let Ψ be the strategy of Nγ inherited from Λ. Let ~U be a stack

according to Ψ on Nγ whose last normal component has a limit length and let ~U+

be the resurrection of ~U onto N . Let e = Λ(~U+). We then have σ :M~U
e → π

~U+

e (Nγ).
It follows from hull condensation of ΣM+(T ) that to show that M~U

e is a ΣM+(T )-sts

mouse over M+(T ), it is enough to show that π
~U+

e (Nγ) is a ΣM+(T )-sts mouse over
M+(T ). In what follows we will show that Nγ is a ΣM+(T )-sts mouse over M+(T ).

The same proof also would show that π
~U+

e (Nγ) is a ΣM+(T )-sts mouse over M+(T ).
Suppose Nγ is not a ΣM+(T )-sts mouse over M+(T ). This can happen in two

ways. Either we indexed a wrong branch or we skipped an iteration. We now
investigate both of these cases.

Suppose first that we indexed a wrong branch in Nγ. It follows from hull con-
densation of Σ that there is ξ ≤ γ such that we indexed branch b atMξ and b is not

according to Σ. Suppose first thatMξ is ambiguous and let t = (M+(T ), T0,Q, ~U) ∈
Mξ be the least stack of length 2 witnessing this. Because of our minimality assump-

tion, we have that t is according to ΣM+(T ). Let α < λQ
b

be such that ~U is based

on Q(α) and let e be the branch indexed in Mξ. Because (Q(α), ~U_{M~U
e }) is an

N -authenticated iteration, it follows from Lemma 5.5.2 that e = ΣM+(T )(t), contra-
diction!

Next suppose thatMξ is unambiguous. It follows that the branch indexed at β is
a branch for an Mξ-ambiguous tree T0. It follows that there is a triple (ν, φ, d) that
is a Mξ-shortness witness for T0. Let Q = Q(d, T0). It follows from Lemma 5.5.2
that Q is a ΣM+(T0)-sts mouse over M+(T0), and hence, d = ΣM+(T )(T0).

It remains to show that we never skip iterations. To show this, it is enough to
show that if Mξ is an ambiguous level of the construction and t ∈ Mξ is the least

finite stack of length 2 witnessing ambiguity of Mξ, then ΦN ,gM+(T )(t) is defined. Let

t = (M+(T ), T0,Q, ~U). It is enough to show that ΣQb � N [g] ∈ N [g]. To see this,
we claim that

(6) for every ζ such that t ∈ N|ζ[g] there is an M E N witnessing the internal
Σ-closure of N at ζ and such that Qb is M-authenticated.
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Fix then a ζ as in (6). Using fullness preservation of Λ, find a tree U on N ac-
cording to Λ with last model N1 such that U is above ζ and there is an M E N1

witnessing internal Σ-closure at ζ and such that for some ν < λS
M
ζ , ΣQb <w ΣSMζ (ν).

It then follows that Qb isM-authenticated. By elementarity, Qb is N -authenticated.
�

Claim 1 and claim 2 finish the proof of (1) provided clause 1 in the definition of
Φ holds. We now consider clause 2, which is done by considering all the clauses of
Definition 6.2.3. The rest of the proof is very similar to the proof given above, and
so we will only outline it. Let b = Σ(~T ). Suppose

(7) there is a cutpoint S of ~T such is π
~T≤S ,b exists, W =def

~T≥S is a normal tree on
S above Sb without fatal drops, and Q(b,W) exists.

We then claim that b ∈ N [g] and ~T _{M~T
b } satisfies clause 3.b of Definition 6.2.3.

We have two cases, either Q(b,W) E M+(W) or Q(b,W) is a ΣM+(W)-sts mouse
over M+(W). The first case is trivial. In the second case we can use the proof of
Claim 2 to show that Q(b,W) ∈ N [g] and Q(b,W) E LpN ,sts(M+(W)).

Suppose next that

(8) there is a cutpoint S of ~T such that π
~T≤S ,b exists and ~T≥S is a stack on Sb.

In this case, we can use fullness preservation to show that Sb is N -authenticated.
The proof is like the last two paragraphs of the proof of Claim 1. There we showed
that Qb is N -authenticated. To show that b ∈ N [g] use Lemma 6.1.4 as it was used

in the proof of Claim 1 to show thatW ∈ N [g]. Then it follows that (Sb, ~T _≥S{M
~T
b })

is an N -authenticated iteration.
Suppose now that

(9) there is a cutpoint S of ~T such that π
~T≤S ,b exists and for some S-cutpoint

η ∈ (δS
b
, δS), W =def

~T≥S is a normal tree based on OSη,η,η.

Let Eα ∈ ~ES be the least extender with critical point δS
b

such that ν(E) ≥ o(OSη,η,η).
Let Q = Ult(S, E)(λS

b
+2). Using the proof of (8) we can show that (Q,W_{MW

b })
is an N -authenticated iteration.

Suppose next that

(10) there is a cutpoint S of ~T such that π
~T≤S ,b exists and letting W = ~T≥S , W
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is a normal tree on Sb above δS
b
.

Again, applying the proof of (8), we can show that (Sb,W_{MW
b }) is an N -

authenticated iteration.
Suppose finally that

(11) for some k < ω, T =def
~Tm is a normal tree on some Q E Sm|((δSm)+k+1)Sm

above ((δSm)+k)Sm such that ρ(Q) = ((δSm)+k)Sm .

What we need to show now is that there is an triple (M, κ, β) satisfying clause
7.a and 7.c of Definition 6.2.3.

Using the proof of Claim 1, we can find (M,κ) such that, letting Ψ be a strategy
witnessing that Q is a ΣM+(Sm|δSm )-sts mouse,

1. κ is an N -cardinal such that ~T ∈ N|κ[g],

2. M witnesses the internal Σ-closure of N at κ,

3. Q E LpM,sts(((δSm)+k)Sm ,M+(Sm|δSm)),

4. for some β < λS
M
κ , Code(Ψ) <w Code(SMκ (β)).

We claim (M, κ, β) are as desired. To see this we need to show that

(12) letting W = SMκ and K = M|((δWβ+ω)+)W , K � “Q is < Ord-iterable above

((δSm)+k)Sm via a strategy Φ such that T is according to Φ and for every generic h ⊆
Coll(ω,< δWβ+ω), Φ has an extension Φ+ ∈ D(K, δWβ+ω, h) such that D(K, δWβ+ω, h) �
“Φ+ is an ω1-iteration strategy” and whenever R ∈ D(K, δWβ+ω, h) is a Φ+-iterate of
Q and t ∈ R is a stack onM+(Sm|δSm) of length 2 then t is (P ,ΣK)-authenticated”.

In what follows, we show how to obtain the strategy Φ and its extension Φ+. The
rest of the proof is like the proof of the previous cases, and so we will leave it to the
reader.

For i ≤ ω, let ηi = δWβ+i+2. It follows from the proof of Lemma 6.1.4 that

(13) if M1 = M|(η+
ω )M and ∆ is the strategy of M1 that acts on non-dropping

trees above δWβ+2 then whenever M2 is a ∆-iterate of M1 and π : M1 →M2 is an

iteration embedding then LpΓb(P,Σ),ΣW(β)(M2|π(ηω)) ⊆M2.

Using the proof of Claim 1 we can show that
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(14) for every i ≥ 1, Q can be constructed via M1|ηi-authenticated background
construction over Sm|((δSm)+k)Sm based on M+(Sm|δSm) and using extenders with
critical point > ηi−1.

(13) is needed to prove (14). In that proof, (13) is used instead of fullness preserva-
tion of Λ. It follows from (13) that Q has an iteration strategy Φ ∈ M1. To show
that Φ has the desired properties it is enough to show that

(15) For every M1-generic h ⊆ Coll(ω,< ηω), if σ =
⋃
ξ<ηω

RM1[h∩Coll(ω,<ξ)] then
for every i < ω, ΣW(β+i+2) � (M1|ηω(σ)) ∈M1(σ).

(15) follows from Theorem 5.2.5.

6.4 S-constructions

Our definition of sts mice makes heavy use of the fact that the set X is a self-well-
ordered set. In particular, our definition cannot be used to define sts mice over
R. Another shortcoming of our definition is that it does not explain how to do S-
constructions. In this short section, motivated by Section 3.38 of [10], we indicate
how to use Theorem 6.1.5 to redefine hod mice in a way that one can define sts mice
over R and perform S-constructions.

Recall the difficulty with defining hybrid mice over R. In our definition, we
always choose the least stack of some sort for which the branch has not been added
and index a branch. Since R may not be self-well-ordered, we do not have the luxury
of choosing the least such stack.

The problem with S-constructions is very similar. Suppose (P ,Σ) is a hod pair
or an sts hod pair and N and M are two transitive models of some fragment of set
theory such that Jω(M) ⊆ Jω(N) and for some poset P ∈ Jω(M) and some P/M -
generic G, Jω(N) = Jω(M)[G]. Suppose further that both M and N are Σ-closed
and P ∈ N ∩M . For us, S-constructions are constructions that translate Σ-mice
over N to Σ-mice over M . For more details consult Section 3.38 of [10].2

The difficulty in performing S-constructions is the following. Suppose N is a
Σ-mouse over N , and we want to translate it onto a Σ-mouse over M . Suppose our
translation has produced a Σ-mouse M over M , and our indexing scheme demands
that a branch of some stack ~T ∈ N be indexed in the very next step in the translation

2In [18], this process is called P -constructions.
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procedure. The problem is that ~T may not be a stack inM nor may it be the stack
whose branch is indexed in M.

To solve this problem, we changed the definition of hybrid premouse in a way
that the iterations whose branches are indexed do not depend on generic extensions.
In particular, instead of indexing iterations according to Σ, we considered generic
genericity iterations on M#,Σ

1 . Such iteration make levels of the model generically
generic and do not depend on generic extensions. This move solves both problems.
In the first case what is important is that the indexed iterations do not depend on
the well-ordering of the model, and in the second case what is important is that the
indexed iterations do not depend on generic extensions. For more details consult
Definition 3.37 of [10] or [20] for a similar construction.

Here our solution is similar. Suppose (P ,Σ) is an sts hod pair and M is an
Σ-sts mouse over some set X such that P ∈ X. Then the iterations of P that are
indexed in M are of the form t = (P , T ,Q, ~U), where t is a stack on P of length
2. T is always the result of comparing P with a certain backgrounded construction.
Notice that this neither depends on the well-ordering of M nor on small generic
extensions. ~U is a stack on Qb and, in Definition 3.8.2, we chose the least such stack.
Thus the choice of ~U depends on both the well-ordering of M and small generic
extensions (small in the sense that the generic is smaller than the critical point of
the first background extender used in the construction). To solve the issue, we will
start considering stacks s = (P , T ,Q,U) where T is as before but now U is a generic

genericity iteration onM#,ΣQb
2 to make a level of the model generically generic. We

only consider such generic genericity iterations ofM#,ΣQb
2 that are based on the first

Woodin of M#,ΣQb
2 .

The reason we choose M#,ΣQb
2 is that we want to use clause 1 of Theorem 6.1.5.

It is not hard to see that if δ0 < δ1 are the first two Woodin cardinals ofM#,ΣQb
2 and

g ⊆ Coll(ω, δ0) thenM#,ΣQb
2 |δ1[g] is internally ΣQb-closed. Clause 1 of Theorem 6.1.5

is a weaker result than [10, Lemma 3.35], which is what is used to reorganize hod
mice in [10]. We could prove an equivalent of [10, Lemma 3.35], but doing this is
much harder than proving clause 1 of Theorem 6.1.5.

To show that the resulting structureM is closed under Σ, we will first show that
we can find branches of stacks of length 2. Given such a stack t = (P , T ,Q, ~U) let

W be an iteration of M#,ΣQb
2 such that (P , T ,Q,W) is indexed in M and if S is

the last model of W then ~U is generic over S for BSδ where δ is the least Woodin
of S and BSδ is the extender algebra of S at δ. It then follows from Theorem 6.1.5

that ΣQb � S|η[~U ] ∈ S where η is the second Woodin cardinal of S. The rest of the
proof is just repeating the proof of Theorem 6.1.5. We start by redefining what an
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sts indexing scheme is.

Definition 6.4.1 (Revised unambiguous sp) Suppose M is an sp over some
self-well-ordered set X based on hod-like lsa type lsp P. We say M is revised un-
ambiguous if M is closed under sharps and whenever t = (P0, T0,P1,U) ∈ M is
according to ΣM such that either

1. U = ∅ and M � “T0 is an unambiguous tree of limit length” or

2. U is a nonempty stack of limit length

then t ∈ dom(ΣM). We sayM is revised ambiguous if it is not revised unambiguous.

Definition 6.4.2 (φ-sts indexing scheme revisited) Suppose ψ(x) and φ(x, y)
are two formulas in the language of sp. We say ψ is a φ-sts indexing scheme for φ
if whenever X is a self-well-ordered set, P ∈ X is a hod-like lsa type lsp and N is
an sp over X based on P then N � ψ[c] if and only if

1. N is closed under sharps,

2. N � “ΣN is a partial faithful short tree strategy without model component”,

3. for some finite sequence t = (P , T ,P1,U) ∈ N such that

(a) t is according to ΣN and ΣN (t) is undefined,

(b) there is (ν, ξ) such that letting ((Mγ,Nγ : γ ≤ η), (Fγ : γ < η), (Tγ :
γ < η)) be the output of the (P ,ΣN )-coherent fully backgrounded con-
struction of N in which extenders used have critical points > ν (see Def-
inition 3.5.1), Tξ = T ,

(c) either πT exists and P1 is the last model of T or πT ,b exists, T is N -
ambiguous and P1 =M+(T ),

(d) for some γ < o(N ) such that N|γ � ZF, letting M E P1 be M
#,(ΣPb1

)P1

2 ,
U is build according to the rules of the N|γ-generic genericity iteration of
M|δ where δ is the least Woodin cardinal of M,

(e) if N is revised unambiguous3 then N � “there is a unique cofinal well-
founded branch b ∈ N of T such that φ[T , b] holds”, and

(f) if N is revised ambiguous then t witnesses this,

3This implies that U = ∅ and T is N -ambiguous.
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c = Jω(t), and

4. there is t = (P , T ,P1,U) as in clause 3 above such that if (ν, ξ, γ) are lexico-
graphically least witnessing that properties 3.a-3.f hold for t then there is no
triple (ν0, ξ0, γ0) <lex (ν, ξ, γ) such that for some s = (P ,W ,Q,S), (ν0, ξ0, γ0)
witnesses that s has properties 3.a-3.f above.

Definition 6.4.3 (Revised sts indexing scheme) Suppose (ψβ : β < α) have
been defined. We let ψα be the following formula in the language of sp. Suppose
X is a sellf-well-ordered set, P ∈ X is a hod-like lsa type lsp and M is an un-
ambiguous sp over X based on P. Then M � ψα[T , b] if and only if (T , b) is the
M-lexicographically least pair such that T is anM-terminal tree on P and b is a co-
final branch through T such that for some pair (β, γ) such that γ < α and β < o(M),

1. M|β is revised unambiguous (see Definition 6.4.1) and M|β � ZFC + “there
are infinitely many Woodin cardinals > δ(T )”,

2. b ∈M|β and M|β � “b is well-founded branch”,

3. M|β � “Q(b, T ) exists and is an sts ψγ-premouse over M(T )” and

4. letting (δi : i < ω) be the first ω Woodin cardinals > δ(T ) of M|β, M|β �
“Q(b, T ) is < Ord-iterable above δ(T ) via a strategy Σ such that letting λ =
supi<ω δi, for every generic g ⊆ Coll(ω,< λ), Σ has an extension Σ+ ∈
D(M|β, λ, g) such that D(M, λ, g) � “Σ+ is an ω1-iteration strategy” and
whenever R ∈ D(M|β, λ, g) is a Σ+-iterate of Q(b, T ) and t ∈ R is a stack on
M+(T ) of length 2 then t is (P ,ΣM)-authenticated”.

The lexicographically least pair (β, γ) satisfying the above conditions is called the least
(M, ψwα )-witness for (T , b). We also say that (β, γ, b) is an M-minimal shortness
witness for T .

We leave the rest of the definitions unchanged. We say P is a revised hod pre-
mouse if it is indexed according to our revised indexing scheme. We say (P ,Σ) is
revised hod pair if P is revised hod premouse and Σ is an iteration strategy for P .

Theorem 6.4.4 Suppose (P ,Σ) is a revised hod premouse such that Σ is strongly
Γ-fullness preserving for some pointclass Γ and Σ has strong branch condensation.
Then for any Q ∈ Y P and P-generic g,

1. if Q is not of lsa type then ΣQ � P [g] is uniformly in Q definable over P [g],
and
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2. if Q is of lsa type then the fragment of Σstc
Q � P [g] that acts on stacks of length

2 is uniformly in Q definable over P [g].

We now just carry our lemmas on S-construction from Section 3.8 of [10] to
our current context. Let (P ,Σ) be a hod pair or an sts pair such that Σ has the
strong branch condensation and is strongly Γ-fullness preserving for some pointclass
Γ. Suppose M is a sound Σ-mouse and δ is a cutpoint cardinal of M. Suppose
further that N ∈ M|δ + 1 is such that δ ⊆ N ⊆ HMδ , N models a sufficiently
strong fragment of ZF−Replacement, N is a Σ-mouse or a Σ-sts mouse and there is
a partial ordering P ∈ Lω[N ] such thatM|δ is P-generic over Lω[N ]. We would like
to define S-construction of M over N relative to Σ.

Definition 6.4.5 An S-construction ofM over N relative to Σ is a sequence (Sα, S̄α :
α ≤ η) of Σ-mice over N such that

1. S0 = Lω[N ],

2. if M|δ is generic over S̄α for a forcing in Lω[N ] then

(a) if M||(ω ·α) is active and has a last branch b then Sα is the expansion of
S̄α by b and S̄α+1 = rud(Sα).

(b) if M||(ω ·α) is active and has a last extender E then Sα is the expansion
of S̄α by E and S̄α+1 = rud(Sα),

(c) if M||(ω × α) is passive then Sα = S̄α and S̄α+1 = rud(Sα),

3. if λ is limit then S̄λ =
⋃
α<λ Sα.

The following is the restatement of Lemma 3.42 of [10].

Lemma 6.4.6 Suppose (P ,Σ), M,N are as above and δ is a strong cutpoint cardi-
nal ofM. Suppose further that N ∈M|δ+ 1 is such that δ ⊆ N ⊆ HMδ and there is
a partial ordering P ∈ Lω[N ] such that whenever Q is a Σ-mouse over N such that
HQδ = N then M|δ is P-generic over Q. Then there is a Σ-mouse S over N such
that M|δ is generic over S and S[M|δ] =M.

The following is just the restatement of Lemma 3.43 of [10].

Lemma 6.4.7 Suppose (P ,Σ), M and N are as above. Suppose further that M �
ZFC−Replacement is a Σ-mouse and η is a strong cutpoint non-Woodin cardinal of
M. Suppose γ > η is a cardinal of M and N = (J ~E,Σ)M|γ. Suppose Jω(N|η) � “η
is Woodin”. Let (Sα, S̄α : α < ν) be the S-construction of M|(η+)M over N|η
relative to Σ. Then for some α < ν, Sα � “η isn’t Woodin”.



Chapter 7

Analysis of HOD

In this chapter we analyze V HOD
Θ of the minimal model of the Largest Suslin Ax-

iom. The analysis is very much like the analysis of V HOD
Θ in the minimal model of

AD+ + θ1 = Θ, which appeared in [10, Chapter 4]. Just like in [10, Chapter 4], we
need to introduce the notion of suitable pair, B-iterable pair and etc. The proof of
Theorem 7.2.2 is very much like the proof of [10, Theorem 4.24].

7.1 B-iterability

In this section, we import B-iterability technology to our current context. Most of
what we will need was laid out in [10, Section 4.1 and Section 4.2]. Here we will only
sketch the necessary arguments.

Definition 7.1.1 (Suitable pair) (P ,Σ) is a suitable pair if

1. P is a hod premouse, λP is a successor ordinal and P � “δP is a Woodin
cardinal”,

2. if P is not of lsa type then (P(λP − 1),Σ) is a hod pair such that Σ has strong
branch condensation and is strongly fullness preserving,

3. if P is of lsa type then (P ,Σ) is an sts hod pair such that Σ has strong branch
condensation and is strongly fullness preserving,

4. if P is not of lsa type then P is a ΣP(λP−1)-mouse above P(λP − 1),

5. if P is not of lsa type then for any P-cardinal η > δPλ−1, if η is a strong cutpoint
then P|(η+)P = LpΣ(P|η)

149
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Notation 7.1.2 We let

P− =

{
P : P is of lsa type

P(λP − 1) : otherwise.

Suppose (P ,Σ) and (Q,Λ) are hod pairs or sts hod pairs such that Σ and Λ have
strong branch condensation and are strongly fullness preserving. We then let

(P ,Σ) ≤DJ (Q,Λ)

if and only if (P ,Σ) loses the coiteration with (Q,Λ). Notice that ≤DJ is a well-
founded relation. We then let α(P ,Σ) = |(P ,Σ)|≤DJ , and we let [P ,Σ] be the =DJ

equivalence class of (P ,Σ), i.e.,

(Q,Λ) ∈ [P ,Σ] iff (Q,Λ) is a hod pair such that Λ has branch condensation and is
super fullness preserving and α(Q,Λ) = α(P ,Σ).

Notice that [P ,Σ] is independent of (P ,Σ). We let

B(P ,Σ) = {B ⊆ [P ,Σ]× R : B is OD}.

Note that B(P ,Σ) is defined for hod pairs or sts hod pairs, but not for suitable pairs
that are not sts hod pairs.

The following standard lemma features prominently in our computations of HOD.
The proof is very much like the proof of Lemma 4.16 of [10]. Below SMC stands for
Strong Mouse Capturing . More precisely, SMC states that for any hod pair or sts
hod pair (P ,Σ) such that Σ is strongly fullness preserving and has strong branch
condensation then for any x, y ∈ R, x ∈ ODy,Σ if and only if x ∈ LpΣ(y).

Lemma 7.1.3 Assume SMC and suppose (P ,Σ) is a suitable pair and B ∈ B(P−,Σ).
Suppose κ is a P-cardinal such that if P is of lsa type then κ > ((δP)+)P and oth-
erwise κ > δPλP−1. Then there is τ ∈ PColl(ω,κ) such that (P , τ) locally term captures
B(P,Σ) at κ for a comeager set of g ⊆ Coll(ω, κ) such that g is P-generics.

If B is locally term captured for comeager many set generics over a suitable pair
(P ,Σ) then we let τP,ΣB,κ be the invariant term in P locally term capturing B at κ
for comeager many set generics. One way to get term capturing for all generics is to
show that a suitable pair can be extended to a structure that has one more Woodin.

Definition 7.1.4 (n-Suitable pair) (P ,Σ) is an n-suitable pair if there is δ such
that
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1. (P|(δ+ω)P ,Σ) is suitable,

2. P � ZFC−Replacement + “there are n Woodin cardinals, η0 < η1 < ... < ηn−1

above δ”,

3. o(P) = supi<ω(η+i
n )P ,

4. if P|(δ+ω)P is of lsa type then P is a Σ-sts premouse over M+(P|δ) and oth-
erwise P is a Σ-premouse over P|(δ+ω)P ,

5. for any P-cardinal η > δ, if η is a strong cutpoint then P|(η+)P = LpΣ(P|η),

6. Letting Γ = Σ2
1(Code(Σ)), if ξ > δ is such that P � “ξ is not Woodin”, then

CΓ(P|ξ) ⊆ P and CΓ(P|ξ) � “ξ is not Woodin”.

If (P ,Σ) is n-suitable then we let δP be the δ of Definition 7.1.4 and

P− = ((P|((δP)+ω)P)−.

We let λP = λP
−

+1. Clearly 0-suitable pair is just a suitable pair. The following
are easy consequences of Lemma 7.1.3.

Lemma 7.1.5 Assume SMC. Suppose (P ,Σ) is an n-suitable pair and B ∈ B(P−,Σ).
Suppose κ is a P-cardinal such that if P− is of lsa type then κ > ((δP)+)P and oth-
erwise κ > δPλP−1. Then there is τ ∈ PColl(ω,κ) such that (P , τ) locally term captures
B(P,Σ) at κ for comeager set of g ⊆ Coll(ω, κ) such that g is P-generic.

Corollary 7.1.6 Assume SMC. Suppose (P ,Σ) is an n-suitable pair and B ∈
B(P−,Σ). Let ν = ((δP)+ω)P . Suppose κ is a P-cardinal such that if P− is of
lsa type then κ > ((δP)+)P and otherwise κ ∈ (δPλP−1, ν). Then (P|ν, τP,ΣB,κ ) locally
term captures B(P,Σ) at κ for comeager set of g ⊆ Coll(ω, κ) such that g is P-generic.

Corollary 7.1.6 is our main method of showing that various B are term captured
over the hod mice that we will construct. Suppose now that (P ,Σ) is a hod pair. It
is now a trivial matter to import the terminology of [10, Section 4.1] to our current
context. We will have that S(Σ) consists of those Q such that Q− ∈ pI(P ,Σ) and

(Q,ΣQ−) is a suitable pair. Given Q ∈ S(Σ), we let fB(Q) = ⊕κ<o(Q)τ
Q,ΣQ−
B,κ . Then

the rest of the notions are defined for F = {fB : B ∈ B(P ,Σ)}. Therefore, in the
sequel, we will freely use the terminology of [10, Section 4.1].
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7.2 The computation of HOD

Throughout this section we assume AD+ + SMC and let 〈θα : α ≤ Ω〉 be the Solovay
sequence. Our goal is to compute V HOD

θα
for α ≤ Ω. We will do it under some

additional hypothesis described below. In the next few chapters, we will prove that
our additional hypothesis essentially follows from AD+ + “No initial segment of the
Solovay sequence satisfies LSA”.

Suppose (P ,Σ) is a hod pair or an sts pair such that Σ has strong branch con-
densation and is strongly fullness preserving. We will continue using the notation
α(P ,Σ) and P− from the previous section.

Suppose first that α + 1 = Ω. We then let I = {(Q,Λ, ~B = (B0, ..., Bn)) :

1. (Q,Λ) is suitable, Λ is strongly fullness preserving and has strong branch con-
densation, and α(Q−,Λ) = α,

2. for every i < n, Bi ∈ B(Q−,Λ), and

3. (Q,Λ) is strongly ~B-iterable }.

I may be empty. But the results of Theorem 8.1.14 and Section 10.1 show that it is
not. Define � on I by

(P ,Σ, ~B) � (Q,Λ, ~C)↔ ~B ⊆ ~C and (Q,Λ, ~B) is a ~B-tail of (P ,Σ, ~B).

When (R,Ψ, ~B) � (Q,Λ, ~C), there is a canonical map

π : HR,Ψ~B
→ HQ,Λ~B

,

which is independent of ~B-iterable branches. We let π(R,Ψ, ~B),(Q,Λ, ~B) be this map. We

then have that (I,�) is a directed. Let

F = {HQ,Λ~B
: (Q,Λ, ~B) ∈ I}.

and also let M∞ be the direct limit of F under the iteration maps π(R,Ψ, ~B),(Q,Λ, ~B).

Let δ∞ = δM∞ . For (Q,Λ, B) ∈ I, we let π(Q,Λ,B),∞ : HQ,ΛB → M∞. Standard
arguments show that M∞ is well-founded.

Following [10, Section 4.4], we let φ be the following sentence: for every α+1 < Ω,
letting Γα = {A ⊆ R : w(A) < θα}, there is a hod pair (P ,Σ) such that

1. α(P−,ΣP−) = α,

2. Σ is strongly fullness preserving and has strong branch condensation,
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3. for any Q ∈ pI(P ,Σ) ∪ pB(P ,Σ), if λQ is a successor ordinal then

(a) there is a sequence 〈Bi : i < ω〉 ⊆ B(Q−,ΣQ−) which guides ΣQ and

(b) for any B ∈ B(Q−,ΣQ−) there is R ∈ pI(Q,ΣQ) such that ΣR respects
B.

Our additional hypothesis, ψ, is a conjunction of φ with the following statement:
If Ω = α+ 1 then there is a suitable (P ,Σ) which is ∅-iterable, λP is a successor and
such that

1. (P−,ΣP−) is either a hod pair or an sts pair such that α(P−,ΣP−) = α and
ΣP− is strongly fullness preserving and has strong branch condensation,

2. for any B ∈ B(P−,ΣP−) there is an ∅-iterate (Q,Φ) of (P ,Σ) such that (Q,Φ)
is strongly B-iterable.

3. M∞ is well-founded and δ∞ = Θ = θα+1.

We will use the following lemma to establish ψ. It can be proved exactly the
same way as [10, Lemma 4.23].

Lemma 7.2.1 Suppose Γ ⊆ ℘(R) is such that L(Γ,R) � AD+ + SMC + Ω = α + 1
and Γ = ℘(R) ∩ L(Γ,R). Suppose Γ∗ ⊆ ℘(R) is such that Γ ⊆ Γ∗, L(Γ∗,R) � AD+

and there is a hod a pair (P ,Σ) ∈ Γ∗ such that the following holds.

1. Σ has strong branch condensation and is strongly Γ-fullness preserving.

2. λP is a successor ordinal, Code(ΣP−) ∈ Γ,

(a) if P is not of lsa type then L(Γ,R) � “(P ,ΣP−) is a suitable pair such
that α(P−,ΣP−) = α” and

(b) if P is of lsa type then L(Γ,R) � “(P ,Σstc
P−) is a suitable pair such that

α(P−,ΣP−) = α”.

3. There is a sequence 〈Bi : i < ω〉 ⊆ (B(P−,ΣP−))L(Γ,R) guiding Σ.

4. For any B ∈ (B(P−,ΣP−))L(Γ,R) there is R ∈ pI(P ,Σ) such that ΣR respects
B.

Then L(Γ,R) � ψ and ML(Γ,R)
∞ =M+

∞(P ,Σ).1

1Recall that M+
∞(P,Σ) is the direct limit of all Σ-iterates of P
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The next theorem is the adaptation of [10, Theorem 2.24] to our current context.
It can be proved via exactly the same proof. Because of this, we omit the proof.

Theorem 7.2.2 (Computation of HOD) Assume AD+. Suppose Γ ⊆ ℘(R) is
such that Γ = ℘(R) ∩ L(Γ,R). Then the following holds:

1. Suppose L(Γ,R) � φ. Suppose β + 1 < ΩΓ. Let (P ,Σ) witness φ for β. Then

letting M =M+
∞(P ,Σ), ~E = ~EM and Λ = ΣM, for every α ≤ β

δMα = θΓ
α and M|θΓ

α = (V HODΓ

θΓ
α

, ~E � θΓ
α,Λ � V

HODΓ

θΓ
α

,∈).

2. If L(Γ,R) � ψ then letting M = ML(Γ,R)
∞ ~E = ~EM and Λ = ΣM, for every

α ≤ ΩΓ

δMα = θΓ
α and M|θΓ

α = (V HODΓ

θΓ
α

, ~E � θΓ
α,Λ � V

HODΓ

θΓ
α

,∈).

3. Suppose Γ∗ ⊆ ℘(R) is such that Γ ⊆ Γ∗, L(Γ∗,R) � AD+ and there is a hod a
pair (P ,Σ) ∈ Γ∗ such that the following holds:

(a) Σ has strong branch condensation and is strongly Γ-fullness preserving,

(b) λP is a successor ordinal, Code(ΣP−) ∈ Γ,

i. if P is not of lsa type then L(Γ,R) � “(P ,ΣP−) is a suitable pair such
that α(P−,ΣP−) = α” and

ii. if P is of lsa type then L(Γ,R) � “(P ,Σstc
P−) is a suitable pair such

that α(P−,ΣP−) = α”.

(c) there is a sequence 〈Bi : i < ω〉 ⊆ (B(P−,ΛP−))L(Γ,R) guiding Σ,

(d) for any B ∈ (B(P−,ΛP−))L(Γ,R) there is R ∈ pI(P ,Σ) such that ΣR
respects B.

Then L(Γ,R) � ψ and ML(Γ,R)
∞ =M+

∞(P ,Λ).

Thus, working in a model of AD+, if α < Ω then to compute HOD|θα we only
need to produce a hod pair (P ,Σ) satisfying clauses 3(a)-3(d). In the next chapter,
in particular in Theorem 8.1.14 and Section 10.1, we will show that this is indeed
true in the minimal model of the Largest Suslin Axiom.



Chapter 8

Models of LSA as derived models

In this chapter, we show that certain derived models satisfy the Largest Suslin Axiom.
We also prove results that are important elsewhere. The results of Section 10.1 and
Theorem 8.1.14 are needed to carry out the computation of HOD (see Theorem 7.2.2).
We start with introducing the pointclass Γ(P ,Σ) where (P ,Σ) is an sts hod pair.

8.1 Γ(P ,Σ) when λP is a successor

In this section, we translate the results of [10, Section 5.6] to our current context.
Suppose (P ,Σ) is a hod pair such that λP is a successor and Σ is strongly full-
ness preserving and has strong branch condensation. Recall the notation P− (see
Notation 7.1.2).

Suppose first that P isn’t of lsa type. We now generalize the result of [10, Section
5.6]. Recall the notation MiceΣ (see Notation 4.1.4). Because P is not of lsa type,
it follows that Code(Σ) is Suslin, co-Suslin (this can be proved using the proof of
[10, Lemma 5.9]). It follows that there is a scaled pointclass closed under continuous
images and pre-images and under ∃R, and also contains MiceΣP−

. We then let Γ∗Σ
be the least such pointclass. Also, let

ΓΣ = (Σ2
1(Code(ΣP−)))

L(MiceΣP−
,R)

.

Notice that ΓΣ is a lightface good pointclass. Also MiceΣP−
belongs to ΓΣ and is a

universal ΓΣ set. We let

Γ(P ,Σ) = {A : for cone of x ∈ R, A ∩ CΓΣ
(x) ∈ CΓΣ

(CΓΣ
(x))} = Env(ΓΣ).

Notice that if (Q,Λ) is a tail of (P ,Σ) then Γ(Q,Λ) = Γ(P ,Σ). The next theorem
is essentialy the conjunction of [10, Lemma 5.13-5.16].
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Theorem 8.1.1 Suppose (P ,Σ) is a hod pair such that λP is a successor, P is not
of lsa type and Σ is strongly fullness preserving and has strong branch condensation.
Then the following holds.

1. There is a tail (Q,Λ) of (P ,Σ) such that Γ∗Λ = Γ∼Λ.

2. Suppose Γ∗Σ = Γ∼Σ. Then for any real x coding P−,

CΓΣ
(x) = LpΓ,ΣP− (x).

3. Suppose Γ∗Σ = Γ∼Σ. Then Code(Σ) 6∈ Γ(P ,Σ).

4. Suppose Γ∗Σ = Γ∼Σ. Then there is a tail (Q,Λ) of (P ,Σ) such that

Γ(Q,Λ) = ℘(R) ∩ L(Γ(Q,Λ),R).

Because Γ(Q,Λ) = Γ(P ,Σ), it follows that Γ(P ,Σ) = ℘(R) ∩ L(Γ(P ,Σ),R).

We spend the rest of this section defining Γ(P ,Σ) in the case P is of lsa type.
The difficulty with generating LSA pointclasses as Γ(P ,Σ) is the following. Suppose
Γ is an LSA pointclass, i.e., Γ = ℘(R)∩L(Γ,R) and L(Γ,R) � AD+ + LSA. Let α be
such that α+ 1 = ΩΓ and set Γb = {A ⊆ R : w(A) < θα}1. The difficulty is that the
pair that generates Γb is the same as the pair that generates Γ.

Definition 8.1.2 Suppose (P ,Σ) is a hod pair or an sts hod pair such that P is of
lsa type and Σ has strong branch condensation and is strongly fullness preserving.
We then let

Γ(P ,Σ) = {A : for cone of x ∈ R, A ∩ LpΣstc(x) ∈ LpΣstc

2 (x)}.

It is not immediately clear that L(Γ(P ,Σ))∩℘(R) = Γ(P ,Σ). Theorem 8.1.13 shows
that it is indeed true. Before we prove it, we prove some useful lemmas. The first
lemma shows that various Σ-sts mice are internally Σ-closed.

Lemma 8.1.3 Suppose (R,Φ) is an sts hod pair such that Φ is fullness preserving
and M is a Φ-sts mouse over R. Suppose δ is a Woodin cardinal of M and (δ+)M

exists. Then for any ν < δ, if SMν is the output of (R,ΣM)-hod pair construction of
M|δ and T on P is the normal tree leading to SMν then πT ,b exists and πT ,b(λR−1) =
λS
M
ν − 1.

1The superscript “b” stands for bottom.
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Proof. Suppose not. Then we must have that πT ,b exists and SMν =M+(T )(α) for
some α < λ(M+(T ))b . It follows that

(1) (J
~E,ΣM
SMν )M|δ does not have Woodin cardinals.

However, notice that

(2) M � “M+(T )(α + 1) is δ+-iterable via ΣMM+(T )(α+1)”.

(2) simply follows from our indexing scheme and the fact thatM is a Φ-sts premouse.

It follows that the comparison of (J
~E,ΣM
SMν )M|δ andM+(T )(α+ 1) is successful. But

because (J
~E,ΣM
SMν )M|δ is a fully backgrounded construction, in the aforementioned

comparison, only M+(T )(α + 1) moves. It follows from (1) and universality of

(J
~E,ΣM
SMν )M|δ that

(3) if S E (J
~E,ΣM
SMν )M|δ is the iterate of M(T )(α + 1) then (J

~E,ΣM
SMν )M|δ � “δS

is not a Woodin cardinal”

(3) contradicts the fullness preservation of Φ. �

Suppose (P ,Σ) is a hod pair such that P is of lsa type and Σ has strong branch
condensation and is strongly fullness preserving. Suppose Code(Σ) is Suslin, co-
Suslin.

Let Γ0 < Γ be any two good pointclasses such that Code(Σ) ∈ ∆∼ Γ0 . Let F
be as in Theorem 4.1.6 for Γ. Let A ∈ Γ be a set coding a self-justifying-system
(Ai : i < ω) such that A0 = {(x, y) ∈ R2 : y ∈ CΓ0(x))}. Fix x such that if

F (x) = (N ∗x ,Mx, δx,Σx) then Code(Σ) and ~A are Suslin, co-Suslin captured by
(N ∗x , δx,Σx).

We then have that the fully backgrounded hod pair construction of N ∗x |δx reaches

a tail of (P ,Σ) (see Theorem 4.6.10). Let (Q,Λ) be this tail. Let N = (J ~E,Λstc)N
∗
x |δx .

Because Σ is fullness preserving we have that N � “δQ is a Woodin cardinal”. Let Φ
be the strategy of N induced by Σx. Notice that Φ is fullness preserving in the sense
of Lp operator, i.e., wheneverM is a Φ-iterate of N and η is a strong cutpoint ofM
thenM|(η+)M = LpΛstc(M|η). This can be shown using the proof of Theorem 4.5.3.
We now prove several lemmas about (N ,Φ) leading up to showing that Γ(Q,Λstc)
can be realized as a derived model of N . Let κ be the least strong cardinal of N .
The first lemma is quite standard.
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Lemma 8.1.4 N � “κ is a limit of Woodin cardinals”.

Proof. It is enough to show that δx is a limit of cardinals η such that LpΛstc(N ∗x |η) �
“η is a Woodin cardinal”. Fix κ < δx. Because Code(Σ) ∈ ∆∼ Γ0 , we have that for
cone of z, LpΣstc(x) ∈ CΓ0(z). We can assume, using absoluteness, that the base of
this cone is in N ∗x . Let T, S ∈ N ∗x be δx-complementing trees witnessing that A is
Suslin, co-Suslin captured by (N ∗x , δx,Σx). Let π : M → H(δ+

x )N
∗
x be a Skolem hull

such that crit(π) > κ is an N ∗x -cardinal and {T, S} ∈ rng(π). Let η = crit(π). Then
it follows that CΓ0(N ∗x |η) ∈M and hence, CΓ0(N ∗x |η) � “η is a Woodin cardinal”. It
follows that LpΛstc(N ∗x |η) � “η is a Woodin cardinal”. �

The next lemma shows that

Lemma 8.1.5 Φ is fullness preserving, i.e., Φ witnesses that Γ(N|κ,Φ) = Γb(Q,Λstc).

Proof. Clearly, because Φ witnesses that N is a Λstc-sts mouse, Γ(N|κ,Φ) ⊆
Γb(Q,Λstc). Fix then (~T ,R) ∈ B(Q,Λstc). We want to see that

(1) there is a Φ-iterate N1 of N|κ such that for some t = (Q, T ,S, ~U) ∈ N1 such
that t is according to ΣN1 , ΛR ≤w ΛSb .

Suppose (1) fails. We can then assume, without loss of generality, that for some

ν < δx and some g ⊆ Coll(ω, ν), (~T ,R) ∈ N ∗x [g]. Yet again without losing gen-
erality we can assume that R is of successor type. Let now S be the output of
(Q,ΣN )-construction of N in which extenders used have critical point > ν. Let U
be a normal tree on Q with last model S. We claim that

(2) πU ,b exists, πU ,b(λQ − 1) = λS
b

and for some β < λS
b
, Sb(β) is a ΛR-iterate

of R.

The first two clauses of (2) are consequences of Lemma 8.1.3. We prove the third
clause of (2). We have that the comparison ofR and S produces a normal treeW∗ on
R according to ΛR with last model R1. If R1 E Sb then because R1 is of successor
type we must have that for some β < λS

b
, Sb(β) = R1. Suppose then R1 6E Sb. We

then have S ∈ Y R1 . We now have two cases.

(3) πU exists.
(4) otherwise.



8.1. Γ(P ,Σ) WHEN λP IS A SUCCESSOR 159

Suppose first that (3) holds. It follows that there is an extender E∗ ∈ ~ER1 such
that crit(E∗) = δS

b
and S E Ult(R1, E

∗). Let E be the R1-least such extender and
let γ be such that S = Ult(R1, E)(γ). Let R2 = Ult(R1, E). It follows from the
proof of Lemma 8.1.3 that (J N ,ΛR2(γ))N reaches a Woodin cardinal implying that S
cannot be the output of (Q,ΣN )-construction in which extenders used have critical
point > ν.

Suppose then (4) holds. It follows that U is of limit length and M+(U) � “δ(U)
is a Woodin cardinal” (otherwise we again have that S cannot be the output of
(Q,ΣN )-construction in which extenders used have critical point > ν). Because R1

is lsa small, it follows that

(5) R1 � “δ(U) is not a Woodin cardinal”.

Let then W E R1 be the least such that W � “δ(U) is a Woodin cardinal” but
J1(W) � “δ(U) is not a Woodin cardinal”. Notice that we must have that

(6) the N -authenticated background construction (see Definition 6.2.2) overM+(U)
does not reach W .

(6) holds because otherwise S cannot be the last model of (Q,ΣN )-construction
in which extenders used have critical point > ν.

Let then S1 be the N -authenticated background construction over M+(U). If
the comparison of the construction producing S1 and W halts then, because S1 side
does not move, we must have that W E S1 contradicting (6). Suppose then the
comparison of the construction producing S1 and W does not halt, implying that it
must reach a strategy disagreement. It follows that

(7) there is a normal iteration tree K on W according to ΛW with last model W1,
and there is S2, which is a model appearing in the construction producing S1, such
that letting o(S2) = β, W1|β = S2|β but W1||β 6= S2.

Let then t = (M+(U), T ∗,R∗, ~U) ∈ W1|β ∩ S2 be such that the branch of t is
indexed at β. Let b be the branch indexed in W1. Let c be the branch indexed in
S2, if there is such a branch indexed in S2.

Suppose that c is defined. We claim that ~U 6= ∅. Suppose ~U = ∅. Then b and
c are branches of T ∗. We must also have that T ∗ is both W1 and S2 ambiguous.
But indexed branches of such trees just depend on W1|β = S2|β, implying that

b = c. Thus, we have that both b and c are the branches of ~U . But we have that
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b = Λ(R∗)b(~U) = c (see Lemma 5.5.1), contradiction!
Suppose then c is undefined. In this case, we have that N never authenticates

the branch of ~U , as otherwise c would be defined. It follows that

(8) letting ξ = o(R∗), the (Q,ΣN )-hod pair construction of N in which extenders
used have critical points > ξ does not reach an iterate of (R∗)b.

Notice that (R∗)b ∈ pB(R,ΛR). Let S3 be the (Q,ΣN )-hod pair construction of
N in which extenders used have critical points > ξ. Notice now that (8) asserts that
the failure of (2) holds for ((R∗)b,Λ(R∗)b) and S3. Let then R2 = ((R∗)b). Repeat-
ing the argument given above we obtain an infinite sequence (R2k : k < ω) such
that R0 = R and R2k+2 ∈ pB(R2k,ΛR2k), contradiction! This finishes the proof of
Lemma 8.1.5. �

Before we proceed, we record some lemmas that the proof of (7) gives.

Lemma 8.1.6 Suppose π : N|(κ+)N → M is an iteration via ΦN|κ and g is M-

generic. Then letting F be the function F (X) = LpΛstc(X), F �M[g] is uniformly
in M, g2 definable over M[g].

Proof. Suppose first X ∈ N|κ[g] for some generic g. Let δ be a cutpoint Woodin
cardinal of N|κ such that g is a < δ-generic and X ∈ N|δ[g]. We can now use
the proof of (6) in the previous lemma to show that LpΛstc(X) is the union of all
hybrid sts mice over X based on Q that project to o(X) and appear as models in the
N|δ-authenticated fully backgrounded construction over X. This definition carries
over to any Φ-iterate of M (this is a consequence of absoluteness as the failure of
our claim can be reflected inside N ∗x ). �

Corollary 8.1.7 Suppose π : N|(κ+)N →M is an iteration via ΦN|(κ+)N and F is
as in Lemma 8.1.6. Then if h ⊆ Coll(ω,< π(κ)) is M-generic then F � HCM[h] ∈
M[RM[h]].

Lemma 8.1.6 can be used to prove the following lemma.

Lemma 8.1.8 Suppose π : N|(κ+)N → M is an iteration via ΦN|(κ+)N and δ is a
cutpoint Woodin cardinal of M. Let ξ be a cutpoint cardinal of M such that M has
no Woodin cardinals in the interval (ξ, δ). Let η ∈ (ξ, δ) be an M-cardinal and let Ψ

2I.e., the definition works for any such M and g.
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be the fragment of Φ that acts on normal non-dropping trees based on M|(η+)M that
are above ξ. Then letting h ⊆ Coll(ω, (η+)M) be M-generic, Φ � M|π(κ)[h] ∈ M
and is π(κ)-universally Baire in M[h].

Corollary 8.1.9 Suppose π : N|(κ+)N →M is an iteration via ΦN|(κ+)N . Suppose

g isM|π(κ)-generic, X ∈ (M|π(κ))[g] and R ∈ LpΛstc(X) is such that ρ(R) = o(X).
Let h ⊆ Coll(ω, |X|) be (M|π(κ))[g]-generic. Then R ∈M[g][h] and M[g][h] � “R
has a π(κ)-universally Baire iteration strategy Ψ witnessing that R is a Λstc-sts mouse
over X based on Q”.

Moreover, if R ∈ (M|π(κ))[g] is a Λstc-sts premouse over X such that for some
(M|π(κ))[g]]-generic h ⊆ Coll(ω, |X|), (M|π(κ))[g][h] � “R has a π(κ)-iteration
strategy” then R E LpΛstc(X).

The next lemma shows that Γ(Q,Λstc) is a derived model of N .

Lemma 8.1.10 The derived model of N|(κ+)N as computed via Φ is L(Γ(Q,Σstc
Q )).

In particular, Γ(Q,Λstc) = ℘(R) ∩ L(Γ(Q,Λstc)).

Proof. We will use clause 2 of Theorem 6.1.5. First we verify that clause 2 of Theo-
rem 6.1.5 applies. For this we need to verify that

(1) N is internally Λstc-closed, and
(2) Φ is a fullness preserving strategy for N .

Notice that (1) is a consequence of Lemma 8.1.3 and (2) is just Lemma 8.1.5. We
thus have that clause 2 of Theorem 6.1.5 applies.

To prove Lemma 8.1.10 we need to show that given an R-genericity iteration
π : N|(κ+)N → N1 according to ΦN|(κ+)N ,

(3) if A ∈ Γ(P ,Σ) then A ∈ N1(R), and
(4) if A ∈ N1(R) is such that L(A,R) � AD+ then A ∈ Γ(P ,Σ).

We start with (3). Towards a contradiction, assume not and let A ∈ Γ(P ,Σ) witness
this. We have that for cone of z ∈ R, A∩LpΛstc(z) ∈ LpΛstc

2 (z). Let z be some base of
the aforementioned cone. Let ξ > Θ be such that Lξ(℘(R)) � ZF−Replacement and
σ : M → Lξ(℘(R)) is a countable hull such that N , z ∈ HCM and {Φ, A} ∈ rng(σ).

Let g ∈ L(℘(R)) be M -generic for Coll(ω,RM). Let (yi : i < ω) be the generic
sequence enumerating RM and let (δi : i < ω) be a sequence of cutpoint Woodin
cardinals of N|(κ+) with sup κ. Let (Ni, Ti : i < ω) be the RM -genericity iteration.
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Thus, N0 = N|(κ+)N , Ti is a tree on Ni based on Ni|π⊕j<iTj(δi) and Ti is built ac-
cording to the rules of yi-genericity iteration. Let πi,k : Ni → Nk be the composition
of the iteration embeddings. Let Nω be the direct limit of Ni under πi,k.

Because z ∈ RM , we have that A ∩ (Nω|ωM1 )(RM) ∈ LpΛstc((Nω|ωM1 )(RM))).
Notice that it follows from Lemma 8.1.6 that if N+

ω is the iterate of N obtained by
applying ⊕i<ωTi to N then

LpΛstc((Nω|ωM1 )(RM)) ∈ N+
ω (R).

It follows that A ∈ D(Nω, ωM1 , h) where h ⊆ Coll(ω,< ωM1 ) is an Nω-generic such
that RNω [h] = RM . This finishes the proof of (3).

We keep the notation used to prove (3) and start proving (4). To prove (4), we
need to show that if A is as in (4) then

(5) A ∈ (Γ(P ,Σ))M .

Suppose that (5) fails. We then have that there is A ∈ Nω(RM) such that L(A,RM) �
AD+ and A 6∈ (Γ(P ,Σ))M . We first claim that

Claim. in L(A,RM), for cone of y, A ∩ LpΛstc(y) ∈ LpΛstc

2 (y).

Proof. Suppose not. Working in L(A,RM), fix y ∈ RM such that for any y∗ ∈ RM

Turing above y, A∩LpΛstc(y) 6∈ LpΛstc

2 (y). Fix i < ω such that y ∈ Nω[h∩Coll(ω, δi)].
Notice that

(6) for every y ∈ RM , (LpΛstc(y))L(A,RM ) = LpΛstc(y).

(6) is a consequence of Corollary 8.1.9. This is because if R E (LpΛstc(y))L(A,RM )

is such that ρ(R) = ω then R has an iteration strategy in Nω[y] as the iteration
strategy of R is ordinal definable from Λstc in the derived model of Nω.

Let k < ω be such that there is a name τ for A in Nω[h ∩ Coll(ω, δk)]. Let
j = max(i, k) + 1. We then have that

(7) in L(A,RM), A ∩ (Nω|δj)[h ∩ Coll(ω, δj)] 6∈ LpΛstc((Nω|δj)[h ∩ Coll(ω, δj)]).

However, it follows from Lemma 6.4.6 that

(8) LpΛstc((Nω|δj)[h ∩ Coll(ω, δj)]) = Nω|(δ+
j )Nω [h ∩ Coll(ω, δj)].
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(8) and (7) contradict (6) (as τh∩Coll(ω,δj) = A ∩ (Nω|δj)[h ∩ Coll(ω, δj)]). �

We will now make use of [15, Theorem 0.1]. It follows from the proof of the
aforementioned theorem (applied to all sets of reals in L(A,RM)) that

(9) in L(A,RM), L(A,RM) = LpΛstc(RM).

We also have that

(10) if Γ1 = {C ∈ ℘(RM) ∩N1(RM) : L(C,RM) � AD+} then L(Γ1,RM) � AD+.

It then follows from (9), (10) and homogeneity of the collapse that

(11) A ∈M .

(11) and the Claim imply (5). �

The following is a simple corollary of the proof of Lemma 8.1.10.

Corollary 8.1.11 Suppose (ηi : i < ω) is a sequence of consecutive Woodin cardinals
of N|κ and λ = supi<ω ηi. The derived model of R =def N|(λ+)N as computed via
ΦR is L(Γ(Q,Σstc

Q )). In particular, Γ(Q,Λstc) = ℘(R) ∩ L(Γ(Q,Λstc)).

Let Ψ be the minimal component of Λ (see Definition 3.9.8). Let Q∞ be the direct
limit of all Λ-iterates of Q and let π : Q → Q∞ be the iteration embedding. Notice
that π � Qb depends only on Ψ and hence (by the coding lemma), it is in L(Γ(P ,Σ)).
Also, because Ψ is fullness preserving, it follows that π[Qb] can be coded as a subset
of w(Γb(Q,Λ)). This is because Qb∞|δQ

b
∞ =

⋃
{M∞(R,ΛR) : R ∈ pB(Q,Λ)} and

δQ
b

= w(Γb(Q,Λ)).

Lemma 8.1.12 Ψ ∈ Jω(π[Qb],Qb∞,Γb(Q,Λ)).

Proof. Notice that if (~T ,S) ∈ I(Q,Ψ) andW is a tree on S of limit length according
to ΛS such that W is above δS

b
and W ∈ b(ΨS) then letting b = ΨS(W), Q(b,W)

exists and has an iteration strategy in Γb(Q,Λ). This is simply because there is an

extender E ∈ ~MW
b with critical point δS

b
such that Q(b,W) / (Ult(MW

b , E))b. We
can the define Ψ in Jω(π[Qb],Qb∞,Γb(Q,Λ)) with the following procedure. We work
in Jω(π[Qb],Qb∞,Γb(Q,Λ)).
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Suppose first X is a transitive set and R ∈ X is an lsa type hod mouse. Suppose
that there is an embedding τ : Qb → Rb. Suppose further that M is an sts mouse
over X based on R. We sayM is good if it has an iteration strategy ∆ such that if
S is a ∆-iterate ofM, t = (R, T ,R∗1, ~U) ∈ S is according to ΣM, and R1 = πT ,b(Rb)
then letting ∆∗ be the strategy of R1 induced by ∆,

1. (R1,∆) is a hod pair such that ∆ has strong branch condensation and is
strongly fullness preserving,

2. R1 = HullR1(πT ,b ◦ τ [Qb] ∪ δR1),

3. letting σ : R1 → Qb∞ be given by

σ(x) = π(f)(π∆
R1,∞(a)),

where f ∈ Qb and a ∈ (δR
b
1)<ω are such that x = πT ,b ◦ τ(f)(a),

π � Qb = σ ◦ πT ,b ◦ τ .

4. ~U is according to ∆∗.

We can now define Lpgood,sts,τ (X) which is the stack of good sts mice over X that
are based on R. Then we can define Lpgood,sts,τω (X).

Suppose next that R is an lsa type hod premouse and τ : Qb → Rb is an
embedding. Suppose ~U is a stack on Rb. We say (Rb, ~U) is a τ -good iteration if
there is k : Rb → Qb∞ such that π � Qb = k ◦ τ and for some (S,∆) ∈ Γb(Q,Λ)
such that ∆ has strong branch condensation and is strongly fullness preserving,
k � (Rb|δRb) ⊆ π∆

S,∞[S] and if σ : R → S is given by

σ(x) = (π∆
S,∞)−1(k(x))

then ~U is according to σ-pullback of ∆.
Suppose now that ~T = (Si, ~Ti : i ≤ m) is a stack on Q. We say ~T is good if the

following conditions hold.

1. For every i ≤ m, Si is an lsa type hod premouse such that

Si =M+(Si|δSi).

2. For every i < m, π
~Ti,b exists.
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3. For all cutpoints S of ~T such that τ =def π
~T≤S ,b exists, lettingW be the longest

normal initial segment of ~T≥S that is based on S and is above δS
b
, for all limit

ordinal γ < lh(W) such that W � γ is ambiguous,

(a) if Lpgood,sts,τ (M+(W � γ)) � “δ(W � γ) is a Woodin cardinal” then W
doesn’t have a branch for W � γ and MW

γ = Si for some i ≤ m, and

(b) if Lpgood,sts,τ (M+(W � γ)) � “δ(W � γ) is not a Woodin cardinal” then
W has a branch b for W � γ such that Q(b,W � γ) exists and Q(b,W �
γ) E Lpgood,sts,τ (M+(W � γ)).

4. For every cutpoint S of ~T such that τ =def π
~T≤S ,b exists, letting ~U be the

largest initial segment of ~T based on Sb, (Sb, ~U) is a τ -good iteration.

5. For every cutpoint S of ~T such that τ =def π
~T≤S ,b exists, letting U be the

longest normal initial segment of ~T that is based on S and is above δS
b

and is
such that for some η ∈ (δS

b
, δS), U is based onOSη,η,η and is above η, then letting

E ∈ ~ES be the least extender with critical point δS such that OSη,η,η /Ult(S, E),
((Ult(S, E))b,U) is a (πE � Sb) ◦ τ good iteration.

Let then ∆ be an iteration strategy for Q such that its domain consists of good
stacks and if ~T ∈ dom(∆) then ∆(~T ) = b if and only if ~T _{M~T

b } is a good iteration.
It can now be shown that ∆ = Ψ. The proof is very much like the proof of clause 2
of Theorem 6.1.5. We leave it to the reader. �

We are now in a position to state the main theorem of this section.

Theorem 8.1.13 Suppose (P ,Σ) is a hod pair such that P is of lsa type and Σ has
strong branch condensation and is strongly fullness preserving. Suppose Code(Σ) is
Suslin, co-Suslin. Then for some Q ∈ pI(P ,Σ),

1. L(Γ(Q,ΣQ)) ∩ ℘(R) = Γ(Q,ΣQ),

2. the set {(x, y) : x ∈ R and y 6∈ LpΣstcQ (x)} cannot be uniformized in L(Γ(Q,ΣQ)),
and

3. L(Γ(Q,ΣQ)) � LSA.

Proof. Let Γ0 < Γ be any two good pointclass such that Code(Σ) ∈ ∆∼ Γ0 . Let F
be as in Theorem 4.1.6 for Γ. Let A ∈ Γω be a set coding a self-justifying-system
(Ai : i < ω) such that A0 = {(x, y) ∈ R2 : y ∈ CΓ0(x))}. Fix x such that if
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F (x) = (N ∗x ,Mx, δx,Σx) then Code(Σ) and ~A are Suslin, co-Suslin captured by
(N ∗x , δx,Σx).

We then have that the fully backgrounded hod pair construction of N ∗x |δx reaches

a tail of (P ,Σ) (see Theorem 4.6.10). Let (Q,Λ) be this tail. Let N = (J ~E,Λstc)N
∗
x |δx .

Because Σ is fullness preserving we have that N � “δQ is a Woodin cardinal”. Let Φ
be the strategy of N induced by Σx. We now start proving that (Q,Λ) is as desired.

Clause 1 is just Lemma 8.1.11. We prove clause 2 of Theorem 8.1.13, which
amounts to showing that the set B = {(x, y) : x ∈ R ∧ y 6∈ LpΛstc(x)} cannot be
uniformized in L(Γ(P ,Σ)). Towards a contradiction assume we can uniformize B. It
follows that we can find a set of reals A ∈ Γ(P ,Σ) such that A codes a sjs (Ai : i < ω)
with the property that A0 = B.

Let π : N|(κ+) → M be an R-geneicity iteration. We then have that A is in
the derived model of M. Fix then a < π(κ)-generic g over M such that there is
a term relation τ ∈ M[g] realizing A. Let δ be a cutpoint Woodin cardinal of M
such that g is a < δ-generic. Let ξ < δ be a cutpoint M-cardinal such that M has
no Woodin cardinals in the interval (ξ, δ). Let M∗ EM be such that τ ∈ M∗ and
M|π(κ) EM∗. Let now σ : S → M∗ be such that crit(σ) ∈ (ξ, δ), σ(crit(σ)) = δ,
crit(σ) is an M-cardinal and τ ∈ rng(σ). It follows that LpΛstc(M|crit(σ)) ∈ S and
LpΛstc(M|crit(σ)) � “crit(σ) is a Woodin cardinal”, contradiction! This finishes the
proof of clause 2 of Theorem 8.1.13.

To finish the proof of Theorem 8.1.13 we need to show that L(Γ(Q,Λ)) � LSA.
Suppose first that

(1) for every transitive X ∈ HC such that Q ∈ X and for every R E LpΛstc(X)
such that ρ(R) = o(X), if Φ is the iteration strategy of R witnessing that R is a
Λstc-sts mouse then Γ(R,Φ) <w Γb(Q,Λ).

We claim that (1) implies L(Γ(Q,Λ)) � LSA. Towards contradiction assume not
and set B = {(x, y) : x ∈ R ∧ y 6∈ LpΛstc(x)}. We claim that

(2) B is Suslin, co-Suslin in L(Γ(Q,Λ)).

Clearly (2) contradicts clause 2 of Theorem 8.1.13. To see (2), let Ψ be the minimal
component of Λstc (see Definition 3.9.8). Because Γb(Q,Λ) = Γb(Q,Ψ), it follows
from (1) that

(3) B is projective in Ψ.
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Let Q∞ be the direct limit of all Λ-iterates of Q and let π : Q → Q∞ be the
iteration embedding. Notice that π � Qb depends only on Ψ and hence, because of
Lemma 8.1.12, it is in L(Γ(P ,Σ)). Also, because Ψ is fullness preserving, it follows
that π[Qb] can be coded as a subset of w(Γb(Q,Λ)). This is because Qb∞|δQ

b
∞ =⋃

{M∞(R,ΛR) : R ∈ pB(Q,Λ)} and δQ
b

= w(Γb(Q,Λ)).
It follows from (3) and Lemma 8.1.12, B ∈ Jω(π[Qb],Qb,Γb(Q,Λ)). Since we are

assuming L(Γ(P ,Σ)) � ¬LSA and since, in L(Γ(P ,Σ)), δQ
b
∞ is both < Θ and is a

limit of Suslin cardinals, B must be Suslin, co-Suslin in L(Γ(P ,Σ)), implying (2).
Thus, it is enough to prove (1).

Suppose (1) fails. We can then assume that the witness is in some < δx-generic
extension of N ∗x . Moreover, by iterating if necessary, we can assume that X is < κ-
generic over N . Let then R E LpΛstc(X) be least such that ρ(R) = o(X) yet if ∆ is
the strategy of R then Γ(R,∆) = Γb(Q,Λ). Notice that we have that

(4) Code(∆) is Suslin, co-Suslin in L(Γ(Q,Λ)) (this follows from Lemma 8.1.9).

We again let Ψ be the minimal component of Λstc. It follows that for some< κ-generic
h over N , there is some (T ,S∗) ∈ I(Q,Ψ) ∩ N|κ[h] such that ΛS∗ ∈ L(Γ(Q,Λ))
(this can be shown using Theorem 4.6.8 and the fact that Ψ is Suslin, co-Suslin in
L(Γ(Q,Λ)), which follows from (4) and Lemma 8.1.12). It then follows that if S is
such that (T ,S) ∈ I(Q,Λ) ∩ N|κ[h] then the fragment of ΛS � N|κ[h] that acts on
stacks based on S∗ is in N [h] (in fact, ΛS � N|κ[h] ∈ N because of Lemma 8.1.6).

Let now δ > o(S) be a cutpoint Woodin cardinal of N|κ. Let S1 be an iterate of
S above δS that is built according to the rules of N|δ-genericity iteration. We have

that S1 ∈ N [h]|(δ+)N . Let N1 be the output of (J ~E,ΛstcS1 )N . It follows from fullness
preservation that N1 � “δS is a Woodin cardinal”.

Let N2 be the (N1, π
T ,b[Qb])-authenticated backgrounded construction over N|δ

based on Q (this makes sense as N|δ is generic over S1 and πT ,b ∈ N|δ, see Defini-
tion 6.2.2). Then it follows from universality of N2 that N|(δ+)N ⊆ N2 ⊆ N1[N|δ].
However, δS1 is not a cardinal of N yet it is a cardinal of N1[N|δ], contradiction!
This finishes the proof of (1) and hence, the proof of Theorem 8.1.13. �

The next theorem can now be proved using Corollary 8.1.11 and the proof of
Theorem 5.20 of [10].

Theorem 8.1.14 Suppose (P ,Σ) is a hod pair such that λP is a successor ordi-
nal and Σ has a branch condensation and is fullness preserving. Suppose B ∈
B(P−,ΣP−). There is then Q ∈ pI(P ,Σ) and ~B = 〈Bi : i < ω〉 ⊆ B(P ,ΣP−)

such that ~B strongly guides ΣQ.
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8.2 A hybrid upper bound for LSA

The main theorem of this section, Theorem 8.2.6, is a corollary to the proofs given
in the previous section. It can be used in core model induction applications to show
that certain hypothesis imply that there is a model of LSA. We give a fairly detailed
proof of Theorem 8.2.6.

Definition 8.2.1 Suppose (P ,Σ) is an sts hod pair. We let N#
ω,lsa(P ,Σ) be the

minimal Σ-sts mouse M over P such that M has ω many Woodin cardinals greater
than δP such that if λ is their sup then M =M+(M|λ).

Definition 8.2.2 We say N is an active ω Woodin lsa mouse if it has an iteration
strategy Σ such that

1. N has a Woodin cardinal δ such that if κ is the least < δ-strong cardinal of N
then letting P = N|((δP)+ω)N , (P ,Σstc

P ) is an sts hod pair such that Σstc
P has

strong branch condensation and is strongly Γb(P ,Σstc
P )-fullness preserving,

2. N = N#
ω,lsa(P ,Σstc

P ),

3. for every α < λP and for every ξ ∈ (δPα , o(δ
P
α )), if M+(P|ξ) � “ξ is a Woodin

cardinal” then

N#
ω,lsa(M+(P|ξ),Σstc

M+(P|ξ)) � “ξ is not a Woodin cardinal”.

We say P is the lsa part of N . We say (N ,Σ) is an active ω Woodin lsa pair. It
follows that ρ(N ) ≤ (κ+)N where κ is as in clause 13.

In what follows, we let the statement there is an active ω Woodin lsa pair be
shortening for the statement that there is a pair (N ,Σ) such that N is an active ω
Woodin lsa mouse and Σ witnesses the clauses of Definition 8.2.2.

Notice that it follows from Theorem 4.10.4 that if (N ,Σ) and (M,Λ) are two
active ω Woodin lsa pairs with common lsa part P such that Σstc = Λstc thenN =M
and Σ = Λ.

3The fact that ρ(N ) ≤ (κ+)N can be proved as follows. Suppose that ρ(N ) > (κ+)N . Let
M = HullN ((κ+)N ). Clearly M is also an active ω Woodin lsa mouse. We would be done if we
had M E N . To show this, we use the proof of Theorem 4.9.7, and compare (N ,M, (κ+)N ) with
N . We need to verify that a version of Lemma 4.9.5 holds for (N ,M, (κ+)N ). However, this can
be done via exactly the same proof. We leave the details to the reader.
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Lemma 8.2.3 Suppose (N̄ ,Σ) is an active ω Woodin lsa pair and P is the lsa part
of N̄ . Let N be the result of iterating the last extender of N̄ through the ordinals. Let
(δi : i < ω) be the Woodin cardinals of N above δP and let λ be their supremum. Let
π : N →M be an iteration via Σ that is above δP . Suppose g is < π(λ)-generic over
M and S ∈ (M|λ[g]) ∩ pB(P ,Σstc). Then S is an M-authenticated hod premouse.

Proof. Towards a contradiction assume not. We assume π = id and g = ∅, the
proof of this special case can be easily generalized. We can then find an iteration
σ : N → N1 above δP and S ∈ pB(P ,Σstc) ∩ (N1|σ(λ)) such that if k < ω is such
that S ∈ N1|σ(δk) then

(1) for every iteration π : N1 → M according to Σ and above σ(δk) and for any
Q ∈ pB(S,Σstc

S ) ∩ (M|π(λ)), for some κ < π(λ) and l ∈ (k, ω), Code(ΣQ) <w

Code(Σ
(SM|π(δl)
κ )b

) and

(2) for any κ < π(λ) and l ∈ (k, ω), Code(Σ
(SN|δlκ )b

) <w Code(ΣS).

The strict inequality in (2) is a consequence of Lemma 8.1.3. Without loss of gener-

ality we assume N = N1. Let k be such that S ∈ N|δk. Let P1 = SN|δk+1

δk
and let

T be the comparison tree on P such that P1 =M+(T ). Notice that we must have
that πT ,b exists (this is a consequence of Lemma 8.1.3). We can now compare S with
the construction producing P1 in N . This comparison is done via N -authentication
procedure. We outline it below.

Suppose U is an initial segment of the comparison tree on S with last model S1.
Suppose U is of limit length. Let α be largest such that S1(α) = P1(α). Suppose
first that S1(α + 1) is of successor type. As P1 is fully backgrounded it follows that
P1(α+1) is also of successor type. It follows that the rest of U is a stack on S1(α+1)
and is a result of comparing S1(α + 1) with P1(α + 1).

Suppose thatM(U) /P1(α+ 1). Then let W E P1(α+ 1) be the least such that
W � “δ(U) is a Woodin cardinal” but J1(W) � “δ(U) is not a Woodin cardinal”.
Because S is a Σ-iterate of P it follows there is a branch b of U (the branch chosen
by ΣS) such that Q(b,U) exists and Q(b,U) = W . Then clearly b ∈ N and we let
II play b. Next suppose thatM(U) = P1(α+ 1)|δP1(α+1). In this case we look for a
branch b of U such that for some β ∈ b, s(T , α+ 1) ⊆ πUβ,b. Again the branch chosen
by Σ is the unique branch with this property, and so there is such a branch in N
and we can extend U by letting II play such a branch.

Next suppose that S1(α+1) is of limit type. It follows that δ
S1(α+1)
α is a measurable

cardinal in S1(α + 1). Suppose then there is W E P1(α + 1) such that W � “δ(U)
is a Woodin cardinal” but J1(W) � “δ(U) is not a Woodin cardinal”. We can then
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identify ΣS(U) inside N as above and extend U accordingly.

Assume then there is no such W . Let b = ΣS(U). Because S ∈ pB(P ,Σstc), we
have that Q(b,U) exists and is a Σstc

M+(U)-sts mouse over M+(U). It follows that

(3) P1(α + 1) =M+(T ) =M+(U) and T is an N -ambiguous tree.

We now work towards showing that N has a branch indexed for T . Let K be
the N -authenticated background construction overM+(T ) in which extenders used
have critical point > δk.

Claim 1. K has ω Woodin cardinals.

Proof. Suppose not. This can only happen if the construction stops at some stage K∗
and this can happen only if we encounter some stack t = (M+(T ), T1,P2, ~U) ∈ K∗ of
length 2 such that according to our indexing scheme (see Definition 3.8.2), we have
to index a branch of t in K∗ yet we cannot find an N -authenticated branch of t.
Notice, however, that because Pb2 ∈ pB(S,ΣS), we have that P2 is N -authenticated

and so, we must have that (Pb2, ~U) is an N -authenticated iteration. Also, notice

that if ~U = ∅ then the branch of t just depends on K∗ and not our authentication
procedure. �

Our goal now is to compare the construction producing K and Q(b,U). Let Ψ be
the strategy of Q(b,U) induced by ΣS and acting on trees above δ(U)

Claim 2. The comparison of the construction producing K and Q(b,U) is suc-
cessful.

Proof. Suppose not. We can then find a normal tree U1 on Q(b,U) with last model
Q1 and a normal tree T1 on N with last model N1 such that U1 is according to Ψ,
T1 is according to Σ and for some β 6∈ dom( ~E)Q1 , letting K1 = πT1(K), Q1|β = K1|β
and Q1||β 6= K1||β. Let then t = (M+(T ),W ,R, ~W1) ∈ Q1|β be a stack of length
2 whose branch is indexed at β. It follows that t is a stack whose branch should be
indexed at β in K1. Let c be the branch of t in Q1. Let e, if it exists, be the branch
of t in K1. Notice that if ~W1 is undefined then both c and e exists and are equal as
such branches just depend on Q1|β = K1|β.

We thus have that c is a branch of ~W1. Notice that if e exists then e = ΣRb( ~W1). It

follows that e = c. We thus have that e doesn’t exist. It follows that in N1, (Rb, ~W1)
is not anN1-authenticated iteration. Since crit(πT1) > δk and sinceRb ∈ pB(S,Σstc

S ),
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we get a contradiction to (1). �

Because K has ω Woodin cardinals and is a proper class model, it follows from
Claim 2 and clause 3 of Definition 8.2.2 that Q(b,U) E K. We thus have that
Q(b,U) ∈ N . It follows that to show that N has a branch indexed for T , it is enough
to show that clause 4 of Definition 3.8.2 holds for Q(b,U) and c where c = ΣP(T ).
Let W = Q(c, T ) = Q(b,U). To do this, we need to show that

(4) there is M E N such that c ∈ M is a cofinal branch through T such that
for some pair (β, γ) such that γ < α and β < o(M),

1. M|β is unambiguous (see Definition 3.6.1) and M|β � ZFC+“there are in-
finitely many Woodin cardinals > δ(T )”,

2. b ∈M|β and M|β � “b is well-founded branch”,

3. M|β � “Q(b, T ) exists and is an sts ψγ-premouse over M(T )” and

4. letting (δi : i < ω) be the first ω Woodin cardinals > δ(T ) ofM|β,M|β � “W
is < Ord-iterable above δ(T ) via a strategy Σ such that letting λ = supi<ω δi,
for every generic g ⊆ Coll(ω,< λ), Σ has an extension Σ+ ∈ D(M|β, λ, g)
such that D(M, λ, g) � “Σ+ is an ω1-iteration strategy” and whenever R ∈
D(M|β, λ, g) is a Σ+-iterate of W and t ∈ R is a stack onM+(T ) of length 2
then t is (P ,ΣM)-authenticated”.

To show the existence of such anM, it is enough to show that N satisfies clauses
1-4 and first three clauses are straightforward. We show that clause 4 holds with
(δi : i ∈ (k+ 2, ω)) as our sequence of Woodin cardinals. We next identify the model
R in the construction producing K such that C(R) =W . We first claim that

Claim 3. if K1 is the N -authenticated construction of N|δk+2 overM+(T ) using
extenders with critical point > δNk+1 then K1 E K.

Proof. Suppose not. It follows from the proof of Claim 2 that K1 has height δk+2. If
K1 6E K then there is some model Q appearing in the construction producing K such
that ρ(Q) < δk+2. Let p be the standard parameter of Q. Let X ≺ Q be such that
ρ(Q) < X∩δk+2 ∈ δk+2 is a cardinal in N 4 and Q̄ be the transitive collapse of X. By
condensation (using the fact that X contains solidity witnesses for p), Q̄ /Q. Since

4This is possible because δk+2 is strongly inaccessible in N .
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Q̄ is sound and ρ(Q̄) = ρ(Q) < X ∩ δ, X ∩ δ is not a cardinal in N . Contradiction.
�

It follows from Claim 3 that W E K1. To complete the proof of Clause 4 of (4),
it is now enough to show the following claim.

Claim 4. Suppose η ∈ (δk+1, δk+2) is an N -cardinal and g ⊆ Coll(ω, (η+)N ). Let
Φ be the fragment of Σ that acts on non-dropping trees that are based on N|(η+)N

and are above δk+1. Then Φ � N|λ[g] ∈ N|λ[g] and if Λ = Φ � HCN|λ[g] then in N [g],
Λ is a < λ-universally Bair iteration strategy such that for any poset P ∈ N|λ[g],
if k ⊆ P is N [g]-generic and Λk is the canonical extension of Λ to HCN|λ[g∗k] then
Λk = Ψ � HCN|λ[g∗k].

Proof. We only prove that Φ � N|λ[g] ∈ N|λ[g] and leave the rest to the reader.
Let Q = N|(η+)N and let W1 ∈ N [g] be a tree on Q of limit length and accord-
ing to Φ. Let e = Φ(W1). We want to show that e ∈ N [g] and N [g] has uniform
way of identifying e. Notice that Q(e,W1) exists. Let K2 be the N -authenticated
background construction overM(W1). The proof of Claim 1 and Claim 2 show that
Q(e,W1) E K2. It is now easy to find the uniform definition of e. �

Claim 4 finishes the proof of Lemma 8.2.3. �

Corollary 8.2.4 Suppose (N̄ ,Σ) is an active ω Woodin lsa pair and P is the lsa part
of N̄ . Let N be the result of iterating the last extender of N̄ through the ordinals. Let
Φ be the fragment of Σ that acts on stacks above δP . Then Φ is Γb(P ,Σstc

P )-fullness
preserving.

Proof. Given S ∈ pB(P ,Σstc
P ), let π : N → M be a Σ-iterate of N above δP such

that S is generic over M for the extender algebra at the first Woodin of M that is
larger than δP . It follows from Lemma 8.2.3 that S is M-authenticated. �

Lemma 8.2.5 Suppose (N̄ ,Σ) is an active ω Woodin lsa pair and P is the lsa part
of N̄ . Let N be the result of iterating the last extender of N̄ through the ordinals.
Let δ < η be two consecutive Woodin cardinals of N such that δ > δP . Let N ∗ be the
output of N -authenticated background construction of N|η in which extenders used
have critical point > δ. Then

1. N ∗ has height η and
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2. if N1 is the result of translating N onto a structure over N ∗ via S-constructions
then N1 is a normal iterate of N via a tree that is based on N|δ0 where δ0 is
the least Woodin cardinal of N above δP .

Proof. We start by verifying clause 1. Suppose N ∗ fails to reach height η. This
can only happen if at some stage of the construction we reach a modelM such that
there is some t = (P , T ,P1, ~U) ∈ M such that t ∈ dom(ΣM), t 6∈ dom(ΣN ), and
it is required by the rules of sts indexing scheme that we add a branch of t to M.
It follows that if ~U = ∅ then the branch of T just depends on M. So ~U 6= ∅, and
hence (Pb1, ~U) is not an N -authenticated iteration. It then follows that Pb1 is not an
N -authenticated hod premouse, contradicting Lemma 8.2.3.

We verify clause 2. Notice that N1[N|η] = N . Thus N1 is η-sound ω Woodin
mouse. It is then enough to show that there is a tree U ∈ N on N|δ0 such that
M(U) = N ∗.

Suppose not. Let U ∈ N be the tree on N|δ0 that is a result of comparing N|δ0

with the construction producing N ∗. Since comparison fails, we must have that
Σ(U) 6∈ N . Let b = Σ(U). We must have that Q(b,U) exists and Q(b,U) 6E N ∗. It
follows that N ∗ � “δ(U) is Woodin”. It follows from Lemma 6.4.6 that Q(b,U) ∈ N
(Q(b,U) can be obtained as via an S-construction). Thus, in the further comparison
of Q(b,U) and the construction producing N ∗, N ∗ side does not move.

Let W0 = Q(b,U). We can then successivly produce a sequence (Wi,Ui, bi) such
that

1. Ui is a tree on Wi that is a result of comparing Wi with the construction of
producing N ∗,

2. bi = ΣWi
(Ui),

3. Wi+1 = Q(bi,Ui),

It then follows that N ∗ � “δ(Ui) are Woodin cardinals” and if η = supi<ω δ(Ui) then
M+(N ∗|η) E N ∗. This contradicts the minimality of N . �

Theorem 8.2.6 Suppose (N̄ ,Σ) is an active ω Woodin lsa pair and P is the lsa part
of N̄ . Let N be the result of iterating the last extender of N̄ through the ordinals.
Then the derived model of N computed via Σ using the Woodin cardinals above δP

is a model of LSA.
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Proof. Let (δi : i < ω) be the Woodin cardinals of N that are greater than δP . Let λ
be their sup. It follows from Lemma 8.1.3 that N|λ is internally Σ-closed. It follows
from Corollary 8.2.4 that Σ is Γb(P ,Σstc

P )-fullness preserving.

Suppose X is a transitive countable set such that P ∈ X. Let for i ∈ 2,
πi : N → Mi be an iteration according to Σ such that crit(πi) > δP and X is
< π(λ)-generic over Mi.

Claim 1. LpM0,sts(X,P) = LpM1,sts(X,P).

Proof. Let K0 be the M0-authenticated background construction over X based
on P and K1 be the M1-authenticated background construction over X based on
P . We compare the construction producing K0 with the one producing K1. Notice
that it follows from the proof of Claim 1 of Lemma 8.2.3 that both constructions
reach proper class models. It then follows from the proof of Claim 2 of Lemma 8.2.3
that the aforementioned comparison produces σ0 : M0 →M2 and σ1 : M1 →M3

such that crit(σi) > o(X) and σ0(K0) and σ1(K1) are lined up (i.e. one is an initial
segment of the other). Because they both have exactly ω Woodin cardinals it follows
from our minimality assumption on N that σ0(K0) = σ1(K1). The claim now follows.

�

Given a transitive X ∈ HC, we letW(X) = LpM,sts(X,P) whereM is such that
there is an iteration π : N → M according to Σ such that crit(π) > δP and X is
< π(λ)-generic over M. Suppose S ∈ pI(P ,Σ), α < λS , η ∈ [δSλS−1, δ

S) is such that
M+(S|η) � “η is a Woodin cardinal”. We then claim that

Claim 2. W(M+(S|η)) � “η is not a Woodin cardinal”.

Proof. Suppose otherwise. Notice that S � “η is not a Woodin cardinal”. Let
Q E S be the least such that Q � “η is a Woodin cardinal” but J [Q] � “η is not
a Woodin cardinal”. Then Q is a Σstc

M+(S|η)-sts mouse. Let now π : N → M be

an iteration according to Σ above δP such that S is < π(λ)-generic over M. Let
K be theM-authenticated background construction overM+(S|η). Because we are
assuming that the claim fails, we must have that K � “η is a Woodin cardinal”.

We now compare Q with the construction of M producing K. Notice that this
comparison halts (this follows from the proof of Claim 2 that appears in the proof of
Lemma 8.2.3). Now, Q has to win this comparison. Since K is proper class and has
ω Woodin cardinals, the fact that Q wins contradicts the minimality assumption on
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N (more precisely, contradicts (3) of Definition 8.2.2). �

Suppose next that η = δS . LetWα(X) be the αth iterate ofW . We then have that

Claim 3. Wω(M+(S|η)) = S.

Proof. Let σ : N → S+ be the result of applying the iteration producing S to
the entire model N . Thus S is the lsa part of S+. Let now π : N → M be an
iteration according to Σ above δP such that S is < π(λ)-generic over M. Let K be
theM-authenticated background construction overM+(S|η). We now compare the
construction producing K with S+. As before this construction has to halt. It then
follows from our minimality condition on N that Wω(M+(S|η)) = S. �

The next claim computes the powerset of the Woodin cardinals of N . The proof
is very similar to the proof of Claim 3 and we omit it.

Claim 4. Let π : N → M be an iteration according to Σ above δP . Then for
any k < ω, M|(δ+

k )M =W(M|δk).

The next claim can be proved using the proof of Claim 3 and the proof of Lemma 8.1.9.
Also see the proof of Claim 4 of Lemma 8.2.3.

Claim 5. Suppose X ∈ HC is a transitive set and R E W(X) is such that
ρ(R) = o(X). Let π : N → M be an iteration according to Σ above δP such
that X is < π(λ)-generic overM. Let k be such that for some g ⊆ Coll(ω,< π(δk)),
X ∈ HCM|π(δk)[g]. ThenR has a < π(λ)-universally Baire iteration strategy inM[g].

Suppose g ⊆ Coll(ω,R) generic. Let (xi : i < ω) be an enumeration of R in V [g].
Let π : N →M be R-genericity iteration according to Σ and guided by (xi : i < ω).
The next claim is a corollary to Claim 5 and clause 2 of Theorem 6.1.5.

Claim 6. Then the set B = {(x, y) ∈ R2 : y 6∈ W(x)} and Σstc
P are both in M(R).

Let Ψ be the minimal component of Σstc
P (see Definition 3.9.8). Let P∞ be the direct

limit of all Σ-iterates of P and let π : P → P∞ be the iteration embedding. Notice
that π � Pb depends only on Ψ. Also, because Ψ is strongly Γb(P ,Σstc

P )-fullness
preserving, it follows that π[Pb] can be coded as a subset of w(Γb(P ,Σstc)). This is
because Pb∞|δP

b
∞ =

⋃
{M∞(R,ΛR) : R ∈ pB(P ,Σstc)} and δP

b
= w(Γb(P ,Σstc)). It

follows from Lemma 8.1.12 that
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Claim 7. Ψ ∈ Jω(Pb∞, π[Pb],Γb(P ,Σstc)).

Next we establish a crucial claim.

Claim 8. J (Pb∞, π[Pb],Γb(P ,Σstc)) � AD+.

Proof. Suppose not. A ∈ J (Pb∞, π[Pb],Γb(P ,Σstc)) be a set of reals that is not de-
termined. We have that A ∈M(R). Let X = π[Pb]. Fix x ∈ R and Q ∈ pB(P ,Σstc)
such that A is definable from X, x, (Q,ΣQ),Pb∞ and a finite sequence of ordinals over
J (Pb∞, π[Pb],Γb(P ,Σstc)). By minimizing the sequence of ordinals we can suppose
that A is definable without ordinal parameters.

Let (Mi, Ti : i < ω) be the R-genericity iteration of N guided by (xi : i < ω).
For i < ω let πi = π⊕j≤iTj and for i < j ≤ ω let πi,j :Mi →Mj be the composition
of iteration emebddings. Let i be large enough so that x,Q ∈ HCMi[(xj :j≤i)] and
ΣQ � HCMi[(xj :j≤i)] is < πi(λ)-universally Baire. Let τ ∈ Mi[(xj : j ≤ i)] be a name
such that πi,ω(τ) is a term relation for A. We claim that ifR = (Mi|(πi(δ+

i+1)M))[(xj :
j ≤ i)] then letting Φ be the fragment of Σ that acts on trees based on R that are
above πi(δi), (R,Φ, τ) term captures A. It then follows from a result of Neeman that
A is determined (see [9]).

Let then T be an iteration tree on Mi based on R according to Φ. Let η =
πi(δi+1). Let S be the last model of T . We want to see that if h ⊆ Coll(ω, πT (η)) is
S-generic then (πT (τ))h = A∩S[h]. Let k > i be large enough that S ∈ Mk[(xj : j ≤
k)]. Let S∗ be the output of Mk|πk(δk+1)-authenticated backgrounded construction
over S|πT (η). We then have that S∗ is an iterate of S|πT (πi(δi+2)) (see Lemma 8.2.5).
Let S∗∗ = πk,k+1(S∗). Finally, let S1 be the result of translating Mk+1 over S∗∗ via
S-constructions. We then have that S1[Mk+1|πk+1(δk+1)] =Mk+1.

It follows that we can think of (Tj : j ∈ (k + 1, ω)) as a R-genericity iteration on
S1 guided by (xj : j ∈ (k + 1, ω)). Let then S2 be the last model of this genericity
iteration. We then have that S2[M|π(δk+1)] =M. Let σ :Mi → S2 be the iteration
embedding. It then follows that in S2[(xj : j ≤ i)], σ(τ) is the term relation that
denotes the least set in J (Pb∞, π[Pb],Γb(P ,Σstc)) which is not determined and is
definable from x and (Q,ΣQ). It then follows that σ(τ) is realized as A. �

The proof of the next claim is exactly like the proof of (1) that appeared in the
proof of Theorem 8.1.13 and Lemma 8.2.3. We leave it to the reader.

Claim 9. For any transitive X ∈ HC such that P ∈ X and for any R EW(X) such
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that ρ(R) = o(X), R has an iteration strategy in Γb(P ,Σstc).

It follows from Claim 9 that the set B = {(x, y) ∈ R2 : y 6∈ W(x)} is pro-
jective in Ψ and hence, B ∈ J (Pb∞, π[Pb],Γb(P ,Σ)). It follows from Claim 9 that
J (B) � AD+. We now have that

Claim 10. In M(R), let Γ = {A ⊆ R : L(A,R) � AD+}. Then Ψ, B ∈ L(Γ,R).

It follows from the proof of clause 2 of Theorem 8.1.13 that B cannot be uni-
formized in L(Γ,R). Hence, L(Γ,R) � LSA. �

8.3 Strong Γ-fullness preservation reviseisted

Theorem 8.3.1 Suppose (Q,Λ) is a pair appearing on the Γ-hod pair construction
of N ∗y . Then Λ is strongly Γ-fullness preserving.
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Chapter 9

Condensing sets

The goal of this chapter is to introduce the theory of condensing sets. Such sets were
first considered in [11, Section 10, 11.1], where they were presented in the form of a
condensation property for elementary embeddings (see [11, Definition 11.14]). The
current presentation dates back to an unpublished note by the first author.

Prior to this work, condensing sets have been used in the context of the core model
induction. As a convenience to the reader, we recap some of the basic machinery
used in the core model induction. We model our presentation on [11] but we will
also use the set up of [31]. A typical situation is as follows. We have an embedding
j : M → N with critical point κ and such that HM

κ+ = HN
κ+. In M , we consider

the maximal model of determinacy that has been built via core model induction.
While the exact definition of the maximal model is somewhat case specific, it can be
essentially described as follows.

Let g ⊆ Coll(ω,< j(κ)) be N -generic. For ν < κ let gν = g ∩ Coll(ω,< ν). We
then can extend j to act on M [gκ]. We denote this extension by j again and we have
that j : M [gκ]→ N [g].

Working in M [gκ], consider the set of hod pairs (Q,Λ) such that

1. Q ∈ HCM [g],

2. for some ν < κ such that Q ∈M [gν ], letting Ψ = Λ � HCM [gν ], Ψ ∈M [gν ] and
M [gν ] � “Code(Ψ) is κ-uB” and

3. if T, S ∈M [gν ] witness that Code(Ψ) is κ-uB then Code(Λ) = p[T ]M [gκ].

Let Γ be the set of such pairs (Q,Λ). An additional requirement is that Λ is fullness
preserving and has branch condensation. While the branch condensation is the same
as before, fullness preservation is not the same as the definition given in this paper.

179
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We refer the interested reader to [11] for more details on how to define Γ. It is in
fact somewhat more involved.

The goal of a core model induction is to show that Γ is rich. This is done as
follows. First a target theory is fixed. The theory used in [11] is “ADR + “Θ is
regular”. In Chapter 12, our target is LSA. Suppose then there is no lsa type hod
pair (Q,Λ) ∈ Γ. Preliminary arguments, such as those used in [12, Theorem 4.1],
show that Γ is of limit type, i.e., for any (Q,Λ) ∈ Γ there is (R,Ψ) ∈ Γ such that
Γ(Q,Λ) <w Γ(R,Ψ).

Next we let P− =
⋃

(Q,Λ)∈ΓM∞(Q,Λ). Fixing α < λP
−

and (Q,Λ) ∈ Γ such

that P−(α) = M∞(Q,Λ), we let Σα = ΛP−(α). It follows from comparison that
Σα is independent of (Q,Λ). Let Σ = ⊕α<λP−Σα. Suppose next that there is
M E LpΣ(P−) such that ρ(M) < o(P−). We then let P be the least such M.
Otherwise we let P = LpΣ

ω(P−).
The next major step is to build an iteration strategy for P that extends Σ. We

let Σ+ be this new strategy. Σ+ is constructed as follows.

Definition 9.0.2 (The construction of the strategy) Suppose ~T ∈ HCN [g] is

a stack on P. Working in N [g], we say ~T is j-realizable if there is a sequence

(σR : R ∈ tn(~T )) and a sequence (SR,ΛR : R ∈ tn(~T )) ⊆ j(Γ) such that

1. σP = σ, for all terminal nodes R of ~T , σR : R → j(P) and whenever R ≺~T ,s

Q, σR = σQ ◦ π ~TR,Q.

2. For every non-trivial terminal node R of ~T , σR[R(ξ
~T ,R + 1)] ⊆ rng(πΛR

SR,∞).

3. For every non-trivial terminal node R, letting kR : R(ξ
~T ,R+ 1)→ SR be given

by kR(x) = y if and only if σR(x) = πΛR
SR,∞(y), kR ~TR is according to ΛR.

4. Suppose R is a non-trivial terminal node of ~T . Let S∗R be the last model of

kR ~TR. Suppose ~TR has a last model QR and that π
~TR is defined. It then follows

that QR ∈ tn(~T ) and R ≺~T ,s QR. Let k∗R : QR → S∗R come from the copying
construction. Then for all x ∈ QR, σQR(x) = σR(f)(πΛR

S∗R,∞,j(η)(k
∗
R(a)) where

f ∈ R and a ∈ [QR(π
~T
R,QR(ξ

~T ,R) + 1)]<ω are such that x = π
~T
R,QR(f)(a).

5. Suppose R is a trivial terminal node of ~T . Then for every ξ < λR, there is
(S,Λ) ∈ j(Γ) such that σR[R(ξ + 1)] ⊆ rng(πΛ

S,∞,j(η)).

We say that (σ
~T
R : R ∈ tn(~T )) are the j-realizable embeddings of ~T and (SR,ΛR :

R ∈ tn(~T )) are the j-realizable pairs of ~T .



9.1. CONDENSING SETS 181

Given a stack ~T ∈ HCN [g] on P such that either there is a strongly linear closed
and cofinal set C ⊆ tn(~T ) or ~TS~T is of limit length, we set ~T ∈ dom(Σ+) if ~T is

j-realizable. We set Σ+(~T ) = b if ~T _{M~T
b } is j-realizable.

Σ+ may not be a total strategy simply because we may not be able to find (S,Λ)
as in the last clause of Definition 9.0.2. However, the proof of [11, Lemma 11.6] gives
the following.

Theorem 9.0.3 Suppose |P| < (κ+)M . Then Σ+ is a total (ω1, ω1)-strategy in N [g].

Then there are two arguments that we run as part of the proof of Theorem 9.0.3.
First we show that P = LpΣ

ω(P−). The reader can see, for example [31, Lemma 3.78],
for an argument. Roughly, if not, suppose n is such that ρn+1(P) < δP ≤ ρn(P),

then in j(Γ), we can define an OD
j(Γ)
Σα

set A ⊆ δPα such that A /∈ P . By fullness of
P(α) and SMC in j(Γ), A ∈ P(α) ∈ P . Contradiction.

The next argument attempts to show that P � “δP is regular”. Showing this
finishes the proof of the main theorem of [11]. In this book we present two arguments
for obtaining a model of LSA from PFA (see Theorem ?? and Theorem 12.0.22). In
both cases, we need to do more in order to finish the argument. It is in this step that
the theory of condensing sets is used. A reader interested in many details should
consult [11, Section 10, 11.1] and [31, Lemma 3.81].

9.1 Condensing sets

We introduce the notion of condensing set in the most general setting. Suppose φ is
a formula in the language of set theory and A is a set. We let Fφ,A be a collection
of hod pairs (Q,Λ) such that Q is countable, Λ is an (ω2, ω2, ω2)-iteration strategy
having strong branch condensation and such that φ[A, (Q,Λ)] holds.

Terminology 9.1.1 1. We say (φ,A) is bottom part closed if whenever (Q,Λ) ∈
Fφ,A and R ∈ pB(Q,Λ) then (R,ΛR) ∈ Fφ,A.

2. We say (φ,A) is of limit type if for every (Q,Λ) ∈ Fφ,A, there is (R,Ψ) ∈
Fφ,A such that R is of limit type and Code(Λ) ∈ Γb(R,Ψ).

3. Let Γφ,A =
⋃
{Γ(R,Ψ) : (R,Ψ) ∈ Fφ,A ∧ R is of limit type}. We say (φ,A) is

stable if whenever (R,Ψ) ∈ Fφ,A, Ψ is strongly Γφ,A-fullness preserving.

4. We say (φ,A) is directed if whenever (Q,Λ), (P ,Σ) ∈ Fφ,A, there are R ∈
pI(Q,Λ) and S ∈ pI(P ,Σ) such that either
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(a) R Ehod S and ΣR = ΛR or

(b) S Ehod R and ΛS = ΣS .

Notation 9.1.2 Suppose (φ,A) is bottom part closed, is of limit type, is stable and
is directed.

1. Let P−φ,A =
⋃

(Q,Λ)∈Fφ,AM∞(Q,Λ).

2. Fix α < λP
−
φ,A and (Q,Λ) ∈ Fφ,A such that P−φ,A(α) =M∞(Q,Λ). Let Σα,φ,A =

ΛP−φ,A(α) and let Σφ,A = ⊕
α<λ

P−
φ,A

Σα,φ,A.

3. Suppose there is M E LpΓφ,A,ΣF (P−φ,A) such that ρ(M) < o(P−φ,A). Then let

Pφ,A be the least such M. Otherwise let Pφ,A = Lp
Γφ,A,Σφ,A
ω (P−φ,A).

Definition 9.1.3 Suppose (φ,A) is bottom-part closed, is of limit type, is stable and

is directed. We say (φ,A) is full if Pφ,A = Lp
Γφ,A,Σφ,A
ω (P−φ,A).

Definition 9.1.4 Suppose (φ,A) is full. We say lower part (φ,A)-covering holds
if cf(o(Pφ,A)) ≥ ω1.

Suppose now that (φ,A) is full and lower part (φ,A)-covering fails. We let Γ =
Γφ,A, P = Pφ,A and Σ = Σφ,A. Given X ∈ ℘ω1(P), we let QX be the transitive
collapse of HullP(X) and τX : QX → P be the inverse of the transitive collapse. We
let ΣX be the τX-pullback of Σ.

Definition 9.1.5 (Weakly condensing set) We say that X ∈ ℘ω1(P) is a (φ,A)-
weakly condensing set if P = HullP(X∪δP) and whenever X ⊆ Y ∈ ℘ω1(P), ΣY

is a strongly Γ-fullness preserving iteration strategy with strong branch condensation.

Let X ⊆ Y ∈ ℘ω1(P). We say that Y extends X or Y is an extension of X if

1. τX,Y � (QX |δQX ) is the iteration map via ΣX and

2. QY = HullQY1 (δQY ∪ τX,Y [QX ]).

Let δQY = τ−1
Y (δ). Let τX,Y : QX → QY be τ−1

Y ◦ τX . Let σX,−Y =
⋃
α+1<λQY π

ΣY
QY (α),∞

and σXY : QY → P be given by: for any f ∈ QX and any a ∈ (QY |δQY )<ω, and
x = τX,Y (f)(a),

σXY (a) = σX(f)(πΣY
QY ,∞(a)) = σX(f)(σX,−Y (a)).
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Definition 9.1.6 Suppose Y is an extension of a weakly condensing set X. Let
δY = δQY . We say that Y is an honest extension of X if

(a) τX = σXY ◦ τX,Y , and

(b) πΣY
QY ,∞ � (QY |δY ) = σXY � (QY |δY ).

Remark 9.1.7 X is obviously an honest extension of itself, but there are other (non-
trivial) honest extensions of X. For example, if X = X ′ ∩ P where X ′ ≺ HV

λ for
some regular λ (this will be the case for our intended X) and Y = Y ′ ∩ P for some
X ′ ≺ Y ′, then Y is an honest extension of X.

Definition 9.1.8 (Condensing set) Suppose X ∈ ℘ω1(P) is a (φ,A)-weakly con-
densing set. We say that X is a (φ,A)-condensing set if whenever Y extends X,
Y is an honest extension of X.

We expect that under many hypothesis such as PFA lower part (φ,A)-covering
fails. We also expect that under many hypothesis, failure of lower part (φ,A)-
covering implies the existence of (φ,A)-condensing sets. In the next few chapters,
we explore some specific situations where we know how to prove the existence of
(φ,A)-condensing sets.

We finish by remarking that (φ,A) depends on the specific situation we are in.
For instance, in [11], φ isolates those hod pairs that have certain extendability and
self-determining properties (see [11, Definition 3.1, 3.5, 3.8]).

We finish here by showing that below LSA, pullback strategies are unique.

Lemma 9.1.9 (Uniqueness of strategies) Suppose (φ,A,X) is such that φ is a
formula in the language of set theory, (φ,A) is full, lower part (φ,A)-covering fails
and X is a (φ,A)-condensing set. Suppose further that whenever (Q,Λ) ∈ Γφ,A, Q
is not of lsa type. Then whenever Y and Z are two honest extensions of X such that
QY = QZ, ΣY = ΣZ.

Proof. Suppose that ΣY 6= ΣZ . Let Φ = ΣY and Ψ = ΣZ . Because we can
trace disagreement of strategies to minimal disagreements, we can find a stack ~T on
Q =def QY (= QZ) according to both ΣY and ΣZ with last model R such that

(1) for some α < λR, δ(~T ) ⊆ δRα
1, R(α + 1) is of successor type, ΦR(α),~T = ΨR(α),~T

but ΦR(α+1),~T 6= ΨR(α+1),~T .

1Recall that δ(~T ) is the sup of generators of ~T
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We claim that τX,Y = τX,Z . Because both Y and Z are extensions of X, we
have that both τX,Y � (QX |δX) and τX,Z(QX |δX) are the iteration embedding ac-
cording to ΣX . Because ΣX has strong branch condensation and is strongly Γφ,A-
fullness preserving, we have that τX,Y � (QX |δX) = τX,Z � (QX |δX). Because
QX = HullQX (δX ∪ X) and X ⊆ Y ∩ Z, we have that τX,Y = τX,Z . Let then
τ =def τX,Y = τX,Z .

Next, because of the smallness assumption on hod pairs in Γφ,A, it follows from
(φ,A)-condensation of X that

(2) sup(HullR(δRα , π
~T ◦ τ [QX ])) = δRα+1.

We can now find, using the normal comparison, a normal tree U on R(α+1) accord-
ing to both ΦR(α+1),~T and ΨR(α+1),~T such that if b = ΦR(α+1),~T (U), c = ΨR(α+1),~T (U),

Rb =MU
b and Rc =MU

c then

(3) b 6= c and πUb (δRα+1) = πUc (δRα+1)
(4) letting ν = πUb (α + 1), Rb(ν) = Rc(ν) and ΦRb(ν),~T_U_{Rb} = ΨRc(ν),~T_U_{Rc}.

Let kb : Rb → P and kc : Rc → P be the realizabilty maps according to ΦRb,~T_U_{Rb}
and ΨRc,~T_U_{Rc}. Notice that it follows from (4) that kb � Rb(ν) = kc � Rc(ν).
Notice that we also have that

(5) kb � (HullRb(δRbν−1, π
U
b ◦ π

~T ◦ τ [QX ])) = kc � (HullRc(δRcν−1, π
U
c ◦ π

~T ◦ τ [QX ])).

Combining (2) and (5) we get that (recall that δ(U) = δRbν )

(6) rng(πUb ) ∩ rng(πUc ) ∩ δ(U).

Clearly (6) implies that b = c.
�

9.2 Condensing sets from elementary embeddings

The following two theorems can be proved using the proof of [11, Lemma 11.15].
First we introduce some terminology. Suppose κ is an inaccessible cardinal and
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G ⊆ Col(ω,< κ) is V -generic. Suppose (φ,A) is such that V [G] � “(φ,A) is full and
lower part (φ,A)-covering fails”.

Terminology 9.2.1 We say (φ,A) is homogenous if Pφ,A ∈ V , Σφ,A � V ∈ V and
for any (Q,Λ) ∈ Fφ,A, there is (R,Ψ) ∈ Fφ,A such that R ∈ V , Ψ � HV

κ ∈ V and
Γ(Q,Λ) ⊆ Γ(R,Ψ).

Theorem 9.2.2 Suppose N ⊆M are transitive models of set theory and j : M → N
is an elementary embedding with critical point κ. Suppose g ⊆ Coll(ω,< j(κ)) is
N-generic and h = g ∩ Coll(ω,< κ). Let j : M [h] → N [g] be the extension of j.
Suppose φ is a formula in the language of set theory and A ∈M [g]. Suppose further
that M [g] � “(φ,A) is full, (φ,A) is homogenous and lower part (φ,A)-covering
fails”. Then j[Pφ,A] is a (φ, j(A))-condensing set in N [g]. Hence, M [g] � “there is
a (φ,A)-condensing set”.

Terminology 9.2.3 We say (φ,A) is maximal if there is no hod pair or an sts
hod pair (Q,Λ) such that Q is of limit type, Λ has strong branch condensation and
is strongly Γφ,A-fullness preserving and Γ(Q,Λ) = Γφ,A.

Theorem 9.2.4 Suppose (φ,A) is maximal and full, lower part (φ,A)-covering fails
and X is a (φ,A)-condensing set. Then Pφ,A � “δPφ,A is regular”.

We will not prove Theorem 9.2.2. However, in what follows we will outline a proof
of another existence theorem, Theorem 9.2.7, that is somewhat harder to prove than
Theorem 9.2.2. Theorem 9.2.7 will be applied in situations where there are no large
cardinals (e.g. measurables) in V ; one intended application is in the construction of
models of LSA from instances of threadability in Chapter 12. There the embedding j
is replaced by a kind of uncollapse maps of some hull that is countably closed; also,
the hull is transitive past the size of the collapse forcing.

Suppose κ is a cardinal such that κω = κ. Let G ⊆ Col(ω,< κ) be V -generic.
Suppose (φ,A) is such that V [G] � “(φ,A) is full and lower part (φ,A)-covering
fails”. Working in V [G], let P− = P−φ,A, P = Pφ,A, Σ = Σφ,A, F = Fφ,A and

Γ = Γφ,A. Let δ = δP = o(P−), γ = λP and λ = max{(|Γ|++), (2κ)+}V [G]. In this
case, too, much like Terminology 9.2.1, we can define what it means to say that
(φ,A) is homogenous.

We continue by assuming that (φ,A) is homogenous. Working in V , we say
that X ≺ HV

λ is good if κ ⊂ X, |X| = κ, Xω ⊂ X and {P−,Γ,F} ⊂ X[G]. Let
πX : MX → HV

λ be the uncollapse map (πX naturally extends to MX [G] and we also
denote the extension πX). Let (ΓX ,P−X , δX ,FX ,ΣX , γX) = π−1

X (Γ,P−, δ,F ,Σ, γ).
Let
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PX = LpΣX ,Γ(P−X),

For any hod pair (Q,Λ) ∈ FX , (Q, πX(Λ)) ∈ F . For notational convenience, we
will also use Λ to denote its extension πX(Λ).

For a good X, using the embedding πX we can define a strategy Σ+
X for PX using

the construction of Definition 9.0.2. We have that Σ+
X is such that

• Σ+
X extends ΣX ;

• for any Σ+
X iterate Q of PX via stack ~T such that the iteration embedding π

~T

exists, there is an embedding σ : Q → P such that πX = σ ◦ π ~T . Furthermore,
letting Ψ = (Σ+

X)~T ,Q, for all α < λQ, ΨQ(α) has branch condensation.

• Σ+
X is Γ(PX ,Σ+

X)-fullness preserving.

We call Σ+
X the πX-pullback strategy for PX . By the theory developed above, for

any (~U ,R) ∈ I(PX ,ΣX), letting Λ = (ΣX)~U ,R, there is ( ~W ,S) ∈ I(R,Λ) such that
Λ ~W,S has branch condensation.

Terminology 9.2.5 Given a good X, we say X captures (φ,A) if PX ∈ MX ,
Σ+
X ∈ Γ, πX(PX) = P, and πX is cofinal in o(P). We say (φ,A) is captured if for

a stationary set of good X, X captures (φ,A). We call this set Sφ,A.

Below, we use the notation “∀∗X ∈ Sφ,A” to mean “∀X ∈ C∩Sφ,A for some club
C”.

Theorem 9.2.6 Suppose (φ,A) is captured. Then ∀∗X ∈ Sφ,A, X ∩ P is a weakly
condensing set.

Proof. Suppose not. Fix a good X ′ such that X ′ captures (φ,A) but X = X ′ ∩ P
is not a weakly condensing set. Note that πX � PX is cofinal in P . Let Y be
an extension of X such that (QY ,ΣY ) /∈ F (ΣY is the τY -pullback of Σ). This

means there is (R, ~T ) ∈ I(QY ,ΣY ) such that π
~T exists and a strong cut point γ

such that letting α ≤ λR be the largest such that δRα ≤ γ, then in Γ, there is a

mouse M � Lp(ΣY )~T ,R(α)(R|γ)2 such that M /∈ R. By definition, τX = τY ◦ τX,Y
(τX = π′X � PX here). We use i to denote π

~T ◦ τX,Y and k : R → P to denote the
τY -realization map in the definition of ΣY .

Let (P+
X ,ΛX) ∈ V be a ΣX-hod pair such that

2The other cases of Γ-fullness preservation are handled similarly.
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• Γ(P+
X ,ΛX) � R is not full as witnessed by M.

• ΛX ∈ Γ is Γ-fullness preserving and has branch condensation.

• λP+
X is limit and cofP

+
X (λP

+
X ) is not measurable in P+

X .

Such a pair (P+
X ,ΛX) exists by boolean comparisons. In particular, P+

X is a ΣX-hod
premouse over PX .

By arguments similar to that used in [31, Lemma 3.78], ∀∗X ′ ∈ Sφ,A, letting
X = X ′ ∩ P , no levels of P+

X projects across PX and in fact, o(PX) is a cardinal of
P+
X . The second clause follows from the following argument. Suppose not and let
NX � P+

X be least such that ρω(NX) = δX for stationary many good X ′ ∈ Sφ,A.
Fix such an X ′. Let f : κ → δX be an increasing and cofinal map in PX , where
κ = cofPX (δX). We can construe NX as a sequence g = 〈Nα | α < κ〉, where
Nα = NX ∩ δPXf(α). Note that Nα ∈ PX for each α < κ. Now let R0 = Ult0(PX , µ),

R1 = UltΓ(NX , µ), where µ ∈ PX is the (extender on the sequence of PX coding
a) measure on κ with Mitchell order 0.3 Let i0 : PX → R0, i1 : NX → R1 be the
ultrapower maps. Letting δ = δX , it’s easy to see that i0 � (δ + 1) = i1 � (δ + 1),
i0(δ) = i1(δ) = δ, and ℘(δ)R0 = ℘(δ)R1 . This means 〈i1(Nα) | α < κ〉 ∈ ℘(δ)R0 . By
fullness of PX in Γ,4 〈i1(Nα) | α < κ〉 ∈ PX . Using i0, 〈i1(Nα) | α < κ〉 ∈ PX , and
the fact that i0 � PX |δX = i1 � NX |δX ∈ PX , we can get NX ∈ PX as follows. For
any α, β < δX ,

α ∈ Nβ if and only if i0(α) ∈ i1(Nβ) = i0(Nβ).

Since PX can compute the right hand side of the equivalence, it can compute the
sequence 〈Nα | α < κ〉. Contradiction.

By the above argument, P+
X thinks PX is full. Let

τ ∗X : P+
X → P+

be the ultrapower map by the (crt(τX), δ)-extender E induced by πX . Note that τ ∗X
extends τX � PX (since τX is cofinal in P) and P+ is wellfounded since X is closed
under ω-sequences. Let

i∗ : P+
X → R+

be the ultrapower map by the (crt(i), δR)-extender induced by i. Note that R�R+

and R+ is wellfounded since there is a natural map

3The case κ is not measurable in PX is easier and we leave it to the reader.
4Any A ⊂ δ in R0 is ODΓ

Σ−X
and so by Strong Mouse Capturing (SMC), A ∈ PX .
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k∗ : R+ → P+

extending k such that τ ∗X = k∗ ◦ i∗. Without loss of generality, we may assume M’s

unique strategy ΣM ≤w ΛX . Also, let (Ṙ, ~̇T ) be the canonical Col(ω, κ)-names for

(R, ~T ). Let K be the transitive closure of HV
κ ∪ (Ṙ, ~̇T ).

LetW =MΛX ,]
ω and Λ be the unique strategy ofW . LetW∗ be a Λ-iterate ofW

below its first Woodin cardinal that makes K-generically generic. Then in W∗[K],
the derived model D(W∗[K]) satisfies

L(Γ(P+
X ,ΛX),R) � Ṙ is not full.5

So the above fact is forced over W∗[K] for Ṙ.
Let H ≺ Hλ be countable (in V ) such that all relevant objects are in H. Let

π : M → H invert the transitive collapse and for all a ∈ H, let a = π−1(a). By the
countable completeness of E, there is a map π : R+ → P+

X such that

π � P+
X = π ◦ i∗.6

Let Λ0 be the π-pullback of Λ0 and Λ1 be the π-pullback of ΛX . Note that Λ0 extends
π−1(Λ0) and Λ0 is also the i∗-pullback of Λ1; so in particular, Λ0 ≤w Λ1. We also

confuse Λ with the π-pullback of Λ. Hence Γ(P+
X ,Λ0) witnesses that R is not full

and this fact is forced over W̄∗[K̄] for the name ¯̇R. This means if we further iterate
W∗ to Y such that RV [G] can be realized as the symmetric reals over Y then in the
derived model D(Y),

L(Γ(P+
X ,Λ0)) � R is not full. (9.1)

In the above, we have used the fact that the interpretation of the UB-code of the

strategy for P+
X in Y to its derived model is Λ0 � RV [G]; this key fact is proved in [10,

Theorem 3.26] and Chapter 6.
Now we iterate R+ to S via Λ1 to realize RV [G] as the symmetric reals for the

collapse Col(ω,< δS), where δS is the sup of S’s Woodin cardinals. By the fact that
Λ0 ≤w Λ1, we get that in the derived model D(S),

R is not full as witnessed by M̄.

5This is because we can continue iteratingW∗ above the first Woodin cardinal toW∗∗ such that
letting λ be the sup of the Woodin cardinals of W∗∗, then there is a Col(ω,< λ)-generic h such
that RV [G] is the symmetric reals for W∗∗[h]. And in W∗∗(RV [G]), the derived model satisfies that
L(Γ(P+

X ,ΛX)) � R is not full.
6This is because i∗ ◦ π̄ = π � R+ (by countable completeness of E) and i∗ ◦π � P+

X = π � R̄+ ◦ i∗.
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So ΣM̄ is ODΣR
in D(S) and hence M∈ R. This contradicts internal fullness of R

in R+.
�

The main theorem of this chapter is.

Theorem 9.2.7 Suppose (φ,A) is captured. Then ∀∗X ′ ∈ Sφ,A, X ′ ∩ P is a con-
densing set.

Proof. To prove the theorem, we need the following definition, due to the first author
(cf. [11] or [31]). The proof is based on [31, Lemma 3.82]. For completeness, we give
a fairly detailed argument here.

Suppose X is a weakly condensing set and B ∈ PX ∩℘(δX).7 We say that τX has
B-condensation if whenever Q = QY (where Y is an extension of X) is such that
there are elementary embeddings υ : PX → Q, τ : Q → P such that Q is countable
in V [G] and τX = τ ◦ υ, then υ(TPX ,B) = TQ,τ,B, where

TPX ,B = {(φ, s) | s ∈ [δX ]<ω ∧ PX � φ[s, B]},

and

TQ,τ,B = {(φ, s) | s ∈ [δQα ]<ω for some α < λQ ∧ P � φ[π
Στ,−Q
Q(α),∞(s), τX(B)]},

where Στ
Q is the τ -pullback strategy and Στ,−

Q = ⊕α<λQΣτ
Q(α). We say τX has con-

densation if it has B-condensation for every B ∈ PX ∩ ℘(δX).
To prove that a weakly condensing set X is condensing, it is enough to prove

that τX has condensation.
Suppose for contradiction that the set T of X ′ ∈ Sφ,A such that X = X ′ ∩ P is

cofinal in P and is not a condensing set is stationary. For each X ′ ∈ T , let X = X ′∩P
(we will use this type of notations throughout this proof without mentioning again)
and AX be the .X-least such that τX fails to have AX-condensation, where .X is
the canonical well-ordering of PX . We say that a tuple {〈Pi,Qi, τi, ξi, πi, σi | i <
ω〉,M∞,Y } is a bad tuple if

1. Y ∈ T ;

2. Pi = PXi for all i, where X ′i ∈ T and Qi = QYi for Yi an extension of Xi;

3. for all i < j, Xi ≺ Yi ≺ Xj ≺ Y ;

7For the rest of this proof, whenever X is weakly condensing, we automatically assume that
X = X ′ ∩ P for some good X ′.
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4. M∞,Y be the direct limit of iterates (Q,Λ) of (PY ,ΣY ) such that Λ has branch
condensation;

5. for all i, ξi : Pi → Qi, σi : Qi →M∞,Y , τi : Pi+1 →M∞,Y , and πi : Qi → Pi+1;

6. for all i, τi = σi ◦ ξi, σi = τi+1 ◦ πi, and τXi,Xi+1
� Pi =def φi,i+1 = πi ◦ ξi;

7. φi,i+1(AXi) = AXi+1
;

8. for all i, ξi(TPi,AXi ) 6= TQi,σi,AXi .

In (8), TQi,σi,AXi is computed relative to M∞,Y , that is

TQi,σi,AXi = {(φ, s) | s ∈ [δQiα ]<ω for some α < λQi ∧M∞,Y � φ[π
Σ
σi,−
Qi
Qi(α),∞(s), τi(AXi)]}

Claim 9.2.8 There is a bad tuple.

Proof. For brevity, we first construct a bad tuple {〈Pi,Qi, τi, ξi, πi, σi | i < ω〉,P}
with P playing the role of M∞,Y . We then simply choose a sufficiently large, good
Y and let iY : PY →M∞,Y be the direct limit map, mY :M∞,Y → P be the natural
factor map, i.e. mY ◦ iY = πY . It’s easy to see that for all sufficiently large Y , the
tuple {〈Pi,Qi,m−1

Y ◦ τi,m
−1
Y ◦ ξi,m

−1
Y ◦ πi,m

−1
Y ◦ σi | i < ω〉,M∞,Y } is a bad tuple.

The key point is (6). Let A∗X = τX(AX) for all X ∈ T . By Fodor’s lemma, there
is an A∗ such that ∃∗X ∈ T A∗X = A∗.8 So there is an increasing and cofinal sequence
{Xα | α < κ+} ⊆ T such that for α < β, τXα,Xβ(AXα) = AXβ = τ−1

Xβ
(A). This easily

implies the existence of such a tuple {〈Pi,Qi, τi, ξi, πi, σi | i < ω〉,P}. �

Fix a bad tuple A = {〈Pi,Qi, τi, ξi, πi, σi | i < ω〉,M∞,Y }. Let (P+
0 ,Π) be a (g-

organized) Σ−P0
-hod pair (cf. [20]) such that

Γ(P+
0 ,Π) � A is a bad tuple.

We may also assume (P+
0 ,Π � V ) ∈ V , λP

+
0 is limit of nonmeasurable cofinality in

P+
0 and there is some α < λP

+
0 such that ΣY ≤w ΠP+

0 (α). This type of reflection is

possible because we replace H+ by M∞,Y . Let W =M],ΣY ,Π,⊕n<ωΣXn
ω and Λ be the

unique strategy of W . If Z is the result of iterating W via Λ to make RV [G] generic,
then letting h be Z-generic for the Levy collapse of the sup of Z’s Woodin cardinals
to ω such that RV [G] is the symmetric reals of Z[h], then in Z(RV [G]),

8“∃∗X ∈ T” means “stationarily many X ∈ T”.
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Γ(P+
0 ,Π) � A is a bad tuple.

Now we define by induction ξ+
i : P+

i → Q+
i , π+

i : Q+
i → P+

i+1, φ+
i,i+1 : P+

i →
P+
i+1 as follows. φ+

0,1 : P+
0 → P+

1 is the ultrapower map by the (crt(πX0,X1),ΘX1)-
extender derived from πX0,X1 . Note that φ+

0,1 extends φ0,1. Let ξ+
0 : P+

0 → Q+
0

extend ξ0 be the ultrapower map by the (crt(ξ0), δQ0)-extender derived from ξ0.
Finally let π+

0 = (φ+
0,1)−1 ◦ ξ+

0 . The maps ξ+
i , π

+
i , φ

+
i,i+1 are defined similarly. Let also

MY = Ult(P+
0 , E), where E is the (λX ,ΘY )-extender derived from πX,Y . There are

maps ε2i : P+
i → MY , ε2i+1 : Q+

i → MY for all i such that ε2i = ε2i+1 ◦ ξ+
i and

ε2i+1 = ε2i+2 ◦ π+
i . When i = 0, ε0 is simply iE. Letting Σi = Σ−Pi and Ψ = Σ−Qi ,

Ai = AXi , there is a finite sequence of ordinals t and a formula θ(u, v) such that in
Γ(P+

0 ,Π)

9. for every i < ω, (φ, s) ∈ TPi,Ai ⇔ θ[πΣi
Pi(α),∞, t], where α is least such that

s ∈ [δPiα ]<ω;

10. for every i, there is (φi, si) ∈ TQi,ξi(Ai) such that ¬θ[πΨi
Qi(α)(si), t] where α is

least such that si ∈ [δQiα ]<ω.

The pair (θ, t) essentially defines a Wadge-initial segment of Γ(P+
0 ,Π) that can define

the pair (M∞,Y , A
∗), where τi(Ai) = A∗ for some (any) i.

Now let X ≺ Hλ be countable that contains all relevant objects and π : M → X
invert the transitive collapse. For a ∈ X, let a = π−1(a). By countable completeness
of the extender E, there is a map π∗ : MY → P0 such that π �MY = ε0 ◦ π∗. Let
Πi be the π∗ ◦ εi-pullback of Π. Note that in V [G], ΣY ≤w Π0 ≤w Π1 · · · ≤w Ππ∗ .

Let Ȧ ∈ (Hκ̄)
M be the canonical name for Ā. It’s easy to see (using the as-

sumption on W) that if W∗ is a result of iterating W̄ via Λ̄ (we confuse Λ̄ with the
π-pullback of Λ; they coincide on M) in M below the first Woodin of W̄ to make
H-generically generic, where H is the transitive closure of HM

ω2
∪ Ȧ, then in W∗[H],

the derived model of W∗[H] at the sup of W∗’s Woodin cardinals satisfies:

L(P̄0,R) � Ȧ is a bad tuple.

Now we stretch this fact out to V [G] by iterating W∗ to W∗∗ to make RV [G]-
generic. In W∗∗(RV [G]), letting i :W∗ →W∗∗ be the iteration map then

Γ(P̄0
+
, Π̄) � i(Ā)9 is a bad tuple.

9We abuse the notation slightly here. Technically, Ā is not in W∗ but W∗ has a canonical name
Ȧ for Ā. Hence by i(Ā), we mean the interpretation of i(Ȧ).
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By a similar argument as in [30, Theorem 3.1.25], we can use the strategies

Πi
+

’s to simultanously execute a RV [G]-genericity iterations. The last branch of the

iteration tree is wellfounded. The process yields a sequence of models 〈P+
i,ω,Q+

i,ω | i <
ω〉 and maps ξ+

i,ω : P+
i,ω → Q+

i,ω, π+
i,ω : Q+

i,ω → P+
i+1,ω, and φ+

i,i+1,ω = π+
i,ω ◦ π+

i,ω.

Furthermore, each P+
i,ω,Q+

i,ω embeds into a Ππ∗-iterate of MY and hence the direct

limit P∞ of (P+
i,ω,Q+

j,ω | i, j < ω) under maps π+
i,ω’s and ξ+

i,ω’s is wellfounded. We

note that P+
i,ω is a (g-organized) Σπ

i -premouse and Q+
i,ω is a gΨπ

i -premouse because

the genericity iterations are above Pi and Qi for all i and by [10, Theorem 3.26], the
interpretation of the strategy of P̄i (Q̄i respectively) in the derived model of P̄+

i,ω (P̄+
i,ω,

respectively) is (g-organized) Σπ
i (Ψπ

i , respectively). Let Ci be the derived model of

P+
i,ω, Di be the derived model of Q+

i,ω (at the sup of the Woodin cardinals of each

model), then RV [G] = RCi = RDi . Furthermore, Ci∩℘(R) ⊆ Di∩℘(R) ⊆ Ci+1∩℘(R)
for all i.

(9), (10) and the construction above give us that there is a t ∈ [OR]<ω, a formula
θ(u, v) such that

11. for each i, in Ci, for every (φ, s) such that s ∈ δPi , (φ, s) ∈ TPi,Ai ⇔ θ[πΣi
Pi(α),∞(s), t]

where α is least such that s ∈ [δPiα ]<ω.

Let n be such that for all i ≥ n, ξ+
i,ω(t) = t. Such an n exists because the direct limit

P∞ is wellfounded as we can arrange that P∞ is embeddable into a Ππ∗-iterate of

M̄Y . By elementarity of ξ+
i,ω and the fact that ξ+

i,ω � Pi = ξi,

12. for all i ≥ n, in Di, for every (φ, s) such that s ∈ δQi , (φ, s) ∈ TQi,ξi(Ai) ⇔
θ[πΨi
Qi(α),∞(s), t] where α is least such that s ∈ [δQiα ]<ω.

However, using (10), we get

13. for every i, in Di, there is a formula φi and some si ∈ [δQi ]<ω such that

(φi, si) ∈ TQi,ξi(Ai) but ¬φ[πΨi
Qi(α),∞(si), t] where α is least such that s ∈ [δQiα ]<ω.

Clearly (12) and (13) give us a contradiction. This completes the proof of the lemma.
�

The following is a useful corollary of the proof of the previous theorem. We will
apply this corollary in many applications later.

Corollary 9.2.9 Suppose Y ≺ Z are honest extensions of a (φ,A)-condensing set
X. Suppose B ∈ ℘(δP) ∩ P and B is in the range of τY , τZ. Let a ∈ (δQY )<ω. Then
πΣY
QY ,∞(a) ∈ B if and only if πΣZ

QZ ,∞(τY,Z(a)) ∈ B.
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9.3 Condensing sets in models of AD+

Thus far we have build condensing sets while working in models of ZFC. In this
section, we prove their existence in models of AD+. The material presented in this
section will be used in the proof of generation of pointclasses (see Theorem 10.1.1).
Throughout this section we assume AD+ + V = L(℘(R)). Recall the notation
Γ1 Emouse Γ2 (see [10, Page 82] or Section 5.3).

Suppose Γ is a mouse full pointclass (Definition 5.3.2) such that:

(∗)Γ there is a good pointclass Γ∗ containing Γ and there is a sequence (Γα : α < Ω)
with the property that

1. Ω is a limit ordinal,

2. Γα /mouse Γ,

3. for α < β < Ω, Γα /mouse Γβ,

4. there is no completely mouse-full pointclass Ψ /mouse Γ such that for some α,
Γα /mouse Ψ /mouse Γα+1,

5. if α < Ω is a limit ordinal then Γα =
⋃
β<α Γβ,

6. Γ =
⋃
α<Ω Γα.

Recall the definitions of HP Γ and MiceΓ (see Notation 4.1.4). Let F = {(P ,Σ) ∈
HP Γ : Σ is strongly Γ-fullness preserving and has strong branch condensation}. We
then let M− =

⋃
(P,Σ)∈FM∞(P ,Σ). It follows from AD+ theory that if (P ,Σ) ∈ F

then Σ can be extended to a (Θ,Θ,Θ)-iteration strategy. To see this, consider HODΣ

and use generic interpretability (see Theorem 5.2.5) along with the fact that if ~T is
a stack on P coded as a set of reals then it can be added to HODΣ generically. In
what follows, we assume that if (P ,Σ) ∈ F then Σ is a (Θ,Θ,Θ)-iteration strategy.

Given α < λM
−

, we let Σα be the strategy of M−(α) such that whenever
(P ,Σ) ∈ F is such that M∞(P ,Σ) = M−(α) then ΣM−(α) = Σα. Next we let

Lp
Γ,⊕

α<λM−
Σα(M−) be the stack of all sound ⊕α<λM−Σα-premice N over M− such

that ρ(N ) ≤ o(M−) and whenever π : S → N is elementary and S is countable then
S, as a ⊕α<λπ−1(M−)Σπ

π(α)-mouse, has an ω1-iteration strategy in Γ. Finally, if there

is N E Lp
Γ,⊕

α<λM−
Σα(M−) such that ρ(N ) < o(M−) then let M be the least such

N and otherwise let M = Lp
Γ,⊕

α<λM−
Σα

ω (M−).
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We let φ(U, V ) be the formula that expresses the fact that U is a mouse full
pointclass such that (∗)U holds and V is a hod pair (Q,Λ) such that Code(Λ) ∈ U
and Λ has strong branch condensation and is strongly U -fullness preserving.

Theorem 9.3.1 One of the following holds.

1. There is a hod pair (P ,Σ) such that Σ has strong branch condensation and is
strongly Γ-fullness preserving, and Γ(P ,Σ) = Γ (i.e., (φ,Γ) is not maximal).

2. M = Lp
Γ,⊕

α<λM−
Σα(M−), lower part (φ,Γ)-covering fails and there is a (φ,Γ)-

condensing set X ∈ ℘ω1(M).

Proof. Towards a contradiction assume that both clauses are false. We drop (φ,Γ)
from our terminology. Let A0 ⊆ R be such that w(A0) = Γ. We enlarge the set
HP Γ. Let HP be the set of hod pairs in HP Γ and also the pairs (P ,Σ) such that
for some limit ordinal λ there is a sequence of hod pairs ((Pα,Σα) : α < λ) with the
property that

1. for all α < λ, (Pα,Σα) ∈ HP Γ,

2. for α < β < λ, Pα /hod Pβ and Σα = (Σβ)Pα , and

3. P|δP =
⋃
α<λPα and Σ = ⊕α<λΣα.

We also change MiceΓ. Let Mice be the sets in MiceΓ and also triples (a,Σ,M)
such that if MΣ is the structure Σ iterates then (MΣ,Σ) ∈ HP , a ∈ HC andM is a
Σ-mouse over a. Let (A0)Γ be the set of reals σ that code a pair 〈σl, σr〉 of continuous
functions such that σ−1

l [A0] is a code for a set in (Q,Λ) ∈ HP and σ−1
r [A0] is a code

for a triple (a,M,Ψ) such that (a,Λ,M) ∈ Mice and Ψ is the unique strategy of
M. Let A1 = (A0)Γ.

For each pair (P ,Σ) ∈ HP , there is a sjs 〈Bi : i < ω〉 such that MiceΓ
Σ = B0 and

for every i < ω, Bi ∈ Γ. We then let A2 be the set of reals (σl, σr) such that

1. σ−1
l [A0] codes a hod pair or an sts hod pair (P ,Σ) such that Code(Σ) ∈ Γ and

Σ has strong branch condensation and is strongly Γ-fullness preserving,

2. σ−1
r [A0] codes a sjs 〈Bi : i < ω〉 such that Bi ∈ Γ for all i and MiceΓ

Σ = B0.

Finally let A3 be the set of reals σ such that σ−1
l [A0] is a code for a set (Q,Λ) ∈

HP and σr is a real coding a pair of reals (u, v) such that v codes LpΓ,Λ(u)
Let Γ0 <w Γ1 be a two good pointclasses such that for each i < 4, Ai ∈ ∆Γ0 and

sets that are projective in a universal Γ0 set are contained in ∆∼ Γ1 . Let F0, (N0,Φ0)



9.3. CONDENSING SETS IN MODELS OF AD+ 195

and F1, (N1,Φ1) be as in Theorem 4.1.6 for Γ0 and Γ1 respectively. Let x ∈ dom(F0)
be such that if F0(x) = (N ,M, δ,Ψ) then (N , δ,Ψ) Suslin, co-Suslin captures⊕i<4Ai.
Let y ∈ dom(F1) be such that if F1(y) = (N ∗y ,My, δy,Σy) then (N ∗y , δy,Σy) Suslin,

co-Suslin captures Code(Ψ∗) where Ψ∗ is the ω1-strategy of M#,Ψ
2 (and hence, also

Suslin co-Suslin captures ⊕i<4Ai).
Let κ be the least < δy-strong cardinal of N ∗y . Let g ⊆ Coll(ω,< κ) be N ∗y -

generic. Let Ag2 = A2 ∩ N ∗y [g]. Let ψ(u, v) be a formula such that N ∗y � ψ[Ag2, v] if
and only if v is a hod pair (Q,Λ) ∈ N ∗y [g] such that Λ is an (ω2, ω2, ω2)-strategy in

N ∗y [g] and there is σ ∈ Ag2 such that N ∗y [g] � σ−1
l [A0] = Code(Λ � HCN

∗
y [g]).

Given (Q,Λ) ∈ Fψ,Ag2 and σ ∈ Ag2, we let Λσ be the iteration strategy of Q coded

by σ−1
l [A0]. Notice that (Q,Λσ) ∈ F and (Q,Λ) is independent of σ (this later claim

is a consequence of the fact that A2 is Suslin, co-Suslin captured by (N ∗y , δy,Σy)).
We then abuse our notation and let Λ also stand for Λσ. Notice that if h is any
< δy-generic over N ∗y [g] then

Code(Λ) ∩N ∗y [g ∗ h] = (σ−1
l [A0])N

∗
y [g∗h].

We clearly have that (ψ,Ag2) is lower part closed. Examining the definition of A2, it
is also clear that (ψ,Ag2) is stable. The next claim shows that it is directed.

Claim 1. N ∗y [g] � “(ψ,Ag2) is directed”.

Proof. Fix (Q0,Λ0), (Q1,Λ1) ∈ Fφ,Ag2 . Fix for i < 2, σi ∈ N ∗y [g] such that for

each i < 2, N ∗y [g] � (σi)
−1
l [A0] = Code(Λi).

We now compare (Qi,Λi) with the hod pair construction of N ∗y . It follows from
Theorem 4.6.10 that for each i < 2,Qi iterates, via Λi, to some modelQ+

i in the afore-
mentioned hod pair construction such that (Λi)Q+

i
is the strategy Qi inherits from

the background construction. Let νi < κ be such that Qi, σi ∈ N ∗y [g ∩ Coll(ω, νi)],
and let gi = g ∩ Coll(ω, νi). To complete the proof it is enough to show that

(1) for each i, (Q+
i , (Λi)Q+

i
) appears in the Γ-hod pair construction of N ∗y |κ[gi] in

which all extenders used have critical point > max(ν0, ν1).

Suppose (1) fails. Let η ∈ (κ, δy) be such that (Q+
i ,Λi) appears in the Γ-hod pair

construction of N ∗y |η[gi]. Let then E ∈ ~EN
∗
y be such that crit(E) = κ and νE > νi.

It follows that in Ult(N ∗y , E)[gi], (Q+
i ,Λi) appears in the Γ-hod pair construction of

(Ult(N ∗y , E)|πE(κ))[gi]. Using elementarity we get a contradiction. �

Working in N ∗y , let P− = P−
ψ,Ag2

. Our next claim implies that (ψ,Ag2) is of limit
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type.

Claim 2. λP
−

is a limit ordinal.

Proof. Suppose not. It follows that there is (Q,Λ) ∈ Fg such that P− =M∞(Q,Λ).
Let σ ∈ RN ∗y [g] be such that Code(Λ) = (σ−1

l [A0])N
∗
y [g]. Let ν < κ be a cutpoint

cardinal of N ∗y such that Q, σ ∈ N ∗y |ν[g]. It follows from the proof of (1) above that
the Γ-hod pair construction of N ∗y |κ in which extenders used have critical point > ν
reaches a pair (R,Φ) such that R is a Λ-iterate of Q and Φ = ΛR.

Because of our condition on Γ (namely that Ω is a limit ordinal) there is α+1 < Ω
such that Γα = Γ(Q,Λ). It follows that the Γ-hod pair construction of N ∗y using
extenders with critical point > ν reaches (S,∆) ∈ F such that Γ(S,∆) = Γα+1. It
follows from the proof of (1) above that the Γ-hod pair construction of N ∗y |κ in which
extenders used have critical point > ν reaches such a pair (S,∆). It is now enough
to show that there is τ ∈ RN ∗y [g] such that Code(∆) = τ−1

l [A0]. Let ν1 ∈ (ν, κ) be an
N ∗y -cutpoint cardinal such that S ∈ N ∗y |ν1.

Let η ∈ (ν1, κ) be the least N ∗y -cardinal such thatM#,Ψ
1 (N ∗y |η) � “η is a Woodin

cardinal”. Let N1 be the output of J ~E,Ψ construction of N ∗y |η done using extenders
with critical points > ν1. We now compare (S,∆) with the Γ-hod pair construction
of N1. Notice that all extenders of N1 have critical points > ν1. Let S1 be the output
of the aforementioned Γ-hod pair construction.

We claim that some proper initial segment of S1 is a ∆-iterate of S. Suppose
not. Let τ ∈ R be such that Code(∆) = (τ)−1

l [A0]. Let z ∈ dom(F1) be such that
y, τ <T z. Let F1(z) = (N ∗z ,Mz, δz,Σz).

Working in N ∗z , let η1 be the least N ∗z -cardinal such that M#,Ψ
1 (N ∗z |η1) � “η1

is a Woodin cardinal”. Let N ∗ be the output of the fully backgrounded J ~E,Ψ-
construction of N ∗z |η1 done over N ∗y |ν1. Comparing N ∗y with the construction pro-
ducing N ∗ we get a tree T on N ∗y according to Σy such that T is based on N ∗y |η and
if T − is T without its last branch then M(T −) = N ∗|η1.

We now have thatM#,Ψ
1 (N ∗|η1[τ ]) � “η1 is a Woodin cardinal” (this can be shown

by considering S-constructions). Yet, by elementarity (S,∆) wins the comparison
against the Γ-hod pair construction of N ∗|η1, contradicting universality of the latter.
This contradiction implies that some initial segment of S1 is a ∆-iterate of S. Let
S2 be this initial segment.

We now show that there is a real q ∈ RN ∗y [g] such that Code(∆S2) = q−1
l [A0]. Fix

r ∈ V such that Code(∆S2) = τ−1
l [A0]. Let ξ be a cutpoint ofN1 such that S2 ∈ N1|ξ.

Let N+
1 =M#,Ψ

1 (N1|η) and let Ψ+ be the strategy of N+
1 . Let π : N+

1 → N2 be an
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iteration of N+
1 via Ψ+ such that τ is generic over N+

1 for the extender algebra at
π(η). Let δ be the second Woodin cardinal in N+

1 (so δ > η). We now have that

(2) for every h ⊆ Coll(ω, π(δ)) that is N2[τ ]-generic, N2[τ ][h] � “Code(∆S2) =
τ−1
l [A0]”.

It follows from elementarily of π that

(3) N+
1 � “it is forced by Coll(ω, η) that there is a real s such that in any fur-

ther Coll(ω, δ)-generic extension Code(∆S2) = s−1
l [A0]”.

Because N+
1 is countable in N ∗y [g], by absoluteness, we can fix q ∈ RN ∗y [g] such

that

(4) q is generic over N+
1 for Coll(ω, η) and whenever h ⊆ Coll(ω, δ) is N+

1 [q]-generic,
N+

1 [q][h[� “Code(∆S2) = q−1
l [A0]”.

Now δ is a Woodin cardinal in N+
1 [q]. It follows from genericity iterations that

Code(∆S2) = q−1
l [A0].

This finishes the proof of Claim 2. �

Our discussion before Claim 1, Claim 1 and Claim 2 show that (ψ,Ag2) is lower
part closed, is of limit type, is stable and is directed. We now work in N ∗y [g]. Let

1. Σ = Σψ,Ag2
(see clause 2 of Notation 9.1.2) and

2. P = Pψ,Ag2 .

Notice that if h is Coll(ω,RN ∗y [g])-generic over N ∗y [g] and z is the real coding A2 ∩
RN ∗y [g] then z also codes a real τ such that Code(Σ) = τ−1

l [A0].

Claim 3. Code(Σ) ∈ Γ.

Proof. Towards a contradiction assume not. Suppose that for some α, ρ(Jα[P−]) <
o(P−). Let then S = Jα[P−] where α is the least such. If there is no such α then
let S =M+[P−].

Suppose now that S � “cf(δS) is not a measurable cardinal”. It then follows that
Γ(S,Σ) = Γ, contradicting that clause 1 of our theorem fails. Suppose S � “cf(δS)
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is a measurable cardinal”. Let E ∈ ~ES be the Mitchell order 0 extender in S such
that crit(E) = cfS(δS). Notice that Code(Σ) ≤w Ult(S, E)(λS); this implies that
if S∗ = Ult(S, E)(λS) and Σ∗ = ⊕α<λSΣS∗(α) then Γ(S∗,Σ∗) = Γ. This is again a
contradiction, as we now have that clause 1 of our theorem holds. �

Since Γ 6= ℘(R) is a mouse full pointclass, there is a C ⊆ R such that Γ1 ∈
L(C,R). We then have that L(C,R) � DC. Work in W = L(C,R) and let G ⊆
Coll(ω1,R) be W -generic. Notice that W [G] � ZFC. Let ((Qα,Λα) : α < ω1) be an
enumeration of F and (zα : α < ω1) be an enumeration of R. In W [G], choose a
sequence (yα : α < ω1) of reals such that

1. y0 = y,

2. for all α < ω1, letting F1(yα) = (N ∗yα ,Myα , δyα ,Σyα), (zβ : β ≤ α) ∈ N ∗yα and
⊕β≤αΛα is Suslin, co-Suslin captured by (N ∗yα , δyα ,Σyα), and

3. for α < β, (N ∗yα : α < β) ∈ HCN
∗
yβ .

We now construct a sequence of Φ1-mice (Mα,Nα : Nα /Mα ∧ α < ω1) and a
sequence of commuting embedding πα,β :Mα →Mβ such that πα,β(Nα) = Nβ and if
κα = crit(πα,β) then Nα =Mα|κα. For α > 0 we will have thatMα is the output of
a fully backgrounded construction of N ∗yα relative to Φ1 and also that Nα EMα. We
then let ∆α be the strategy ofMα induced by Σyα . LetM0 = N ∗y0

and N0 =M0|κ.

Given Mα and Nα, let Mα+1 = (J ~E,Φ1 [Nα])N
∗
yα . Let πα,α+1 :Mα →Mα+1 be the

iteration embedding according to ∆α. Let κα+1 be the least δyα+1-strong cardinal of
Mα+1 and let Nα+1 = πα,α+1(Nα) =Mα,α+1|κα+1.

Suppose now that we have constructed a sequence (Mα,Nα : Nα /Mα ∧ α < λ)
and a sequence of commuting embedding πα,β : Mα → Mβ for α < β < λ. Let
M∗

λ be the direct limit of Mα under πα,β. Let π∗α,λ :Mα →M∗
λ be the embedding

given by the direct limit construction. Let then Nλ = π0,λ(N0) and let Mλ be the

output of J ~E,Φ1 [Nλ] construction of N ∗yλ done over Nλ. Letting k : M∗
λ → Mλ be

the iteration embedding according to (Σy)M∗λ , we set πα,λ = k ◦ π∗α,λ.
Finally letMω1 be the direct limit ofMα under πα,β and let πα,ω1 :Mα →Mω1

be the direct limit embedding. Let P∞ = π0,ω1(P) and P−∞ = π0,ω1(P−).

Claim 4. Fix α < ω1 and let h ⊆ Coll(ω,< κα) be N ∗yα-generic. Then π0,α(P) =

(Pψ,Ah2 )N
∗
yα

[h] and ∆α = (Σψ,Ah2
)N
∗
yα

[h] where Ah2 = A2 ∩N ∗yα [h].
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We leave the proof of Claim 4 to the reader. To prove it use the proof of (1)
and show that given (Q,Λ) ∈ Fφ,Ah2 , some Γ-hod pair construction of Mα reaches a

Λ-iterate of Q. We let Pα = π0,α(Pα), P−α = π0,α(P−) and Σα = π0,α(Σ).

Claim 5. P∞ =M.

Proof. Notice that

(5) for α < β < ω1 and for ξ < λPα , πα,β � Pα(ξ) is the iteration embedding
according to (Σα)Pα(ξ), and
(6) if α < ω1 and Q is a (Σα)Pα(ξ)-iterate of Pα(ξ) then there is β < ω1 such that
Pβ(πα,β(ξ)) is a (Σα)Q-iterate of Q.

To see (6), let β be large enough such that (Qβ,Λβ) = (Q, (Σα)Q). It then fol-
lows that Pβ(πα,β(ξ)) is a (Σα)Q-iterate of Q. It follows from (5) and (6) that
P∞|δM =M|δM.

If ρ(P∞) < o(P−∞) then we must have that P∞ = M. Suppose then ρ(P∞) >
o(P−∞). Clearly P∞ E LpΓ,Σ

ω (M−). Suppose then P∞ / LpΓ,Σ(M−). By a stan-
dard Skolem hull argument, it follows that for some α < ω1, Pα / LpΓ,Σα(π0,α(P−)).
However, because ρ(P∞) > o(P−∞), N ∗yα � “Pα = LpΓ,Σα(π0,α(P−))”, contradiction.
�

Claim 6. ρ(M) > o(M−).

Proof. Assume ρ(M) < o(M−) (it follows from the definition of M that equal-
ity is impossible). Using Definition 9.0.2, we can construct an iteration strategy Σ+

extending Σ such that Σ+ is the π0,ω1-realizable strategy. We have Σ+ is strongly
Γ(P ,Σ+)-fullness preserving (see Theorem 5.4.6). It follows from Theorem 5.4.6 that
Σ+ has (lower-level?) strong branch condensation. Because Σ+ is π0,ω1-realizable, we
have that Γ(P ,Σ+) ⊆ Γ. Because clause 1 fails, we must have that Γ(P ,Σ+) <w Γ.
Because Σ is strongly Γ-fullness preserving, we can finish by using the argument
given on page 143 of [10].

The argument proceeds by considering the set G of all hod pairs (S,Φ) such
that Γ(S,Φ) = Γ(P ,Σ+) and Φ has strong branch condensation and is strongly
Γ(S,Φ)-fullness preserving. Let ν = supπΣ+

P,∞[P ]. We have that ρ(M∞(P ,Σ+)) < ν.
However, because for any (S,Φ) ∈ G, M∞(S,Φ) = M∞(P ,Σ+), we have that if

(Q,Λ) ∈ F is such that (P ,Σ+) ∈ L(Λ,R) then V HODL(Λ,R)

ν ⊆ M∞(P ,Σ+)|ν. We
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leave the details to the reader. �

Suppose then P = LpΓ,Λ
ω (P−).

Claim 7. N ∗y � |P| = κ.

Proof. Recall the real z introduced before the statement of Claim 3. We have
that z ∈ N ∗y [g][h] where h is Coll(ω,RN ∗y [g])-generic and z codes Ag2. It then also

follows that z codes a real τ such that Code(Σ) = τ−1
l [A0]. Because (N ∗y , δy,Σy)

Suslin, co-Suslin capture A3, it follows that there is a real u ∈ N ∗y [g][h] that codes
P . �

Notice that Claim 7 implies that lower part (φ,Γ)-covering fails as it implies that
cf(o(P∞)) = ω.

It follows from Theorem 9.2.7 that X =def π0,1[P ] ∈ ℘(P1) ∩M1 is such that

(7) for any M1[g]-generic h ⊆ Coll(ω,< κ1), M1[g ∗ h] � “X is countable and
is a (ψ,Ag∗h2 )-condensing set” where Ag∗h2 = A2 ∩M1[g ∗ h].

It follows from Claim 7 that

(8) for every α ∈ [1, ω1) and for everyMyα [g]-generic h ⊆ Coll(ω,< κα),Myα [g∗h] �
“π1,α[X] is a (ψ,Ag∗h2 )-condensing set” where Ag∗h2 = A2 ∩Mα[g ∗ h].

We claim that X+ = π1,ω1 [X] is a condensing set in W . Notice that X+ is count-
able in W [G] and hence, it follows from ω-completeness of Coll(ω1,R) and DC that
X+ is in W . To prove that X+ is a condensing set in W we need to show that (8)
holds for N ∗yα , not just Myα .

Claim 8. For every α ∈ [1, ω1) and for every N ∗yα [g]-generic h ⊆ Coll(ω,< κα),

Nyα [g ∗ h] � “π1,α[X] is a (ψ,Ag∗h2 )-condensing set” where Ag∗h2 = A2 ∩Nα[g ∗ h].

Proof. We give the proof for α = 1 and leave the rest to the reader. Let h ⊆
Coll(ω,< κ1) be N ∗y1

[g]-generic and let Y ⊆ P1 be an extension of X. In what
follows we will use the notation used to defining condensing sets all localized to N ∗y1

.
Thus, ΣY ∈ N ∗y1

is the τY -pullback of π0,1(Σ). However, we will also confuse ΣY and
π0,1(Σ) with their canonical extensions that act on all stacks.
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First we need to show that

(9) ΣY is a strongly Γ-fullness preserving iteration strategy.

The proof follows the steps of Lemma 9.2.6. Recall that in that proof the key step
is to find a universal model extending P such that π0,ω1 acts on it. Here, we describe
how to find this universal model and leave the rest, which is just like the proof of
Lemma 9.2.6, to the reader. To simplify, we only show that if Q−Y = τ−1

Y (P−1 ) then
QY = LpΓ,ΣY

ω (Q−Y ). The rest of the proof is very similar.

Suppose then that QY / LpΓ,ΣY
ω (Q−Y ) and let S / LpΓ,ΣY

ω (Q−Y ) be the least such
that ρ(S) = Q−Y and S 6E QY . Let (R,Λ) ∈ HP Γ be such that λR is a limit ordinal
and L(Γ(R,Λ),R) � “S, as a ΣY -mouse, has an iteration strategy. Let α < ω1 be
such that Code(Λ) is Suslin, co-Suslin captured by (N ∗yα , δyα ,Σyα).

Let W∗ be the output of J ~E,Φ1,Σ-construction of N ∗y done using extenders with

critical point > κ. Let W∗∗ be the output of ~E ,⊕∞,±-construction of N ∗yα done
using extenders with critical point > κα. Notice that it follows that o(W∗) = δy and
o(W∗∗) = δyα . We now compare the construction producingW∗ and the construction
producing W∗∗. The comparison produces a tree T on N ∗y of limit length such that
T ∈ N ∗yα and if b = Σy(T ) then πTβ (W∗) =W∗∗.

Let W be the Γ-hod pair construction of W∗∗ done over P and relative to Σ. It
follows from Theorem 4.6.8 some model of the hod pair construction of W reaches a
Λ-iterate of R. It then follows that for some α < λW , if Φ∗ is the strategy of W(α)
induced by Σyα then S, as a ΣY -mouse, has an iteration strategy in L(Γ(W(α),Φ∗)).
W(α) is our universal model but we cannot yet apply π0,1 to it. To do this, let
U = π0,1T . Let b = Σy(T ). The copying construction produces σ :MT

b →MU
b such

that πUb ◦ π0,1 = σ ◦ πTb . Moreover, crit(σ) > κ.

It then follows that σ(W(α)) is a hod premouse over P1 relative to π0,1(Σ).
Moreover, Φ∗ is the σ-pullback of the strategy of σ(W(α)) induced by (Σy1)MUb . It

now follows that we can lift πX,Y to Wα and obtain π+
X,Y : W(α) → W∗∗∗ and

τ+
Y : W∗∗∗ → σ(W(α)). The rest of the proof follows very closely to the proof of

Lemma 9.2.6.

Next, we need to show that Y is such that πX,Y � P− is the iteration embedding
according to Σ then π0,1 = σXY ◦ πX,Y . It follows from the proof of (1) that there
is (R,Λ) ∈ (Fφ,Ag∗h2

)M1[g∗h] such that X ∪ Y ⊆ πΛ
R,P1

and if Z = πΛ
R,P1

[R|δR] and

k = (πΛ
R,P1

)−1 ◦ τY , then both k � Q−Y and πX,Z � P− are the iteration embeddings
according to ΣY and Σ respectively. It follows from (8) that
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(10) π0,1 = σXZ ◦ πX,Z

Notice that σXZ = πΛ
R,P1

. We then have that

π0,1 = σXZ ◦ πX,Z = σXZ ◦ k ◦ πX,Y .

Notice now that σXZ ◦ k = σXY . We then have that π0,1 = σXY ◦ πX,Y . This finishes the
proof of the claim. �

We now show that X+ is a condensing set. We omit the proof that X+ is a
weakly condensing set and move directly to verifying the clauses of Definition 9.1.8.
This is because both proofs are very similar.

Let Y ∈ ℘ω1(P∞|δP∞) ∩W be an honest extension of X+. Let α < ω1 be large
enough so that Y ⊆ rng(πΛα

Qα,∞) and for some β ≤ α, zβ codes some Y ∗ ⊆ Qα
such that Y = πΛα

Qα,∞[Y ∗]. It now follows that Ȳ = π−1
α,ω1

[Y ] ∈ N ∗yα . Indeed, Ȳ =

πΛα
Qα,Pα [Y ∗] (this follows from (6)).

Let τY : QY → P∞ be the inverse of the collapse of HullP∞(X+ ∪ Y ) and
let τȲ : QȲ → Pα be the inverse of the collapse of HullPα(π0,α[X] ∪ Ȳ ). Let
πX+,Y = (τY )−1 ◦ τX+ and let πX,Ȳ = (τȲ )−1 ◦ (τπ1,α[X])

N ∗yα . We then have that

(11) QY = QȲ , πX+,Y = πX,Ȳ , τY = πα,ω1 ◦ τȲ and π0,α = τȲ ◦ πX,Ȳ .

Suppose then πX,Y � P|δP is the iteration embedding according to Σ. Let ΣY be
the πY -pullback of Σφ,Γ. Notice that it follows from (6) that

(12) π0,ω1(Σ) = Σφ,Γ.

Let σX
+

Y : QY → P∞ be given by σX
+

Y (u) = πX(f)(πΣY
QY (β),∞(a)) where u ∈ QY ,

f ∈ P , β < λQY and a ∈ QY (β)<ω are such that u = πX,Y (f)(a). We want to show
that

(13) τX+ =def π0,ω1 � P = σX
+

Y ◦ πX+,Y .

We define σX
Ȳ

and ΣȲ similarly. It follows from(11) and (12) that

(14) ΣY = ΣȲ and σX
+

Y = πα,ω1 ◦ σXȲ .
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It follows from Claim 8 that

(15) π0,α � P = σX
Ȳ
◦ πX,Ȳ .

Combining (14) and (15) we get that π0,ω1 � P = σXY ◦ τY . This finishes the proof of
Theorem 9.3.1. �
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Chapter 10

Applications

10.1 The generation of the mouse full pointclasses

In this section, our goal is to show that under Strong Mouse Capturing (SMC) if Γ
is a mouse full pointclass (see Definition 5.3.2) such that Γ 6= ℘(R) and there is a
good pointclass Γ∗ with the property that Γ ⊂ Γ∗ then there is a hod pair or an sts
pair (P ,Σ) such that Γ(P ,Σ) = Γ. Recall that SMC states that for any hod pair or
sts hod pair (P ,Σ) such that Σ is strongly fullness preserving and has strong branch
condensation then for any x, y ∈ R, x ∈ ODy,Σ if and only if x ∈ LpΣ(y).

We work under the following minimality assumption.

#lsa: There is a pointclass Γ ⊂ ℘(R) such that there is a Suslin cardinal bigger
than w(Γ) and L(Γ,R) � LSA.

As in [10, Section 6.1], we will construct (P ,Σ) as above via a hod pair con-
struction of some sufficiently strong background universe. Here is our theorem on
generation of pointclasses.

Theorem 10.1.1 (The generation of the mouse full pointclasses) Assume AD+

and ¬#lsa. Suppose Γ 6= ℘(R) is a mouse full pointclass such that Γ � SMC. Then
the following holds:

1. Suppose Γ is completely mouse full and let A ⊆ R witness it. Then the following
holds:

(a) Suppose L(A,R) � ¬LSA. Then there is a hod pair (P ,Σ) ∈ L(A,R) such
that L(A,R) � “Σ has strong branch condensation and is super fullness
preserving” and Γ(P ,Σ) = Γ.

205
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(b) Suppose L(A,R) � LSA. Then there is an sts hod pair (P ,Σ) ∈ L(A,R)
such that L(A,R) � “Σ has branch condensation and is fullness preserv-
ing”, P is of lsa type and Γb(P ,Σ) = Γ. If in addition there are good
pointclasses beyond L(A,R), then there is a a hod pair (P ,Σ) such that
(P ,Σstc) ∈ L(A,R) and (P ,Σstc) satisfies the above conditions.

2. Suppose Γ is mouse full but not completely mouse full. Then there is a hod pair
or an anomalous hod pair (P ,Σ) such that Σ has strong branch condensation,
P is of limit type and either

(a) P is of lsa type and Γb(P ,Σstc) = Γ or

(b) P is not of lsa type and Γ(P ,Σ) = Γ.

Proof. Our proof has the same structure as the proof of [10, Theorem 6.1]. However,
unlike that proof, we will make an important use of Theorem 9.3.1. The proof is
again by induction. Suppose Γ 6= ℘(R) is a mouse full pointclass such that whenever
Γ∗ is properly contained in Γ and is a mouse full pointclass then there is a hod pair
(P ,Σ) as in 1 or 2. We want to show that the claim holds for Γ. Suppose not. We
examine several cases.

Case 1. There is a sequence of mouse full pointclass (Γα : α < Ω) such that
Γα ⊆ Γ, Γ =

⋃
α<Ω Γα and for α < β < Ω, Γα Emouse Γβ.

We will use the terminology of Section 9.3. Let φ(U, V ) be the formula that
expresses the fact that U is a mouse full pointclass having the properties that Γ
has and V is a hod pair (Q,Λ) such that Code(Λ) ∈ U and Λ has strong branch
condensation and is strongly U -fullness preserving.

LetM− = P−φ,Γ andM = Pφ,Γ. Because we are assuming that Γ is not generated
by a hod pair, it follows from clause 2 of Theorem 9.3.1 that ρ(M) > o(M−) and
that there is a condensing set X ∈ ℘ω1(M). In what follows we will use the notation
introduced in Section 9.1. In particular, recall the definition of τY and σXY .

Following the proof of Theorem 9.3.1, let (Ai : i < 4), Γ0 <w Γ1, F0, and F1 be
as in that proof. We introduce two more kinds of set of reals that we need to be
captured.

Let (αi : i < ω) be an enumeration of X and let xi = (αk : k ≤ i). Let (φi : i < ω)
be an enumeration of formulas in the language of hod mice. Let Bi,k be the set of
pairs ((Q,Λ, β), (R,Ψ, γ)) such that (Q,Λ), (R,Ψ) ∈ HP Γ, β < δQ, γ < δR and
πΨ
R,∞(γ) is the unique ordinal ξ such that M � φk[xi, πΛ

Q,∞(β), ξ]. We then let Ai,k



10.1. THE GENERATION OF THE MOUSE FULL POINTCLASSES 207

be the set of reals σ such that σ codes a pair of continuous functions (σl, σr) such
that (σ−1

l [A0], σ−1
r [A0]) is a code for a pair in Bi,k.

Next, let B be the set of (Q,Λ) such that X∩δM ⊆ πΛ
Q,∞[Q|δQ] and the transitive

collapse of HullM(X ∪ πΛ
Q,∞[Q|δQ]) is Q. Given (Q,Λ) ∈ B, let YQ,Λ = πΛ

Q,∞[Q|δQ].
Let A4 be the set of reals σ such that σ codes two reals (σl, σr) such that σl is a
continuous functions with the property that σ−1

l [A0] is a code for a pair (Q,Λ) in B
and σr is a real coding a countable sequence XQ,Λ ⊆ Q such that τYQ,Λ [XQ,Λ] = X.

We now define our final set A5. Given x ∈ R, let Ax = {u ∈ R : {u} is
ODΓ

x,X}. We let A5 = {(x, y) ∈ R2 : y codes Ax}. Let now x ∈ dom(F0) be such
that if F0(x) = (N ,M, δ,Ψ) then (N , δ,Ψ) Suslin, co-Suslin captures ⊕i<6Ai and
⊕(i,k)∈ω2Ai,k. Let Ψ∗ be the iteration strategy ofM#,Ψ

3 and let y ∈ dom(F1) be such
that if F1(y) = (N ∗y ,My, δy,Σy) then (N ∗y , δy,Σy) Suslin, co-Suslin captures Ψ∗.

We claim that some hod pair appearing on the Γ-hod pair construction of N ∗y |δy
generates Γ. Here the proof is somewhat different than the proof of Theorem 6.1 of
[10]. There the contradictory assumption that such constructions do not reach Γ led
to a construction of a hod pair (P ,Σ) such that λP = δP and P � “δP is regular”.
This meant that a pointclass satisfying ADR+“Θ is regular” had been reached giving
the desired contradiction. In our current situation, if the constructions never stops
then we will reach an lsa type hod premouse P of height δy. We need techniques to
argue that this cannot happen.

We proceed by assuming that the Γ-hod pair construction of N ∗y |δy does not
reach a pair generating Γ. Let P∗ be the final model of the Γ-hod pair construction
of N ∗y |δy. Let P =M+(P∗) and let Σ be the strategy of P induced by Σy.

Claim 1. o(P∗) = δy.

Proof. Suppose not. It follows from Theorem 4.7.6 and Theorem 8.3.1 that the
only way our construction could break down before reaching δy is if P∗ is of lsa
type. Let Λ = ΣP∗ . We then have that (P∗,Λ) is a hod pair such that P∗ is of
lsa type and Λ has strong branch condensation and is strongly Γ-fullness preserving.
Because Γb(P∗,Λstc) ⊆ Γ and Γb(P∗,Λstc) 6= Γ, we can fix (R,Φ) ∈ HP Γ such that
λR is limit and (P∗,Λ) ∈ L(Γ(R,Φ)). We have that in L(Γ(R,Φ)), Λ has strong
branch condensation and is strongly fullness preserving. It now follows from Theo-
rem 8.1.13 applied in L(Γ(R,Φ)) that for some S ∈ pI(P∗,Λ), L(Γ(S,ΛS)) � LSA,
contradicting our assumption that ¬#lsa holds. �

Let κ = δPλP−1. Notice that in P , κ is < δP-strong.
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Claim 2. (Pb,ΣPb) ∈ B.

Proof. Let g ⊆ Coll(ω,< κ) be N ∗y -generic. We let ψ(u, v) be as in the proof of The-
orem 9.3.1. Following the notation used in the proof of Theorem 9.3.1, let S = Pψ,Ag2
and S− = P−

ψ,Ag2
. It follows from the proof of Theorem 9.3.1 that ρ(S) > o(S).

We claim that S is an iterate of Pb. Clearly M∞(Pb,ΣPb) E S. This is simply
because for every Q Ehod Pb, (Q,ΣQ) ∈ HP Γ. Suppose then thatM∞(Pb,ΣPb) /S.
Let (R,Λ) ∈ HP Γ ∩ N ∗y [g]1 be such that M∞(Pb,ΣPb) /M∞(R,Λ). Let η < κ be
such that (R,Λ) ∈ N ∗y [g ∩ Coll(ω, η)].

Let Q be the output of the hod pair construction of P in which extenders used
have critical points > η. It follows from universality that for some α < λQ, Q(α) is

a Λ-iterate of R. Let E ∈ ~EP be an extender with critical point κ such that νE > α.
Let E∗ be the resurrection of E. It follows that in Ult(N ∗y , E∗), some hod pair
appearing on the hod pair construction of π(Pb) in which extenders used are bigger
than η is a Λ-iterate of R. It then follows that some hod pair appearing on the hod
pair construction of Pb in which extenders used are bigger than η is a Λ-iterate of
R. It follows that Code(Λ) <w Code(ΣPb) implying thatM∞(R,Λ)/M∞(Pb,ΣPb),
contradiction. This contradiction proves the claim. �

It is not hard to see, by a simple Skolem hull argument using the fact that P ∈ N ∗y ,
that

(2) for a club of η < δy, M+(P|η) � “η is a Woodin cardinal”.

Let C be the club in (2). For η ∈ C, let Rη = M+(P|η), Ση = Σstc
Rη and

Qη E P be the largest Ση-sts mouse such that Qη � “η is a Woodin cardinal”.
Using Lemma 6.4.6, we can translate Qη onto Ση-sts mouse Q̄η over M+(N ∗y |η).
Notice that

(3) for every η, Qη has an iteration strategy ∆ witnessing that Qη is a Ση-sts mouse
over M+(N ∗y |η).

(3) is a consequence of the fact that Qη appears on a Γ-hod pair construction of
N ∗y . Moreover,

(4) for every η and for every real x coding N ∗y |η, Q̄η is ODΓ
x,X .

1Here we are abusing the notation and use Λ for both the strategy in N ∗y [g] as well as its
extension in V .
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(4) follows from proofs that have already appeared in the book. For instance, see
the notion of goodness that appeared in the proof of Lemma 8.1.12. We now claim
that

Claim 2. for a club of η ∈ C − (κ + 1), Qη ∈ J Ψ
νη(N

∗
y |η) where νη is the least

ordinal such that J Ψ∗
νη (N ∗y |η) � ZFC.

Proof. Towards a contradiction, suppose not. Let λ be least such that J Ψ∗

λ (N ∗y |δy) �
ZFC. Let η ∈ C be such that Qη 6∈ J Ψ∗

νη (N ∗y |η) and there is a map π : J Ψ∗
νη (N ∗y |η)→

J Ψ∗

λ (N ∗y |δy). Thus

(5) J Ψ∗
νη � “η is a Woodin cardinal”.

Using genericity iterations, we can find N ∈ J Ψ∗
νη (N ∗y |η) such that N is a Ψ∗-

iterate ofM#,Ψ
3 such thatM+(N ∗y |η) is generic over the extender algebra BNδ0 where

δ0 is the least Woodin cardinal of N . Let g ⊆ Coll(ω, η) be N ∗y -generic. Fix a
real x ∈ N [N ∗y |η][g] coding N ∗y |η. It follows that there is y ∈ R such that (x, y) ∈
A5 ∩ N [N ∗y |η][g]. Therefore Qη ∈ N [N ∗y |η][g], implying that Qη ∈ J Ψ∗

νη . It follows

that J Ψ∗
νη � “η is not a Woodin cardinal”, contradicting (5). �

The rest of the proof is easy. It follows from Claim 2 that we can find an η such
that Qη ∈ J Ψ

νη(N
∗
y |η) and there is an elementary embedding π : J Ψ∗

νη (N ∗y |η) →
J Ψ∗

λ (N ∗y |δy) where λ is the least such that J Ψ∗

λ (N ∗y |δy) � ZFC. Because Qη ∈
J Ψ
νη(N

∗
y |η), we have that J Ψ∗

νη (N ∗y |η) � “η is not a Woodin cardinal”, and because

π : J Ψ∗
νη (N ∗y |η) → J Ψ∗

λ (N ∗y |δy), we have that J Ψ∗

λ (N ∗y |δy) � “δy is not a Woodin
cardinal”. This is an obvious contradiction! Thus, we must have that the Γ hod pair
construction of N ∗y reaches a generator for Γ. We now move to case 2.

Case 2. Γ is a completely mouse full pointclass such that for some α, L(Γ,R) �
θα+1 = Θ.

Because we are assuming ¬#lsa, we must have that L(Γ,R) � ¬LSA. The rest
of the proof is very much like the proof of [10, Theorem 6.1]. To complete it, we
need to use Theorem 7.2.2 instead of [10, Theorem 4.24]. We leave the details to the
reader. �

Theorem 10.1.1 has one shortcoming. It cannot be used to compute HOD of
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the minimal model of LSA as it only generates pointclasses whose Wadge ordinal is
strictly smaller than the largest Suslin cardinal. To compute HOD of the minimal
model of LSA we will need the following theorem.

Theorem 10.1.2 Assume AD+ +LSA and suppose ¬#lsa. Let α be such that θα+1 =
Θ, and suppose that there is a hod pair or an sts hod pair (P ,Σ) such that Σ is strongly
fullness preserving and has strong branch condensation and Γb(P ,Σ) = {A ⊆ R :
w(A) < θα}. Then (P ,Σ) is an sts hod pair and for any B ∈ B[P ,Σ] there is
Q ∈ pI(P ,Σ) such that (Q,ΣQ) is strongly B-iterable.

Proof. Towards a contradiction, assume not. We reflect the failure of our claim to
∆∼

2
1. Let (β, γ) be lexicographically least such that letting Γ = {A ⊆ R : w(A) < γ},

1. Γ = ℘(R) ∩ Jβ(Γ,R) and Lβ(Γ,R) � LSA + ZF−Replacement,

2. letting α be such that Lβ(Γ,R) � “θα+1 = Θ”, Lβ(Γ,R) � “there is a hod pair
or an sts hod pair (P ,Σ) such that Σ is strongly fullness preserving and has
strong branch condensation and Γb(P ,Σ) = {A ⊆ R : w(A) < θα} but either

(a) (P ,Σ) is not an sts hod pair or

(b) there is a B ∈ B[P ,Σ] such that whenever Q ∈ pI(P ,Σ), (Q,ΣQ) is not
strongly B-iterable”.

Because (β, γ) is minimized, we have that Γ ⊂ ∆∼
2
1. Fix (P ,Σ) as above. First we

claim that

Claim. Σ is not an iteration strategy.

Proof. Suppose not. Let Γ0 be a good pointclass beyond Γ and let F be as in The-
orem 4.1.6 for Γ0. Let x ∈ dom(F ) be such that letting F (x) = (N ∗x ,Mx, δx,Σx),

(N ∗x , δx,Σx) Suslin, co-Suslin captures Code(Σ) and Γ. It follows that (J ~E,Σ)N
∗
x |δx

reaches M#,Σ
2 . Let Ψ be the iteration strategy of M#,Σ

2 . Notice that

(1) Ψ ∈ Lβ(Γ,R).

Because Σ is an iteration strategy, it follows from clause 1 of Theorem 6.1.5 that
there are trees (T, S) ∈ M#,Σ

2 such that letting δ0 < δ1 be the Woodin cardinals of
M#,Σ

1

1. M#,Σ
2 � “(T, S) are δ1-complementing”,
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2. whenever π :M#,Σ
2 → N is an iteration according to Ψ and g ⊆ Coll(ω, π(δ0))

is N -generic then Code(Σ) ∩ RN|δ1[g] = p[π(T )] and (Code(Σ))c ∩ RN|δ1[g] =
p[π(S)].

LetM∞ be the direct limit of all Ψ-iterates ofM#,Σ
2 and let π :M#,Σ

2 →M∞ be the
direct limit embedding. It then follows that Code(Σ) = p[π(T )] and (Code(Σ))c =
p[π[S]]. It follows from (6) that T, S ∈ L(Γ,R), implying that L(Γ,R) � “Code(Σ)
is Suslin, co-Suslin”. It follows that Code(Σ) ∈ Γ(P ,Σ), contradiction! �

It follows from Claim 1 that (P ,Σ) is an sts hod pair. Hence, we must have that

(2) there is B ∈ B[P ,Σ] such that whenever Q ∈ pI(P ,Σ), (Q,ΣQ) is not strongly
B-iterable.

We can now finish by appealing to Theorem 8.1.14.
�

10.2 A proof of the Mouse Set Conjecture below

LSA

Throughout we will assume AD++ =def AD+ + V = L(℘(R)). Let

#lsa: There is a pointclass Γ ⊂ ℘(R) such that there is a Suslin cardinal bigger
than w(Γ) and L(Γ,R) � LSA.

The following is the main theorem of this section.

Theorem 10.2.1 Assume AD++ +¬#lsa. Then the Strong Mouse Capturing holds.

The rest of this section is devoted to the proof of Theorem 10.2.1. Recall that
Strong Mouse Capturing (SMC) is the statement that for any hod pair or an sts
hod pair (P ,Σ) such that Σ has strong branch condensation and is strongly fullness
preserving, and for any reals x, y, x is ordinal definable from Σ and y if and only if
x is in some Σ-mouse over y. We assume familiarity with the proof of [10, Theorem
6.19] and build directly on it. We start by stating the main steps of [10, Theorem
6.19]. We will follow these steps and provide proofs only for the new cases.

Towards a contradiction assume that the Strong Mouse Capturing (SMC) is false.
Our first step is to locate the minimal level of Wadge hierarchy over which SMC
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becomes false. For simplicity we assume that the Mouse Capturing, instead of the
Strong Mouse Capturing, is false. Mouse Capturing is the same as SMC when the
pair (P ,Σ) = ∅. The general case is only different in one aspect, it needs to be
relativized to some strategy or a short tree strategy Σ. Let Γ be the least Wadge
initial segment such that for some α

1. Γ = ℘(R) ∩ Lα(Γ,R),

2. Lα(Γ,R) � SMC,

3. there are reals x and y such that Lα+1(Γ,R) � “y is OD(x)” yet no x-mouse
has y as a member.

For the purposes of this section we make the following definition.

Definition 10.2.2 Suppose (P ,Σ) is a hod pair and Γ∗ is a pointclass. We say
(P ,Σ) is Γ∗-perfect if the following conditions are met.

1. Σ is Γ∗-super fullness preserving and has strong branch condensation.

2. For every Q ∈ pI(P ,Σ) ∪ pB(P ,Σ) such that λQ is a successor ordinal and

Q is meek there is ~B = (Bi : i ≤ ω) ⊆ B[Q(λQ − 1),ΣQ(λQ−1)) such that ~B
strongly guides ΣQ.

If Γ∗ = ℘(R) then we omit Γ∗ from our notation.

The following theorem was heavily used in [10]. It is essentially due to Steel and
Woodin (see [23]).

Theorem 10.2.3 Assume AD+ and suppose (P ,Σ) is a hod pair or an sts hod pair
such that L(Σ,R) � “(P ,Σ) is perfect”. Then L(Σ,R) � MC(Σ).

A key theorem used in the proof of Theorem 10.2.1 is the following capturing
theorem. Its precursor is stated as [10, Theorem 6.5].

Theorem 10.2.4 Suppose (P ,Σ) is a perfect hod pair and Γ1 is a good pointclass
such that Code(Σ) ∈ ∆∼ Γ1. Suppose F is as in Theorem 4.1.6 for Γ1 and z ∈ dom(F )
is such that if F (z) = (N ∗z ,Mz, δz,Σz) then (N ∗z , δz,Σz) Suslin, co-Suslin captures

Code(Σ). Let N = (J ~E)N
∗
z |δz . Then there is Q ∈ pI(P ,Σ) ∩N such that ΣQ � N ∈

J [N ].

The next key lemma that is used in the proof of Theorem 10.2.1 is the following
generation lemma that can be traced to [10, Lemma 6.23].
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Lemma 10.2.5 There is a Γ-perfect pair (P ,Σ) such that

Γ(P ,Σ) ⊆ Γ ⊆ L(Σ,R).

Our goal now is to outline how to use Theorem 10.2.4 and Lemma 10.2.5 to prove
Theorem 10.2.1.

10.2.1 The structure of the proof of the Mouse Set Conjec-
ture

We make the following convention. If P is a hod pair then P(−1) = ∅. If Σ is a
strategy for P then ΣP(−1) = ∅. First we outline the proof of the following general
theorem.

Theorem 10.2.6 Suppose (P ,Σ) is a perfect pair. Then L(Σ,R) � “for every β ∈
[−1, λP), Mouse Capturing holds for ΣP(β)”.

Proof. We only outline the proof as the full proof is presented in [10, Section 6.4].
Fix β < λP . We want to show that

(1) L(Σ,R) � “Mouse Capturing holds for ΣP(β)”.

For simplicity we assume β = −1. The general case is only notationally more com-
plex. Suppose x, y ∈ R are such that L(Σ,R) � “y ∈ OD(x)”. It follows from
Theorem 10.2.3 that there is a Σ-mouse M over (P , x) containing y such that M
has an iteration strategy in L(Σ,R). In fact, it follows from Theorem 10.2.3 that

(2) for every Q ∈ pI(P ,Σ) there is a ΣQ-mouseM over (Q, x) such that y ∈M and
M has an iteration strategy in L(Σ,R).

Let MQ be the least ΣQ-mouse over (Q, x) such that y is definable over MQ. Let
ΛQ be the iteration strategy of MQ (witnessing that MQ is a ΣQ-mouse). Let
Γ∗ ∈ L(Σ,R) be a good pointclass such that the set

A = {(z, u) ∈ R2 : z codes some MQ and u is an iteration according to ΣQ}

is in ∆∼ Γ∗ . Let F be as in Theorem 4.1.6 for Γ∗ and let z ∈ dom(F ) be such that if
F (z) = (N ∗z ,Mz, δz,Σz) then (N ∗z , δz,Σz) Suslin, co-Suslin captures Σ and the set

A. Let N = (J ~E(x))N
∗
z |δz . It follows from Theorem 10.2.4 that



214 CHAPTER 10. APPLICATIONS

(3) there is a Q ∈ N such that ΣQ � N ∈ J [N ].

It follows from the universality of N that MQ ∈ N (this is because (J ~E,ΣQ)N

is universal in N ∗z and the strategy of MQ is captured by N ∗z ). It then follows that
y ∈ N . As N is an x-mouse, this completes the proof. �

Suppose now that (P ,Σ) is a Γ-perfect pair such that Γ(P ,Σ) ⊆ Γ ⊆ L(Σ,R).
Such a pair is given to us by Lemma 10.2.5.

We now apply Theorem 10.2.3. For each Q ∈ pI(P ,Σ) there is a ΣQ-mouseMQ
over (Q, x) such that y is definable over MQ. We then again can find an x-mouse
N such that for some Q ∈ N ∩ pI(P ,Σ), MQ ∈ N . It follows that y ∈ N . Thus,
to finish the proof of Theorem 10.2.1, it is enough to establish Theorem 10.2.4 and
Lemma 10.2.5.

10.2.2 Review of basic notions

In this subsection we review basic notions introduced in [10, Theorem 6.5] for prov-
ing a version of Theorem 10.2.4. We are in fact working towards the proof of Theo-
rem 10.2.4, and the notation and the terminology of this subsection will be used in
the later subsections.

Fix (P ,Σ), Γ1, F and z as in the statement of Theorem 10.2.4. Let N = (J ~E)N
∗
z .

We are looking for Q ∈ pI(P ,Σ) ∩ N such that ΣQ � N ∈ J [N ]. We start working
in N ∗z . Without loss of generality we can assume that

(1) whenever R ∈ pB(P ,Σ) ∩ (N ∗z |δz) there is S ∈ pI(R,ΣR) ∩ N such that
ΣS � N ∈ J [N ].

As in [10], there are several cases.

1. λP is a successor and P is meek.

2. λP is a limit.

3. λP is a successor, P is non-meek but P is not of lsa type.

4. (P ,Σ) is an sts hod pair.

The first two cases are just like the cases considered in [10, Theorem 6.5], we leave
those to the reader. Here we analyze the remaining two cases. To start, we need to
import some notions from [10, Section 6.3].
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Suppose for a moment that we are working in some model of ZFC. Suppose κ is
an inaccessible cardinal. We say that (Q,Λ) is a hod pair at κ if

1. (Q,Λ) is a hod pair,

2. Q ∈ HC,

3. Λ is a (κ, κ)-iteration strategy,

4. Code(Λ) is a κ-universally Baire set of reals.

Suppose (Q,Λ) is a hod pair at κ. Then we let

LpΛ,κ(a) =
⋃
{M :M is a sound Λ-mouse over a such that ρω(M) = a and

M E (J ~E,Λ(a))Vκ}.

As is customary, we let LpΛ,κ
α (a) be the αth iterate of LpΛ,κ(a). Below S∗(R) is the

∗-transform of S into a hybrid mouse over R, it is defined when R is a cutpoint of
S (cf. [18]).

Definition 10.2.7 (Fullness preservation in models of ZFC) Suppose now that
(Q,Λ) is a hod pair at κ. We then say Λ is κ-fullness preserving if whenever

(~T ,R) ∈ I(Q,Λ) ∩ Vκ,

1. For all limit type S ∈ Y S , Sb = Lp
⊕
W∈Y Sb

ΛW,~T ,κ

ω (S|δS).

2. For all successor type S ∈ Y R,

S = Lp
⊕
W∈Y Sb

ΛW,~T ,κ

ω (S|δS).

3. If R is of lsa type then R = Lp
Λstc
M+(R|δR),~T

,κ

ω (R|δR)2,

4. If η is a cardinal cutpoint of R such that for some R1,R2 ∈ Y R such that
R2 is the R-successor of R1 (see Definition 3.9.2), R1 is a cutpoint of R and
η ∈ (δR1 , δR2) then

(R|(η+)R)∗ = Lp
ΛR1,

~T ,κ(R|η).

2Here, if Λ is a short tree strategy then Λsts = Λ.
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Continuing our work inside some model of ZFC, suppose (Q,Λ) is a hod pair at
κ such that Λ has branch condensation and is κ-fullness preserving. Suppose λ < κ
is an inaccessible cardinal. Then we say

Definition 10.2.8 (Universal tail) (Q∗,Λ∗) is a λ-universal tail of (Q,Λ) if there

is a stack ~T according to Λ on Q with last model Q∗ such that

1. lh(~T ) = λ and for all β < lh(~T ), ~T � β ∈ Vλ;

2. for any ( ~S,R) ∈ I(Q,Λ)∩Vλ there is a stack ~U on R according to ΛR with its

last model on the main branch of ~T .

If ~T is as above then we say ~T is a λ-universal stack on Q according to Λ.

We now resume the proof of Theorem 10.2.4 and start working in N ∗z . Observe
that because of our assumption on (P ,Σ), whenever Q,R ∈ pI(P ,Σ), (Q,ΣQ) and
(R,ΣR) have a common tail in N ∗z |δz. In fact more is true. Suppose κ is a strong
cardinal of N ∗z . Then it follows from Corollary 4.6.10 that if Q,R ∈ pI(P ,Σ)∩N ∗z |κ
then (Q,ΣQ) and (R,ΣR) have a common tail in N ∗z |κ. This means that whenever
κ < δz is a cardinal of N ∗z and Q ∈ (pI(P ,Σ) ∪ pB(P ,Σ)) ∩ N ∗z |κ, we can form
the direct limit of all ΣQ iterates of Q that are in N ∗z |κ. Let RQ,ΣQκ be this direct
limit. The next lemma shows that the universal tails are unique. It appeared as [10,
Lemma 6.8].

Lemma 10.2.9 (Uniqueness of universal tails) Suppose Q ∈ pI(P ,Σ)∩N ∗z |δz.
Then for each N -strong κ < δz such that Q ∈ N ∗z |κ and α ≤ λQ, there is a unique

κ-universal tail of (Q(α),ΣQ(α)). In fact, letting R = RQ(α),ΣQ(α)
κ , (R,ΣR) is the

unique κ-universal tail of (Q(α),ΣQ(α))

Suppose Q ∈ (pI(P ,Σ) ∪ pB(P ,Σ)) ∩N ∗z |δz and κ is an N -strong cardinal such
that Q ∈ N ∗z |κ.

Definition 10.2.10 Then we say N captures a tail of (Q,ΣQ) below κ if there is
a hod pair (R,Λ) ∈ N such that Λ is a (κ, κ)-iteration strategy and there is a term
relation τ ∈ NColl(ω,<κ) such that whenever g ⊆ Coll(ω, |R|+) is N -generic,

1. N [g] � “(R, τg) is a hod pair at κ such that τg is κ-fullness preserving” and
τg � N = Λ,

2. for some λ < κ, R = RQλ and letting T, U ∈ N [g] witness that τg is κ-uB,
whenever h ⊆ Coll(ω,< κ) is N [g]-generic, (p[T ])N [g][h] = Code(ΣR)∩N [g][h].
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We say N captures B(Q,ΣQ) below κ if whenever R ∈ pB(Q,ΣQ)∩N ∗z |κ, N captures
(R,ΣR) below κ.

Towards a contradiction, we assume that N does not capture a tail of (P ,Σ) and
that either

1. λP is a successor, P is not of lsa type and P is non-meek or

2. (P ,Σ) is an sts hod pair.

Notation 10.2.11 For each Q ∈ pB(P ,Σ), we let λQ be the least N -strong cardinal
ν such that N captures the ν-universal tail of (Q,ΣQ). We let (RQ,ΨQ) be the λQ-
universal tail of (Q,ΣQ). For each inaccessible cardinal ν such that Q ∈ N|ν, we let
(RQν ,ΨQν ) be the ν-universal tail of (Q,ΣQ).

10.2.3 The ideas behind the proof

The notation and the terminology introduced in this subsection will be used in the
next few subsections. Suppose now κ is an N -strong cardinal that reflects the set of
N -strong cardinals. Let

E = {E ∈ ~EN : N � “ν(E) is inaccessible” and for all η ∈ (κ, ν(E)), N � “η is a
strong cardinal” if and only if Ult(N , E) � “η is a strong cardinal”}.

Notation 10.2.12 Working in N , let

F = {(Q,Λ) : Q ∈ N|δ ∧ J [N ] � “(Q,Λ) is a hod pair at δz and Λ has branch
condensation and is δz-fullness preserving”}.

We have that F is a directed system. Let for λ ≤ δz,

F � λ = {(Q,Λ) ∈ F : Q ∈ N|λ}.

We let R∗ be the direct limit of F � κ under the iteration maps. Let

R = (RPκ )b.

The next lemma summarizes what was proved in [10].

Lemma 10.2.13 The following holds.

1. Suppose Q ∈ pB(P ,Σ) ∩N ∗x |κ. Then λQ < κ. Thus, RQ ∈ N|κ.
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2. Suppose Q ∈ pB(P ,Σ), λ > κ is a strong cardinal such that λQ < λ, and
E ∈ E is an extender with critical point κ such that ν(E) > (λ+)N

∗
x . Then

ΨQ � (Ult(N , E)|δ) ∈ Ult(N , E).

3. Either R Ehod R∗ or R|δR = R∗. Moreover, R ∈ N and ΣR � N ∈ L[N ].

Clause 1 is just [10, Lemma 6.11], clause 2 is [10, Lemma 6.12] and clause 3 is [10,
Lemma 6.13].

In the sequel, we will develop a technology for recovering a full iterate of P .
Let R+ = RPκ be the iterate of P extending R and let i : P → R+ be the iteration
embedding. We will recover an iterate ofR+ insideN as an output of a backgrounded
construction that is done over R. Such constructions are called mixed hod pair
constructions. The details of this construction appear in Section 10.2.9.

There are two kind of extenders that we will use in this construction. The ex-
tenders with critical point > δR will have traditional background certificates. We
will use the total extenders on the sequence of N to certify such extenders. The
extenders with critical point δR will come from a different source. The following key
lemma illustrates the idea. Let δ = δR.

Lemma 10.2.14 Suppose S ∈ pI(R+,ΣR+) is a normal iterate of R+ that is ob-

tained by iterating entirely above δR. Suppose that Eα ∈ ~ES is such that crit(Eα) =
δR

b
, S|α ∈ N and ΣS|α � N ∈ L[N ]. Then Eα ∈ N . Moreover, (a,A) ∈ Eα if and

only if a ∈ ν<ωEα , A ∈ [δ]|a| and whenever F ∈ E is such that crit(F ) = κ and

N � “there is a strong cardinal ν in the interval (κ, lh(F )) such that S ∈ N|ν”,

π
ΣS|α
S|α,πF (R)(a) ∈ πF (A).

Proof. Set M+ = Ult(R+, Eα) and M = Ult(R, Eα). Let F ∗ be the resurrection
of F and let σ : Ult(N , F ) → Ult(N ∗z , F ∗) be the canonical factor map. We have
that σ � νF = id. Thus, πF ∗ � N = σ ◦ πF . It follows that πF ∗ � R+ is the iteration
embedding implying

(1) πF ∗ � R+ = π
ΣM+

M+,πF∗ (R+) ◦ π
R+

Eα
.
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We now have that

(a,A) ∈ Eα ↔ a ∈ πR+

Eα (A)

↔ π
ΣM+

M+,πF∗ (R+)(a) ∈ πΣM+

M+,πF∗ (R+)(π
R+

Eα (A))

↔ σ(πΣM
M,πF (R)(a)) ∈ πF ∗(A)

↔ σ(πΣM
M,πF (R)(a)) ∈ σ(πF (A))

↔ πΣM
M,πF (R)(a) ∈ πF (A)

Therefore,

(a,A) ∈ Eα ↔ πΣM
M,πF (R)(a) ∈ πF (A).

By our assumption, the right hand side of the equivalence can be computed in N .
Hence Eα ∈ N . �

Thus, the extenders with critical point δR that we will use in our mixed hod pair
construction have the following property. If Q is the current level of the construction
and Λ is its strategy then let E be the set of pairs (a,A) such that (a ∈ δR)<ω and
for every F ∈ E such that crit(F ) = κ and

N � “there is a strong cardinal ν in the interval (κ, lh(F )) such that Q ∈ N|ν”,

πΛ
Q,πF (R)(a) ∈ πF (A).

There is one problem with this approach. We need to know the strategy Λ of Q
before we can find the relevant extender. To resolve this problem, we will first define
the strategy Λ. Essentially Λ will pick branches that, for some η, are πE-realizable
for all E ∈ E such that lh(E) > η. We will call such strategies E-certified.

In the sequel, we will first introduce the E-certified strategies. Then we will prove
basic fact about them. Then we will introduce the mixed hod pair constructions and
show that some model appearing on this construction is an iterate of R+ via an
iteration that is entirely above δR.

10.2.4 E-certified iteration strategies

The following is a modification of [10, Definition 6.14].

Definition 10.2.15 (πE-realizable iterations) Suppose
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1. M∈ N is a hod premouse extending R such that R =Mb,

2. ~T ∈ N is a stack on M played either according to the usual rules of the
iteration game or (in the case M is of lsa type) according to the rules of the
short tree game,

3. E ∈ E.

Set B~T = {Q ∈ tn(~T ) : Q ∈ tn(~T ) and π
~T≤Q,b exists}.

We say ~T is πE-realizable if there is a strong cardinal λ < ν(E) such that ~T ∈
N|λ, a sequence (σQ : Q ∈ tn(~T )) ∈ N|λ and a sequence ((WQ,ΨQ) ∈ F � λ : Q ∈
B~T ) ∈ J [N ] such that the following holds:

1. σR = πE � R.

2. For all terminal nodes Q of ~T such that π
~T≤Q,b exists, σQ : Qb → πE(R).

3. For all Q,S ∈ B~T such that Q ≺~T ,s S, σQ = σS ◦ π
~TQ,S ,b
Q,S .

4. For all Q ∈ B~T , letting SQ E πE(R) be the ΨQ-iterate of WQ, δSQ = σQ(δQ
b
)

and σQ[Qb] ⊆ rng(π
ΨQ
WQ,SQ).

5. For all Q ∈ B~T , letting kQ : Qb → WQ be given by kQ(x) = y if and only if

σQ(x) = π
ΨQ
WQ,SQ(y), kQ ~TQ is according to ΨQ.

6. For all Q ∈ B~T , (Qb,ΨkQ
Q ) ∈ πE(F) and σQ � (Qb|δQb) is the iteration embed-

ding according to Ψ
kQ
Q .

7. For all Q,K ∈ B~T such that Q ≺~T ,s K, letting β be such that K(β) =

π
~TQ,K,b
Q,K (Qb),

(ΨkK
K )K(β) = (Ψ

kQ
Q )K(β)

and σK � (K(β)|δK(β)) is the iteration embedding according to (Ψ
kQ
Q )K(β).

8. Suppose there is a main drop at Q ∈ B~T . Then ~T≥Q is according to Ψ
kQ
Q .

We say that (σQ : Q ∈ B~T ) are the πE-realizable embeddings of ~T and ((WQ,ΨQ) :

Q ∈ B~T ) are the πE-realizable pairs of ~T . We say ~T is E-realizable if for some η, ~T
is E-realizable for every E ∈ E with the property that lh(E) > η.
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We now introduce a kind of backgrounded constructions reminiscent to the back-
grounded construction introduced in Definition 4.2.1. We will use them to find the
Q-structures of various iterations.

Definition 10.2.16 (E-realizable backgrounded constructions) SupposeM, ~T ,S,
Q, η are such that

1. M∈ N is a hod premouse extending R such that Mb = R,

2. ~T is a E-realizable stack on M (played either according to the usual rules of
the iteration game or according to the rules of the short tree game) such that

π
~T ,b exists,

3. S ∈ ntn(~T ) and U is the largest normal initial segment of ~T≥S that is based on
S and is above δS

b
,

4. if U is of limit length then Q = M(U) and otherwise for some α < lh(U),
Q =Mα,

5. M+(Q|η) � “η is a Woodin cardinal”.

Then for ξ ≤ δ, ((Mγ,Nγ : γ ≤ ξ), (Fγ : γ < ξ)) ∈ J [N ] is the ξth initial segment
of the output of the fully backgrounded E-realizable construction over M+(Q|η) done
in N if the following is true.

1. M0 = J1(X), and for all ξ < η, Mξ and Nξ are sts premice such that if ~W is

a stack indexed either in Mξ or Nξ then ~T≤Q _ ~W is E-realized.

2. Suppose ((Mγ,Nγ : γ ≤ β), (Fγ : γ < β)) has been defined for β < ξ. Then we
define Mβ+1, Nβ+1 and Fβ as follows.

(a) Suppose Mβ = (J ~E,f
α ,∈, ~E, f) is a passive hp, i.e., with no last predicate,

and there is a total extender F ∗ ∈ ~EN such that F ∗ coheres ((Mγ,Nγ :
γ ≤ β), (Fγ : γ < β)), an extender F over Mβ, and an ordinal ν < α
such that N|ν + ω ⊆ Ult(N , F ∗) and

F � ν = F ∗ ∩ ([ν]ω × J ~E,f
α ).

Then

Nβ+1 = (J ~E,f
α ,∈, ~E, f, F̃ )
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and ν = νNβ+1 where F̃ is the amenable code of F 3. Also, if Nβ+1 is
reliable then Mβ+1 = C(Nβ+1)4 and Fβ = F . If Nβ+1 is not reliable then
we stop the construction.

(b) Suppose Mβ = (J ~E,f
α ,∈, ~E, f) is a passive hp, the hypothesis of item 2.a

above doesn’t hold, Mβ � ZFC-Replacement, and Mβ is ambiguous. Let

t = (Q, T ,Q1, ~U) ∈ J ~E,f
α ∩dom(Λ) on Q be theMβ-least stack of length 2

witnessing thatMβ is ambiguous and such that lh(T ) is not of measurable

cofinality inMβ and lh(~U) is not of measurable cofinality inMβ. Suppose

there is a branch b ∈ N of ~U such that ~T≤Q _t_{M~U
b } is E-realizable.

Let b be the N -least such branch5 and set ν = sup b and W = Jν(Mβ). If
ρ(W) ≥ α then

Nβ = (J ~E,f+

β ,∈, ~E, f+)

where f+ = f∪(Jω(t), b̃) where b̃ ⊆ α+ν is defined by α+ν∗ ∈ b̃↔ ν∗ ∈ b.
If ρ(W) < α then let γ ∈ (α, ν] be least such that ρ(Jγ(Mβ)) < α and let
Nβ+1 = C(Jγ(Mβ)). Also, if Nβ+1 is reliable then Mβ+1 = C(Nβ+1) and
Fβ = ∅. If Nβ+1 is not reliable then we stop the construction. If there is
no such branch b then stop the construction.

(c) Suppose Mβ = (J ~E,f
α ,∈, ~E, f) is a passive hp, the hypothesis of item 2.a

and 2.b above don’t hold, Mβ � ZFC, Mβ is unambiguous and there is a

normal terminal T ∈ J ~E,f
α ∩ dom(Λ) such that Mβ � “T is ambiguous

and lh(T ) is not of measurable cofinality”, fMβ(T ) isn’t defined and there
is an Mβ-minimal shortness witness for T . Let U be the Mβ-least such
tree, (φ, ζ, b) be a shortness witness for U , ν = sup b and W = Jν(Mβ).
If ρ(W) ≥ α then

Nβ = (J ~E,f+

ν ,∈, ~E, f+)

where f+ = f ∪ {(Jω(U), b̃)} where b̃ ⊆ α + ν is defined by α + ν∗ ∈ b̃↔
ν∗ ∈ b. If ρ(W) < α then let γ ∈ (α, ν] be least such that ρ(Jγ(Mβ)) <
α and let Nβ+1 = C(Jγ(Mβ)). Also, if Nβ+1 is reliable then Mβ+1 =
C(Nβ+1) and Fβ = ∅. If Nβ+1 is not reliable then we stop the construction.

3. Suppose β ≤ η is a limit ordinal and ((Mγ,Nγ : γ < β), (Fγ : γ < β)) has been
defined. Then we define Mβ and Nβ as follows6. Let ν = limsupλ→β(ρ+)Mβ .

3For the definition of the “amenable code” see the last paragraph on page 14 of [28].
4Recall that C(M) is the core of M.
5Such branches are essentially unique, see Lemma 10.2.19.
6Fβ will be defined at the next stage of the induction as in clause 2.
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Then we let Nβ be the passive lhp W = JWν , where for all β < ν we set JWβ be

the eventual value of JMλ
β as λ→ β. Also if Nβ is reliable then Mβ = C(Nβ).

If Nβ is not reliable then we stop the construction.

We can now define the E-certified iterations.

Definition 10.2.17 Suppose M ∈ N is a hod premouse extending R such that
R = Mb. Suppose ~T ∈ N is a stack on M (played either according to the usual
rules of the iteration game or according to the rules of the short tree game) and

E ∈ E. We say ~T is E-certified if the following conditions are satisfied.

1. ~T is πE-realizable.

2. Suppose S ∈ B~T and let U be the largest normal initial segment of ~T≥S that
is based on S and is above Sb. Let α < lh(U) be a limit ordinal and let c be
the branch of U � α chosen by U if there is such a branch. Then the following
conditions hold.

(a) M+(M(U � α)) � “δ(U � α) is not a Woodin cardinal”. Then Q(b,U � α)
exists and Q(b,U � α) EM+(M(U � α)).

(b) M+(M(U � α)) � “δ(U � α) is a Woodin cardinal” and there is W that is
an initial segment of the fully backgrounded E-realizable construction over
M+(M(U| � α)) and is such that J [W ] � “δ(U � α) is not a Woodin
cardinal”. Then Q(b,U � α) exists and Q(b,U � α) =W.

(c) The above two clauses fail. Then in U , player II played M+(M(U � α))
at stage α, and U = (U � α)_M+(M(U � α)).

We say that ~T is E-certified if for some λ, ~T is E-certified for every E ∈ E such
that lh(E) > λ.

And finally we define E-certified strategies.

Definition 10.2.18 Suppose M ∈ N is a hod premouse extending R such that
R =Mb. We let ΛM be the partial strategy of M with the property that

1. dom(Λ) consist of E-certified stacks ~T , and

2. for all ~T ∈ dom(Λ), Λ(~T ) = b if b is the unique branch of ~T such that
~T _{M~T

b } is E-certified.

We say ΛM is the E-certified strategy of M.
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10.2.5 Uniqueness of E-certified strategies

In this subsection we show that E-certified strategies are unique.

Lemma 10.2.19 Suppose M ∈ N is a hod premouse extending R such that R =
Mb. Suppose Λ and Ψ are two E-certified strategies for M. Then Λ = Ψ.

Proof. Suppose not. It follows from Lemma 4.6.3 that there is a low level disagree-
ment between Λ and Ψ. Let (~T ,Q) constitute a low level disagreement between Λ

and Ψ. Let Q+ be the last model of ~T . Because both Λ and Ψ are E-certified, we
can find E ∈ E such that there are

1. an N -strong cardinal λ < νE,

2. (W0,Φ0), (W1,Φ1) ∈ F � λ,

3. σ0 : (Q+)b → πE(R) and σ1 : (Q+)b → πE(R),

4. for i < 2, σi[Q] ⊆ rng(πΦi
Wi,σi(Q)),

5. for i < 2, letting ki : Q → Wi be the embedding (πΦi
Wi,σi(Q))

−1 ◦ (σi � Q),
ΛQ,~T = k0-pullback of Φ0 and ΨQ,~T = k1-pullback of Φ1.

Recall the definition of low level disagreement, Definition 4.6.2. It follows that

(1) ΛQ(λQ−1),~T = ΨQ(λQ−1),~T and

(2) δQ = sup({π ~T (f)(a) : f ∈ R ∧ a ∈ (Q(λQ − 1))<ω} ∩ δQ).

Let then U be a normal tree on Q such that if a = ΛQ,~T (U) and c = ΨQ,~T (U)
then

(3) MU
a =MU

c =def W and ΛW,~T_U = ΨW,~T_U .

We also have that for i < 2 there are embeddings ji :W → σi(Q) such that

(4) σ0 � Q = j0 ◦ πUa and σ1 � Q = j1 ◦ πUc .

It follows that if W+
b is the result of applying U and a to Q+ and W+

c is the re-
sult of applying U and c to Q+ then we can extend j0 to j+

0 : (W+
a )b → πE(R) and

j1 to j+
1 : (W+

c )b → πE(R) such that
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(5) σ0 � (Q+)b = j+
0 ◦ πUa and σ1 � (Q+)b = j+

1 ◦ πUc .

Combining (2), (3), and(5) we get that

(6) sup(rng(πUa ) ∩ rng(πUc ) ∩ δ(U)) = δ(U)

(6) implies that a = c, contradiction. �

10.2.6 Canonical certification witnesses

Suppose S∗ is a ΣR+-iterate of R+ via an iteration that is entirely above δR
+

. Sup-
pose further that S E S∗ is such that Sb = R and S ∈ N . Let ~T ∈ N be a stack on
S. We will use S and ~T throughout this section.

Suppose that E ∈ E and E∗ is the background certificate of E. Assume that
~T isπE-realizable and is according to ΣS . We want to show that we can choose
canonical embeddings and pairs that witness that ~T is πE-realizable. This is shown
in Corollary 10.2.23. First we prove two useful lemmas.

Lemma 10.2.20 K ∈ B~T . Suppose further that for every Q ∈ B~T such that Q ≺~T

K,

1. τ(σQ) � δQ
b

is the iteration embedding according to ΣQb and

2. Ψ
kQ
Q = ΣQb.

Then τ(σK) � δK
b

is the iteration embedding according to ΣKb. Moreover, if F is the

(δR, δK
b
)-extender derived from π

~T ,b then τ(σK) extends to

σ+
K : Ult(K, F )→ πE∗(R+)

and σ+
K is the iteration embedding according to ΣUlt(K,F ).

Proof. Set

α = sup({π
~TQ,K,b
Q,K (δQ

b
) : Q ≺~T ,s K}).

We have that

Kb = {π ~T≤K,b(f)(a) : f ∈ R ∧ a ∈ (δK
b

α )<ω}.
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We also have that for every x ∈ Kb,

π
ΣKb
Kb,πE∗ (R)

(x) = πE∗(f)(π
ΣK(α)

K(α),πE∗ (R)(a))

where f ∈ R and a ∈ α<ω. It is then enough to see that

π
ΣK(α)

K(α),πE∗ (R) � δ
K
α = σK � δKα (*).

Suppose first α is a limit ordinal. Then for each β < α, there are Q ≺~T ,s K and
ξ < λQ

b
such that K(β) is a Ψ

kQ
Q -iterate of Q(ξ). Because we are assuming that

Ψ
kQ
Q = ΣQb , and because of clause 6 and 7 of Definition 10.2.15, we get that

σK � δKβ = πΣ
K(β),πE∗ (R) � δ

K
β .

As the above equality holds for any β < α, (∗) follows. The case when α is a successor
ordinal is very similar. The rest follows easily because

Ult(K, F ) = {πF (f)(a) : f ∈ R+ ∧ a ∈ (δK
b
)<ω}

implying that setting W = Ult(K, F )

πΣW
W,πE∗ (R)(x) = πE∗(f)(π

ΣKb
Kb,πE∗ (R)

(a))

where f ∈ R+ and a ∈ (δK
b
)<ω are such that x = πF (f)(a). �

Lemma 10.2.21 Let (σQ : Q ∈ B~T ) ∈ N|λ and ((WQ,ΨQ) ∈ F � λ : Q ∈ B~T ) ∈
J [N ] witness that ~T is πE-realizable, and let kQ : Qb → WQ be the embedding
described in clause 2 of Definition 10.2.15. Then for any Q ∈ B~T ,

ΣQb � N = kQ−pullback of ΨQ.

Proof. Let λ ∈ (κ, lh(E)) be an N -strong cardinal witnessing the clauses of Defi-
nition 10.2.15. Let E∗ be the background certificate of E and let τ : Ult(N , E) →
πE∗(N ) be such that πE∗ � N = τ ◦ πE. Because σR � δR = πE∗ � δR and πE∗ � R
is the iteration embedding according to Σ, Lemma 10.2.20 implies, by induction, that

(1) for every K ∈ B~T , σK � (Kb|δKb) is the iteration embedding according to ΣKb .

Now fix K ∈ B~T . It follows from Clause 6 of Definition 10.2.15 that

(2) σK � (Kb|δKb) is the iteration embedding according to ΨkK
K .

It follows from (1) and (2) that ΨkK
K and ΣKb are both σK � (Kb|δKb)-pullbacks

of πE∗(ΣR), and hence,



10.2. A PROOF OF THE MOUSE SET CONJECTURE BELOW LSA 227

ΨkK
K = ΣKb � N ,

finishing the proof of the lemma. �

We continue with our S and ~T . Let λ∗ = sup{λQb : Q ∈ B~T } and let λ~T be the
least N -strong cardinal ≥ λ∗. Let λ ≥ λ~T be any N -strong cardinal. Let

W∗ = ∪{RQbλ : Q ∈ B~T }, Ψ = ⊕Q∈B~TΨQ
b

λ and W = Lp
⊕Q∈B~T ΨQ

b

λ

ω (W∗).

Notice that cf(λW) < λ implying that W � “cf(λW) is not a measurable ordinal”. It
follows that Ψ is an iteration strategy for W .

Suppose now that E ∈ E is an extender such that λ < lh(E) and let E∗ be the
background certificate of E. Let τ : Ult(N , E)→ πE∗(N ) be the factor map. Given
Q ∈ B~T , we let σ∗Q,E : Qb → πE∗(R) be such that

σ∗Q,E(x) = πE∗(f)(π
ΣQb

Qb,πE∗ (R)
(a))

where f ∈ R and a ∈ (δQ
b
)<ω are such that x = π

~T≤Q,b(f)(a). The following is an
easy corollary of Lemma 10.2.20.

Corollary 10.2.22 There is a sequence (σQ,E : Q ∈ B~T ) ∈ N [g] such that for each
Q ∈ B~T , τ(σQ,E) = σ∗Q,E.

Proof. It follows from Lemma 10.2.20 that τ(lQ) = σ∗Q,E whenever (lQ : Q ∈ B~T )

witnesses that ~T is E-certified. �

It is now routine to check that

Corollary 10.2.23 (σQ,E : Q ∈ B~T ) and ((RQλ ,Ψ
Q
λ ) : Q ∈ B~T ) witness that ~T is

E-certified.

Corollary 10.2.24 Suppose ~T is a stack on S such that all of its initial segments
are according to ΛS . Then ~T ∈ dom(ΛS).

Proof. Let λ∗ = sup{λ~T≤Q : Q ∈ B~T } and let λ be any N -strong cardinal greater

than λ∗. Then for any E ∈ E such that lh(E) > λ and for any K ∈ B~T , (σQ,E : Q ∈
B~T≤K) and ((RQλ ,Ψ

Q
λ ) : Q ∈ B~T≤K) witness that ~T≤K is E-certified. It follows that

(σQ,E : Q ∈ B~T ) and ((RQλ ,Ψ
Q
λ ) : Q ∈ B~T ) witness that ~T is E-certified. �
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10.2.7 Correctness of Q-structures

In this subsection, we work towards showing that E-certified constructions produce
Q-structures that are according to Σ. Our first lemma of this subsection shows that
we can always embeddings witnessing certification.

Lemma 10.2.25 Suppose Q,W ∈ N are such that there are stacks ~U0 on R+ with
last model Q+ and ~U1 on Q+ with last model W+ such that π

~U0,b and π
~U1,b exist,

Q = (Q+)b and W = (W+)b. Suppose further that Q,W ∈ N . Suppose λ is a strong

cardinal greater than max(λQ, λW). Then π
~U0,b, π

~U1,b ∈ N and moreover, for any
E ∈ E such that lh(E) > λ, there are σQ : Q → πE(R) and σW : W → πE(R) such
that

πE � R = σQ ◦ π ~U0,b and σQ = σW ◦ π ~U1,b.

Proof. Let E ∈ E be such that lh(E) > λ and let E∗ be the background certificate

of E. Let Y = π
ΣRQ
RQ,πE∗ (R)

[RQ]. Then (in N ∗z ) there is τ ∗ : Q → πE∗(R) such that

rng(τ ∗) ⊆ {πE∗(f)(a) : f ∈ R ∧ a ∈ Y }.

Let k : Ult(N , E)→ πE∗(N ) be the factor map. Because

{πE∗(f)(a) : f ∈ R ∧ a ∈ Y } ⊆ rng(k),

we have (in N ∗z ) τ : Q → πE(R) such that

rng(τ) ⊆ k−1({πE∗(f)(a) : f ∈ R ∧ a ∈ Y }) = {πE(f)(a) : f ∈ R ∧ a ∈ k−1[Y ]}.

Therefore, there is such a τ ∈ N [g] where g ⊆ Coll(ω, λ) is N -generic. But it follows
from Lemma 9.1.9 that for any such τ , τ -pullback of πE(ΣR) (which is the same as

τ -pullback of πE∗(ΣR)) is just ΣQ. It follows that π
ΣQ
Q,πE(R)[Q|δQ] ∈ Ult(N , E)[g] for

any such generic g. Set

σQ(x) = πE(f)(a)

where f ∈ R and a ∈ (δQ)<ω are such that π
~U0,b(f)(a) = x. It follows that σQ ∈ N [g]

for any generic g. Therefore, σQ ∈ N . We then have that

π
~U0,b(x) = σ−1

Q (πE(x)).
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The rest of the argument is very similar. �

Suppose now that S∗ is a ΣR+-iterate of R+ via an iteration that is entirely above
δR

+
. Suppose further that S E S∗ is such that Sb = R and S ∈ N . Let ~T ∈ N be a

stack on S. We will use S and ~T throughout this section. The following is an easy
corollary of Lemma 10.2.25

Corollary 10.2.26 Suppose ~T is according to ΣS , π
~T ,b exists and for some Q0,

~T≥Q0 is a normal tree of limit length on Q0 above δQ
b
0. Suppose further that letting

Q =def M+(~T≥Q0), Q � “δQ is a Woodin cardinal”. Let U ∈ N be a normal tree on

Q according to ΣQ. Then ~T _U is E-realizable.

The next lemma argues that Q-structures appearing in a E-certified iteration are
according to Σ.

Lemma 10.2.27 Suppose ~T is an E-certified iteration and Q ∈ B~T . Let η > δQ
b

be such that M+(Q|η) � “η is a Woodin cardinal” and let W E Q be an sts mouse

over M+(Q|η) based on M+(Q|η). Suppose ~T<Q is according to ΣS . Then W is a
Σstc
M+(Q|η)-sts mouse.

Proof. Towards a contradiction assume that W is not a Σstc
M+(Q|η)-sts mouse. It fol-

lows that ~T≤Q is not according to ΣS . If then follows that ~T<Q has a last normal

component of limit length that is above δQ
b
. Let then Q0 ∈ ntn(~T ) be such that

Qb0 = Qb and U =def
~T≥Q0 is a normal tree of limit length that is based on Q0 and

is above δQ
b
0 . For convenience, we change our notation and set Q = M+(U) and

~T = ~T≤Q. It follows from Definition 10.2.17 that

(1) W is an initial segment of the fully background construction of N over Q.

What we need to see is that W is a Σstc
Q -sts mouse over Q. To show this it is

enough to show that every stack indexed in W is according to Σstc
Q . To show this, it

is enough to show that

(2) if t = (Q,U0,Q1, ~U) is a stack of length 2 on Q appearing in the fully back-
grounded E-realizable construction over Q (done in N ) and b is the branch of t
indexed in this construction then t_{Mt

b} is according to Σstc
Q .

(2) is indeed enough. To see this, notice that if s = (Q,U∗0 ,Q∗1, ~U∗) is a stack of



230 CHAPTER 10. APPLICATIONS

length 2 indexed in W and c is its branch then for some stack t = (Q,U0,Q1, ~U) as
above if e is the branch of t then s_{Ms

c} is a hull of t_{Mt
e}. If t is according to

Σstc
Q then it follows from hull condensation of Σstc

Q that s is also according to Σstc
Q .

We now work towards showing that t is according to Σstc
Q .

Suppose first that U0 is according to Σstc
Q . We have that ~U is a stack based on Qb1.

Because t is E-certified, we can fix an extender E ∈ E such that t is πE-realizable.
We then have σ : Qb1 → πE(R) such that πE � R = σ ◦πU0,b ◦π ~T ,b. We also have that
~U_{M~U

b } is according to σ-pullback of πE(ΣR). Therefore, t is according to Σstc
Q .

It remains to show that U0 is according to Σstc
Q . Without loss of generality, we

assume that all the initial segments of U0 are according to Σstc
Q . The only way that

U0 could fail to be according to Σstc
Q is if for some Q∗ ∈ ntn(U0) such that πU0,b exists,

(U0)≥Q∗ is above δQ
∗

and the branch of (U0)≥Q∗ chosen in U0 is not according to Σstc
Q .

Let c0 be this branch. We then have that Q(c0, (U0)≥Q∗) exists and appears in the
fully backgrounded E-realizable construction over M+((U0)≥Q∗) (done in N ).

Set Q0 =def Q, Q2 =M+((U0)≥Q∗), W0 =def W and W2 = Q(c0, (U0)≥Q∗). Let
b0 = ΣQ0(U0). Notice that either b0 has a drop or πU0

b0
(δQ0) > δQ2 . It follows that if

we repeat the above argument then we will eventually end up descending indefinitely.
�

The following is an easy corollary of Lemma 10.2.21 and Lemma 10.2.27.

Corollary 10.2.28 Suppose ~T ∈ N is E-certified stack on S. Then if S is not of
lsa type then ~T is according to ΣS and if S is of lsa type then ~T is according to the
minimal component of Σstc

S (see Definition 3.9.8).

We will also need to show that the fully backgrounded E-realizable constructions
reach all the necessaryQ-structures. This is the goal of the next lemma. We continue
with S and ~T .

Lemma 10.2.29 Suppose S is of lsa type, ~T is E-certified and for some Q ∈ B~T ,

T =def
~T≥Q is a normal tree on Q of limit length above δQ

b
. Suppose further that

M+(M(T )) � “δ(T ) is not a Woodin cardinal” but letting c = ΣS(~T ), Q(c, T )
exists. Then Q(c, T ) is an initial segment of the fully backgrounded E-realizable
construction over M+(M(T )) (done in N ).

Proof. Suppose the fully backgrounded E-realizable construction over M+(M(T ))
(done in N ) outputs a model of height δz. Then because this model is universal and
because all stacks indexed in such a model are according to ΣM+(M(T )) (see Corol-
lary 10.2.28) we have that Q(c, T ) appears in this construction. Thus, it is enough to
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show that the fully backgrounded E-realizable construction overM+(M(T )) outputs
a model of height δz.

Suppose this is not the case. We change the notation and let Q =M+(M(T )).
The aforementioned construction can fail to reach a model of height δz only because
we have encountered an E-certified stack t = (Q,U0,Q1, ~U1) on Q but we cannot
find a branch c of t such that t_{Mt

c} is E-certified. The rest of the proof is like

the proof of Lemma 10.2.27. If ~U1 exists then we find such a branch following the
procedure used in the proof of Lemma 10.2.27. If the troublesome tree is U0 then
this, just like in the proof of Lemma 10.2.27, inevitably leads to an infinite descend.

�

10.2.8 ΛS is total

The goal of this subsection is to show that ΛS , the E-certified strategy of S, is
total. Our first lemma shows that E-certified iterations can be continued. Recall
that S ∈ N is an initial segment of some ΣR+-iterate of R+. We start with the
following corollary of Lemma 10.2.21 and Lemma 10.2.25.

Corollary 10.2.30 Suppose ~T is a stack on S that is according to both ΛS and ΣS .
Suppose π

~T ,b exists. Let M = π
~T ,b(R). Then ΣM � N ∈ J [N ] and whenever ~U is

an iteration according to ΣM then ~T _ ~U is E-realizable.

Lemma 10.2.31 The following holds.

1. Suppose S is not of lsa type or if it is then J1(S) � “δS is not a Woodin
cardinal”. Then ΣS � N = ΛS .

2. Suppose S is of lsa type and Ψ is the minimal component of Σstc
S (see Defini-

tion 3.9.8). Then Ψ � N = ΛS .

Proof. In a sense, the proof has already appeared in previous subsections. Here we
only collect the relevant facts.

Because the proof of clause 1 is very similar to the proof of clause 2 and because
the proof of clause 2 is more difficult and is really the only new case that is beyond
[10], we only give the proof of clause 2. We make an extra benign assumption that

S =M+(S|δS). We need to show that if ~T is a stack on S according to ΛS and Σstc
S

then

1. ~T ∈ b(ΛS)↔ ~T ∈ b(Ψ),
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2. ΛS is total,

3. ~T ∈ m(ΛS)↔ ~T ∈ m(Ψ), and

Verifying these three clauses is enough because it follows from Lemma 10.2.24 that
if ~T is according to ΛS then ~T ∈ dom(ΛS). Notice that clause 1 and 2 imply clause

3. Fix a stack ~T on S according to both ΛS and Σstc
S .

We start with clause 1. Suppose ~T ∈ b(ΛS). Then letting b = ΛS(~T ) we have

that ~T _{M~T
b } is E-certified. It follows from Corollary 10.2.28 that b = ΣS(~T ).

Suppose now that b ∈ b(Ψ). We now have two cases.

Suppose first that there is a Q ∈ B~T such that T =def
~T≥Q is a normal tree on Q

above δQ
b
. Because b ∈ b(Ψ), we must have that Q(b, T ) exists. If Q(b, T ) E

M+(M(T )) then it follows that ~T ∈ b(Λ). Assume then that M+(M(T )) E
Q(b, T ). It follows from Lemma 10.2.29 that Q(b, T ) appears in the fully back-

grounded E-realizable construction over M+(M(T )) done in N . Therefore, ~T ∈
b(ΛS).

Suppose then there is Q ∈ B~T such that the rest of ~T≥Q is an iteration based on

Qb. It follows from Lemma 10.2.25 that ΛS(~T ) is defined. Letting b = ΛS(~T ) we

have that ~T _{M~T
b } is E-certified. It follows from Lemma 10.2.28 that b = Ψ(~T ). �

10.2.9 Mixed hod pair constructions

We devote this entire subsection to the definition of construction producing the iter-
ate of R+. In this construction, we use E-certification method to acquire extenders
with critical point δR, and we use the total extenders on the sequence of N to gen-
erate extenders with critical point > δR. We will use the operators introduced in
Section 4.3. Here all operators must be viewed as operators constructed in the model
N ; however, we will omit N from our notation. For convenience, we will repeat some
of the definitions introduced in Section 4.3. Here we will need two extender operators.
First we define E-certified extenders.

Definition 10.2.32 Suppose Q ∈ N is a hod premouse such that ΛQ (see Defini-
tion 10.2.18) is total and Qb = R. Suppose F is an extender such that (Q, F̃ ) is a
reliable lhp where F̃ is the amenable code of F . We say F is E-certified if for some
N -strong cardinal λ, for any E ∈ E such that lh(E) > λ, letting σ : πF (R)→ πE(R)
be given by

σ(x) = πE(f)(π
ΛQ
Q,πE(R)(a))
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where f ∈ R and a ∈ (Q)<ω are such that x = πF (f)(a),

(a,A) ∈ F ↔ σ(a) ∈ πE(A).

We say σ is the E-realizability map.

Definition 10.2.33 (E0, E1, B0, J0) Below we define the four sets E0, E1, B0 and
J0. First if Q ∈ E0 ∪E1 ∪B0 ∪ J0 then Q extends R, Qb = R and N � “ΛQ is a total
strategy” (see Definition 10.2.18). In addition we have the following conditions.

1. Q ∈ dom(E0) if Q ∈ N is a passive lhp and there is an extender F ∗ ∈ N with
the property that crit(F ∗) > δR, an extender F ∈ N over Q and an ordinal ν
such that N � “ν(F ∗) is an inaccessible cardinal”, F = F ∗ ∩ [ν]<ω × Q, and

(Q, F̃ ) is a reliable lhp where F̃ is the amenable code of F and ν(Q,F̃ ) = ν.

2. Q ∈ dom(E1) if Q ∈ N is a passive lhp, Qb = R, ΛQ is total and there is
an extender F such that crit(F ) = δR, (Q, F̃ ) is a reliable lhp where F̃ is the
amenable code of F .

3. Q ∈ dom(B0) if Q = J E,f
α+β ∈ N is a passive lhp such that for some R ∈ Y Q

such that R is a hod premouse and there is a stack ~T ∈ Q−dom(ΣQR) based on

R such that ~T is according to ΣQR, lh(~T ) is not of measurable cofinality in Q,

and there is some cofinal well-founded branch b ∈M of ~T such that β = sup b
and if b̃ is such that α+ γ ∈ b̃ if and only if γ ∈ b then (Q,∈, ~E, f+) is an lhp

where f+ = f ∪ {(Jω(~T ), b)}.

4. Q ∈ dom(J0) if Q is an lhp and Q ∈ N − (dom(E0) ∪ dom(B0)).

The next definition introduces the bad lhps.

(Bad) Suppose M is an lhp extending R such that Mb = R. We say Bad(M)
holds if one of the following conditions hold.

1. M is unreliable (i.e, for some k < ω, Ck(M) doesn’t exist).

2. ρ(M) = δR.

3. N � “ΛM is not total”.

We will have that dom(E0) ⊆ dom(E0) and dom(E1) ⊆ dom(E1) and dom(B) ⊆
dom(B0). All five functions E0, E1, B, J and Lim will be defined by induction.
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Definition 10.2.34 (Stage 0) We set.

1. J(0) = ∅.

2. E0(0) = E1 = B(0) = Lim(0) = ∅.

When defining J, E0, E1, B and Lim, we will maintain the following requirements.

Requirements

1. dom(J), dom(E0), dom(E1), dom(B) and dom(Lim) are subsets of δ.

2. If αNdef = sup{ξ + 1 : ξ ∈ dom(J) ∪ dom(E0) ∪ dom(E1) ∪ dom(B) ∪ dom(Lim))}
then the five sets dom(J), dom(E0), dom(E0), dom(B) and dom(Lim) form a
partition of αN .

3. {β < αN : β is a successor ordinal} ⊆ dom(J).

4. For all β < αN , the value of the hpc-operators at β is either undefined or is an
lhp Q such that for every S ∈ Y Q, S is a hod premouse.

5. Given any Q and S as in clause 4, we let ΛS be E-certified partial strategy of
S (see Definition 10.2.18). We will have that N � “ΛS is total”.

6. If β ∈ dom(E0) ∪ dom(E1) ∪ dom(B) then β is a successor ordinal and β − 1 ∈
dom(Lim))

We start by describing how the operator E0 works.

Definition 10.2.35 (The first extender operator) Suppose J � β, E0 � β, E1 �
β, B � β and Lim � β have been defined, β = γ + 1 and γ is a limit ordinal. Let
Q = Lim(γ).

1. Suppose Q 6∈ E0. Then let E0(β) be undefined.

2. Suppose then that Q ∈ E0.

(a) Suppose there is no triple (F ∗, F, ν) witnessing that Q ∈ E0 with the ad-
ditional property that F ∗ coheres (J � β,E0 � β,E1 � β,B � β, Lim � β).
Then we let E0(β) be undefined.

(b) Otherwise let (F ∗, F, ν) witness that Q ∈ E0 with the additional property
that F ∗ coheres (J � β,E0 � β,E1 � β,B � β, Lim � β). Letting F̃ be the
amenable code of F and M = (Q, F̃ ), set
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E0(β) =

{
undefined : Bad(M) holds

C(M) : otherwise.

Definition 10.2.36 (The second extender operator) Suppose J � β, E0 � β,
E1 � β, B � β and Lim � β have been defined, β = γ + 1 and γ is a limit ordinal. Let
Q = Lim(γ).

1. Suppose Q 6∈ E1. Then let E1(β) be undefined.

2. Suppose then that Q ∈ E1. Let F witness that Q ∈ E1 and set M = (Q, F̃ ).
Then

E1(β) =

{
undefined : Bad(M) holds

C(M) : otherwise.

We split the branch operator into three pieces Bnlsa, Bualsa and Balsa. These
respectively stand for non lsa, unambiguous lsa and ambiguous lsa. We then let
B = Bnlsa ∪ Bualsa ∪ Balsa. Suppose J � β, E0 � β, E1 � β, B � β and Lim � β have been
defined, β = γ+ 1 and γ is a limit ordinal. Let Q = Lim(γ). The following condition
is part of the definition of B.

(B1) Suppose Q 6∈ B0. Then let B(β) be undefined.

Suppose then that Q = J ~E,f
ξ+ν ∈ B0 and S ∈ Y Q is least witnessing this. In the

next three definitions, we will isolate a stack ~T based on S and a branch b of ~T .
Then letting b̃ ⊆ ξ + ν be given by ξ + ζ ∈ b̃↔ ζ ∈ b, set f+ = f ∪ {(trc(~T ), b̃)}. If
one of the following conditions is satisfied then we will let B(β) be undefined.

(B2) sup(b) 6= ν or Bad(Q, f+).

Definition 10.2.37 (The non lsa branch operator) Suppose one of the follow-
ing holds.

1. S /R.

2. S is not of lsa type.

3. S is of lsa type but J1(Q) � “δS is not a Woodin cardinal”.
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Let ~T ∈ Q − dom(ΣQS ) be the Q-least stack that is according to ΣQS , lh(~T ) is not of

measurable cofinality in Q,7 and ΣQS (~T ) is not defined. Set b = ΛQ(~T ). If B2 holds
of (b,Q, f+) then let Bnlsa(β) be undefined. Otherwise set Bnlsa(β) = C(Q, f+).

The following condition is also part of the definition of B.

(B3) Suppose S is of lsa type and J1(Q) � “δS is a Woodin cardinal”. If Q is
not an sts premouse over S based on M+(S|δS) or it is but it is not closed under
sharps then let B(β) be undefined.

Suppose then Q is an sts premouse over S based on M+(S|δS) and Q is closed
under sharps.

Definition 10.2.38 (The ambiguous branch operator) Suppose Q is ambigu-
ous and let t ∈ Q be the Q-least stack of length 2 witnessing this. Again since Q ∈ B0,
we can require lh(t) is not of measurable cofinality in Q. Let Λstc

S (t) = b. If B2 holds
of (b,Q, f+) then let Balsa(β) be undefined. Otherwise set Balsa(β) = C(Q, f+).

Definition 10.2.39 (The unambiguous branch operator) Suppose Q is unam-
biguous. Suppose there is no Q-terminal T that has a Q-shortness witness. Then
let B(β) be undefined. Suppose then that there is a Q-terminal T that has a Q-
shortness witness and T is chosen as in the definition of Q ∈ B0. Let (T , b) ∈ Q
be the lexicographically Q-least pair such that for some (ξ, ν), T is Q-terminal and
(ξ, ν, b) is a minimal Q-shortness witness. If B2 holds of (b,Q, f+) then let Bualsa(β)
be undefined. Otherwise set Bualsa(β) = C(Q, f+).

Finally set B(β) = Bnlsa(β)∪Bualsa(β)∪Balsa(β). Next we define the constructibility
operator.

Definition 10.2.40 (The constructibility operator) Suppose J � β, E � β, B �
β and Lim � β have been defined and β = γ + 1. Let

Q =



E0(γ) : γ ∈ dom(E0)

E1(γ) : γ ∈ dom(E1)

J(γ) : γ ∈ dom(J)

B(γ) : γ ∈ dom(B)

Lim(γ) : γ ∈ dom(Lim)

7 ~T exists because Q ∈ B0.
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Then

J(β) =


undefined : β ∈ dom(E) ∪ dom(B)

undefined : β 6∈ dom(E) ∪ dom(B) and Bad(Q) holds

J1(Q) : otherwise

Finally we define the limit operator.

Definition 10.2.41 (The limit operator) Suppose J � β, E � β, B � β and Lim �
β have been defined and β is a limit ordinal. For γ < β, let

Qγ =



E0(γ) : γ ∈ dom(E0)

E1(γ) : γ ∈ dom(E1)

J(γ) : γ ∈ dom(J)

B(γ) : γ ∈ dom(B)

Lim(γ) : γ ∈ dom(Lim)

Given an ordinal ξ, we let Qξ be the eventual value of Qγ||ξ as γ approaches β
provided this eventual value exists. Then

Lim(β) =


undefined : for some ξ, Qξ is undefined

undefined : Bad(∪ξ∈OrdQξ) holds

∪ξ∈OrdQξ : otherwise.

Recall that we set

αNdef = sup{ξ + 1 : ξ ∈ dom(J) ∪ dom(E0) ∪ dom(E1) ∪ dom(B) ∪ dom(Lim)}.

We then say Q appears at stage β if Q is the value of one of the construction opera-
tors at β. We let Qβ be this model and say that (Qβ,ΛQβ : β < αN ) are the models
and strategies of the mixed hod pair constructions of N over R. Here ΛQβ is the
E-certified strategy of Qβ (see Definition 10.2.18). The following two condition are
our final conditions signaling the halt of the construction.

(Reaching LSA) If for some limit β, Qβ is of lsa type andQβ = Lp
Γ,ΛstcQβ (M+(Qβ|δQβ))

then stop the construction.
(No Strategy) If for someQ appearing in the construction ΛQ is not total or (Q,ΛQ) 6∈
F then stop the construction (see Notation 10.2.12).
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Definition 10.2.42 (Mixed hod pair constructions) The mixed hod pair con-
struction of N over R is the sequence (EN0 ,E

N
1 ,B

N , JN , LimN ). We say that the hod
pair construction is successful if αN = o(N ). We say Q is a model appearing in the
hod pair construction of N if for some β < αN ,

Q =



EN0 (β) : β ∈ dom(EN0 )

EN1 (β) : β ∈ dom(EN1 )

BN (β) : β ∈ dom(BN )

JN (β) : β ∈ dom(JN )

LimN (β) : β ∈ dom(LimN )

10.2.10 The proof of Theorem 10.2.4

The following is the key step towards the proof of Theorem 10.2.4. We do the
proof assuming that R+ is of lsa type. The remaining cases were either handled in
[10] or are very similar and easier. Let Ψ be the minimal component of Σstc

R+ (see
Definition 3.9.8).

Lemma 10.2.43 There is a model Q appearing in the mixed hod pair construction
of N and a normal tree T on R+ such that (T ,Q) ∈ I(R+,Ψ) and ΛQ = ΨQ � N .

Proof. Assume first that such a tree T exists. Then it follows from Lemma 10.2.31
that ΛQ = ΨQ � N . Thus it is enough to show that such a T exists.

Suppose thenM is some model appearing in the mixed hod pair construction of
N such that for some normal tree T on R+ with last model Q, M / Q. Suppose
further that in the next step of mixed hod pair construction, we either index an
extender or a branch. It follows from Lemma 10.2.31 that if we index a branch then
this cannot cause a disagreement between Q and the next model in the construction.
It also follows from the stationarity of fully backgrounded constructions (see [10,
Lemma 2.11]) that if the next indexed object is an extender with critical point > δR

then this too cannot cause a disagreement between Q and the next model.
Suppose then the next indexed object is an extender with critical point δR. We

want to show that this also doesn’t cause a disagreement between Q and the next
model in the construction. Let F be this extender. It follows that F is E-certified.
Let E ∈ E be some extender witnessing that F is E-realizable and let σ be the
E-realizability map (see Definition 10.2.32). It follows σ : πF (R) → πE(R) and
πE � R = σ ◦ πF . We moreover have that
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(1) σ � (πF (R|δR)) is the iteration embedding according to ΨπF (R) � N .

(1) follows from the fact that this embedding just depends on σ � M which is
the iteration embedding according to ΛM = ΨM � N .

We now have two cases. Suppose first that there is no G ∈ ~EQ such that cp(G) =
δR and lh(G) ≥ o(M). Then Q = M+(M) and Q � “δQ is a Woodin cardinal”.
This is a contradiction because we index extenders at successor cardinals (implying
that M has a largest cardinal).

Suppose next that there is such an extender G. Let E∗ be the background
certificate of E and let τ : Ult(N , E) → πE∗(N ) be the canonical factor map. Let
k : πG(R)→ πE∗(R) be given by

k(x) = πE∗(f)(πΣR
R,πE∗ (R)(a))

where f ∈ R and a ∈ (πG(δR))<ω are such that x = πG(f)(a). It follows from
Lemma 9.1.9 that

(2) τ(σ)-pullback of πE∗(ΣR) is ΣπF (R).

It follows from (1) that

(3) τ(σ) � πF (R|δR) is the iteration embedding according to τ(ΨπF (R)).

Combining (2) and (3), we get that τ(σ) = k. It then follows that F = G. This
finishes the proof that there is no disagreement between Q and the next model in
the construction, provided we index an object at M.

Next we analyze the situation when the next model in the construction is obtained
fromM by not indexing anything. This can cause a disagreement between the next
model of the construction and Q provided there is an object indexed in Q. As
before, because ΛM = ΨM � N , such a disagreement cannot happen because of
strategy disagreements. We claim that such a disagreement cannot happen because
of an extender with critical point δQ = δR.

Suppose then, toward a contradiction, that we have an extender F ∈ EQ such
that cp(F ) = δR. Suppose further thatM = Q|lh(F ) and either F 6∈ N or F is not
E-certified (as otherwise we would have to put F on the sequence of our construction).
Let λ be a δz-strong cardinal of N ∗z such that λ is also an N -strong cardinal and
F,Q ∈ N ∗z |λ. Let E ∈ E be any extender such that λ < lh(E). Let E∗ be the
background certificate of E and let τ : Ult(N , E)→ πE∗(N ) be the canonical factor
map.
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We define k : πF (R)→ πE∗(R) as above by setting Let k : πF (R)→ πE∗(R) be
given by

k(x) = πE∗(f)(πΣR
R,πE∗ (R)(a))

where f ∈ R and a ∈ (πF (δR))<ω are such that x = πF (f)(a). We have that

(4) ΨπF (R) is the k-pullback of πE∗(ΣR) and k � (πF (R|δR)) is the iteration em-
bedding according to ΨπF (R).

Notice that (5) ΨM � Ult(N , E) ∈ Ult(N , E).

(5) follows because λ is a strong cardinal in Ult(N , E). Because crit(τ) > λ, we
have that

(6) τ(ΨM � Ult(N , E)) � (πE∗(N )|λ) = ΨM � (N|λ).

Again, because λ is a strong cardinal in all relevant models, it follows from (6)
that

(7) ΨM � πE∗(N ) = τ(ΨM � Ult(N , E)).

Because k � (πF (R|δR)) depends only on k �M, it follows from (4) and (7) that

(8) k �M∈ rng(τ).

It is now routine to check that m =def τ−1(k � M) ∈ Ult(N , E) defined F as
follows:

(a,A) ∈ F ↔ m(a) ∈ πE(A).

This finishes the proof of Lemma 10.2.43. �

We have now finished proving Theorem 10.2.4.

10.2.11 A proof of Lemma 10.2.5

In this subsection we outline the proof of Lemma 10.2.5. The proof is very similar
to the proof of [10, Lemma 6.23]. Suppose that there is no hod pair or an sts hod
pair (P ,Σ) such that
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1. Σ has strong branch condensation and is strongly fullness preserving,

2. Γ(P ,Σ) ⊆ Γ ⊆ L(Σ,R)

Just like in the proof of [10, Lemma 6.23], it follows from Theorem 10.1.1 that Γ is
not a mouse full pointclass (as we are assuming that Lα(Γ,R) � SMC). Following
the proof of [10, Lemma 6.23], we let A be the set of hod pairs or sts hod pairs
(P ,Σ) such that Code(Σ) ∈ Γ and Σ has strong branch condensation and is strongly
fullness preserving. It follows from Claim 1 on page 158 of [10] that A 6= ∅. It follows
from Claim 2 on the same page of [10] that if

Γ1 = ∪(P,Σ)∈AΓ(P ,Σ)

then

(1) Γ1 is a mouse full pointclass such that for some limit ordinal α there is a sequence
of mouse full pointclasses (Γβ : β < α) such that for β < γ < α, Γβ Emouse Γγ and
Γ1 = ∪β<αΓβ.

It follows from Theorem 10.1.1 that there is a possibly anomalous hod pair (P ,Σ)
such that either

1. P is of lsa type and Γb(P ,Σ) = Γ1 or

2. P is not of lsa type and Γ(P ,Σ) = Γ1.

Because Γ � SMC and because Γ1 /mouse ℘(R), we must have that Σ is strongly
fullness preserving (for instance see [10, Lemma 6.21]). Notice that even if clause 1.b
of Theorem 10.1.1 applies, we still get a hod pair as apposed to an sts pair. This is
because we have good pointclasses beyond Γ.

Notice also that Code(Σ) 6∈ Γ, as otherwise it follows from Claim 2 on page 158
of [10] that (P ,Σ) ∈ A. Thus, it must be the case that P is an anomalous hod
premouse. We now get a contradiction as in page 159 of [10], where it is argued that
the computation of HODL(Σ,R) gives a contradiction.

10.3 A proof of LSA from large cardinals

In this section, we generalize [10, Theorem 6.26].

Theorem 10.3.1 The theory AD+ + LSA + V = L(℘(R)) is consistent relative to a
Woodin cardinal that is a limit of Woodin cardinals.
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Proof. Woodin showed that it is consistent relative to a Woodin cardinal that is
a limit of Woodin cardinals that there are divergent models of AD+, i.e., there are
sets of reals A,B ⊆ R such that L(A,R) � AD+, L(B,R) � AD+, A 6∈ L(B,R)
and B 6∈ L(A,R). Moreover, his construction shows that we can assume that both
L(A,R) and L(B,R) satisfy MC+Θ = θ0. Thus, we assume that such a pair of
models exists.

Suppose towards a contradiction that there is no inner model satisfying AD+ +
LSA + V = L(℘(R)). Let Γ = L(A,R) ∩ L(B,R) ∩ ℘(R). It is unpublished theorem
of Woodin that L(Γ,R) � ADR. We also have that Γ = ℘(R) ∩ L(Γ,R). Applying
Lemma 10.1.1 in L(A,R) and in L(B,R) we get two hod pairs or sts hod pairs
(P ,Σ) ∈ L(A,R) and (Q,Λ) ∈ L(B,R) such that both P and Q are of limit type
and Γ = Γ(P ,Σ) = Γ(Q,Λ).

Let M∗ = ∪(S,Ψ)∈B(P,Σ)M∞(S,Ψ) and for α < λM
∗

let Ψα be the iteration
strategy ofM∗(α) obtained from any (S,Ψ) such thatM∗(α) =M∞(S,Ψ). Notice
thatM∗ and Ψα are independent of (P ,Σ); using (Q,Λ) instead of (P ,Σ) yields the
same model M∗ and the same strategy Ψα. Let

MA = (Lp⊕α<λM∗Ψα(M∗))L(A,R) and MB = (Lp⊕α<λM∗Ψα(M∗))L(B,R).

We then have that either MA EMB or MB EMA. Without loss of generality we
assume that MA EMB.

Let π : Pb → M be the iteration embedding given by Σ. It follows from the
proof of Claim 7 appearing in the proof of Theorem 8.2.6 that Σ ∈ L(π[P ],M,Γ).
However, because π[P ] is a countable set we have that π[P ] ∈ L(B,R). It follows that
Σ ∈ L(B,R). Therefore, Code(Σ) ∈ Γ implying that Γ(P ,Σ) ⊂ Γ, contradiction! �



Chapter 11

A proof of square in lsa-small hod
mice

Definition 11.0.2 For a cardinal κ and a cardinal γ ≤ κ, the principle �κ,γ states

that there is a sequence 〈~Cα : α < κ+〉 such that for each α < κ+

1. ~Cα 6= ∅ and for each C ∈ ~Cα, C is a closed unbounded subset of α of order type
at most κ,

2. |~Cα| ≤ γ,

3. for each C ∈ ~Cα, for each β ∈ lim(Cα), C ∩ β ∈ ~Cβ.

If γ = 1, then the principle �κ,γ is simply �κ.

Pure extender models are models constructed from a canonical sequence of ex-
tenders. Jensen (cf. [4]) initiated the program of understanding square principles
in pure extender models by proving L � ∀κ �κ. Building on works of several peo-
ple, Schimmerling and Zeman (cf. [17]) give the most optimal characterization of �
in (short) extender models, namely they prove that in an iterable, short extender
model, �κ holds if and only if κ is not subcompact. Results on squares in extender
models are important in understanding structure theory of such models and have
found many applications in set theory. The reader can see, for instance, [16] and
[5], for some of the applications of square in extender models in computing lower-
bound consistency strength of theories like PFA. Recent advances in the core model
induction methods have indicated that to improve the lower-bounds of combinatorial
principles like PFA, failure of square at a singular cardinal, the existence of guessing

243
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models etc., one way is to prove square holds in the hod mice that are currently
being studied and constructed.

All known square proofs in extender models rely heavily on the fine-structure
of such models, in particular, they make essential use of condensation properties of
these models (cf. [17, Lemma 1.6]). Unfortunately, the full condensation lemma,[17,
Lemma 1.6], does not hold in hod mice. However, it is possible to overcome this
shortcoming. We present here a proof of �κ,2 in an lsa-small hod mouse P for all
cardinal κ of P . In this chapter by lsa-small hod mouse, we mean that P does not
contain an active ω Woodin lsa mouse as defined in Definition 8.2.2.

We first set up some terminology. Our hod premice P are lsa-small and hence for
no α < λP , P(α) is an lsa hod premouse. Throughout this paper, if Q is an initial
segment of P , we let ΣQ denote the restriction of Σ to Q. If P is of limit type and
has a top window [δPα , δ

P
α+1), then we let Pb = P|(δPα

+
)P . See Section 11.1 for a more

detailed discussion of hod mice along with the definitions used in statements of this
section. In the definitions below, we adapt the Σ∗-language (see [17]) to hod mice
in the obvious way. Let ρnQ be the nth-projectum of Q, and pnQ be the nth-standard
parameter of Q.1 Semantically, suppose Q is an initial segment of P , a relation
A ⊂ |Q| is Σ

(n)
l (Q) from p, or Σ

(n)
l (Q), if it is Σl from p (or Σl) over the nth-reduct

〈Hn
Q, A

n
Q〉 of Q, where Hn

Q = |Q|ρnQ| and AnQ is the nth standard master code (with
respect to pnQ) of Q.

Definition 11.0.3 Suppose Σ is an iteration strategy for a hod premouse P. Sup-
pose Γ is an inductive-like pointclass. We say that Σ is locally strongly Γ-fullness
preserving if Σ is Γ-fullness preserving and if P is of limit type with a top window
and whenever (~T ,S) ∈ I(P ,Σ), and

π
~T ,b : Pb → Sb exists,

then letting π = π
~T ,b, whenever Sb�W�S is such that for some n and some cardinal

κ of W,

o(Sb) ≤ ωρn+1
W ≤ κ < ωρnW ,

and τ : R →W is cardinal preserving and Σ
(n)
0 and ωρnR > cr(τ) ≥ ωρn+1

R = ωρn+1
W ,

then the τ -pullback of the strategy ΣW,~T is Γ-fullness preserving.

1Other notations for the nth-projectum and nth-standard parameter of Q used elsewhere in this
book are ρn(Q) and pn(Q) respectively. For this chapter, we stick to the more compact notations
ρnQ and pnQ.
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Definition 11.0.4 Suppose Σ is an iteration strategy for a hod premouse P. We
say that Σ has locally strong branch condensation if Σ has branch condensation and
if P is of limit type with a top window and κ is a cardinal of P such that

o(Pb) ≤ κ,

and Q is such that Pb � Q � P, and n is such that ωρn+1
Q ≤ κ < ωρnQ, and S is

a ΣQ-iterate along a stack ~T such that π
~T ,b exists, and τ : Q → R is a cardinal

preserving, Σ
(n)
0 -embedding such that R� S and (Q∗)b = Rb for some non-dropping

ΣQ-iterate Q∗ of Q. Suppose also that letting j : Q → Q∗ be the iteration map, then
j � Qb = τ � Qb. Then Στ

R,~T = ΣQ.

We seem to need to strengthen the usual notions of fullness preservation and branch
condensation (as in Definitions 11.0.3 and 11.0.4) to ensure that various phalanx
comparison arguments go through in the proof of Theorem 11.0.5. In most (but not
all) applications, the map π in Definitions 11.0.3 and 11.0.4, is the identity and τ is
the uncollapse map associated to a sufficiently elementary hull. The main theorem
is the following.

Theorem 11.0.5 Suppose (P ,Σ) is an lsa-small hod pair such that Σ has locally
strong branch condensation and is locally strongly Γ-fullness preserving for some
inductive-like pointclass Γ that satisfies “AD+ + SMC”. Then P � ∀κ �κ,2.2

Many techniques in the proof of 11.0.5 come from the Schimmerling-Zeman’s
proof in [17]. In Section 11.1, we import some results from the theory of hod mice
we need. In Section 11.2, we will import some terminology, results from [17] that we
need here. We also explain in this section why a straightforward adaptation of [17]
fails in the context of hod mice. In Section 11.3, we give the actual proof of Theorem
11.0.5.

Finally, we remark that hod pairs constructed in practice (those constructed in
sufficiently strong AD+ models or in the core model induction settings) do have the
properties in the hypothesis of Theorem 11.0.5. The main application of Theorem
11.0.5 in this book is to improve the lower-bound consistency strength of various
theories such as PFA to that of LSA (see Chapter 12).

2The assumption that P is lsa-small implies that there are no subcompact cardinals in P and
all extenders on the P-sequence are short.
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11.1 Ingredients from hod mice theory

We summarize some definitions and results of the hod mice theory developed above
that we need to prove Theorem 11.0.5. Suppose (P ,Σ) is an lsa-small hod pair. P
is constructible from a sequence of extenders and a sequence of strategies of its own
initial segments. There are two ways in which an initial segmentQ of P can be active:
B-active and E-active. Q is B-active the top predicate for Q (amenably) codes a
branch for some tree on an initial segment of Q. Q is E-active if the top predicate
of Q codes an extender. Otherwise, we say that Q is passive. B-active levels and
passive levels are more or less treated the same way in the proof of Theorem 11.0.5.

A few words about how the B-predicate codes up branches for an iteration tree
T in P is in order. Suppose λ = lh(T ) is limit and P|γ is B-active such that BP|γ

codes a cofinal branch b of T . The traditional way that B codes b is that letting
γ∗+λ = γ, BP|γ = {γ∗+α | α ∈ b}. While this approach is sufficient for developing
the basic theory of strategic premice and certainly is sufficient for the theory of hod
mice we have developed so far, it seems to create significant obstructions in the proof
� in this chapter. So instead, we use the coding method developed in [20]. Using [20,
Definition 2.26], we let P|γ = B(P|γ∗, T , b). The reader is advised to consult [20] for
the precise definition of B(P|γ∗, T , b). Roughly, for every 0 < α < λ, P|(γ∗ + ωα)
is B-active and BP|(γ

∗+ωα) codes the branch [0, α)T and BP|γ codes b in the manner
described above. The use of the B-operator in coding branches of iteration trees will
be explained in Section 11.3.

We briefly discuss indexing schemes for extenders on the P-sequence. Suppose
κ is a cardinal limit of cutpoints of P , and if E is an extender on the P ’s sequence
such that cr(E) = κ, then the index of E is γ where γ is the successor cardinal of
the least cutpoint above κ in Ult(P , E) (we call this cutpoint indexing scheme). It
turns out that such extenders are all total over P . Suppose E is an extender with
critical point ξ and E is indexed according to the cutpoint indexing scheme. Then
according to [22], for all γ < lh(E), E � γ is not on the P-sequence, though E � γ ∈ P
(for γ below the sup of the generators of E) and the trivial completion of E � γ is
on the P-sequence for various γ (this is similar to the initial segment condition for
Jensen indexing). Also, the set of indices of extenders with a fixed critical point ξ
indexed according to the cutpoint indexing scheme is nowhere continuous. For other
extenders on P ’s sequence, we use the Jensen indexing scheme (this is for convenience
of importing terminology and results from [17]; the result we prove here for hod mice
with the Jensen indexing scheme will also hold for hod mice with the Mitchell-Steel
indexing scheme by results of [3]). Suppose E is an extender with critical point ξ
on the sequence of P and E is indexed by the Jensen indexing scheme, that is the
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index of E in P is the successor cardinal of iE(ξ) in Ult(P , E). For a summary of
the fine structure, see [17, Section 1]. A couple of remarks regarding the adaptation
of [17, Section 1] into our situation are in order. First, we still demand extenders
indexed according to the Jensen indexing to satisfy the initial segment condition
(ISC) in the sense of [17, Section 1.4]; that is for all γ < lh(E), if γ is a cutpoint of
E, then E � γ ∈ |P|lh(E)|. Secondly, under this initial segment condition, using the
assumption that our hod premice are lsa-small, it’s easy to see that these extenders
E are all of type A, that is the set of cutpoints is empty; this is because there are no
superstrong cardinals in lsa-small hod mice. The initial segment condition (for both
indexing schemes) is needed to prove comparisons terminate.

If P is a hod premouse, we let λP denote the order type of the Woodin cardinals
of P and (δPα : α < λP) enumerate the closure of the set of Woodin cardinals in P .
If P has a largest Woodin cardinal, we denote that δP . Recall we use Pb to denote
the “bottom part” of P in the case that P has a top window [κ = δPα , δ

P), where

κ is either a Woodin or limit of Woodins in P . In this case, Pb = LpΣPκ ,P(P|κ),
where ΣPκ = ⊕β<αΣPP(β). In the case α is a limit ordinal, Pb = P|((κ)+)P . In this
case, if κ happens to be measurable in P , then all extenders E on the P sequence
with critical point κ are indexed according to the cutpoint indexing scheme. Notice
that since P is lsa-small, κ is a cutpoint (but not a strong cutpoint) in P , though κ
is a strong cutpoint in Pb = P|(κ+)P . Let o(κ) be the supremum of the indices of
extenders on the P sequence with critical point κ. If P is of limit type (κ < o(κ)) or
of lsa type (κ < o(κ) = δP), then there may be local large cardinals in the interval
(κ, o(κ)), e.g. there may be a γ ∈ (κ, o(κ)) which is Woodin in some initial segment
Q of P ; such large cardinals are witnessed by the extender sequence and the short
tree strategy of initial segments of Q, but not the full strategy. This point is crucial
in many arguments given below (see Lemma 11.1.1).

Suppose (P ,Σ) is a hod pair such that Σ is Γ-fullness preserving for some inductive-
like pointclass and has branch condensation. Suppose R � P is an initial segment
of P , then we let ΣR denote the restriction of Σ to trees based on R. Let I(P ,Σ)

denote the set of (~T ,R) where ~T is a stack according to Σ with last model R. In this

case, the “~T -tail” of Σ, denoted Σ~T ,R, is a strategy for R. We let B(P ,Σ) denote

the set of (~T ,R) where ~T is according to Σ and R is a strict hod-initial segment of

N ~T , the last model of ~T . We let Γ(P ,Σ) be the set of A ⊆ R such that A <w Σ~T ,R

for some (~T ,R) ∈ B(P ,Σ). Note that Γ(P ,Σ) is a Wadge initial segment of Γ. We
say that P generates Ω if Γ(P ,Σ) = Ω.

The following fact will be used in many places throughout this chapter, and whose
proof is essentially that of 4.9.2.
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Lemma 11.1.1 (No strategy disagreement) Suppose (P ,Σ) is an lsa-small hod
pair such that P has a top window [δPα , δ

P) and δPα is not a strong cutpoint of P, Σ
has locally strong branch condensation and is locally strongly Γ-fullness preserving
for some constructibly closed pointclass Γ � “AD+ + SMC”. Suppose π : P ′ → P∗ for
some cardinal preserving, Σ

(n)
0 map π such that Pb�P∗�P, and ωρnP∗ > cr(π) =def

γ > ωρn+1
P ′ = ωρn+1

P∗ ≥ o(Pb) and ρn+1
P∗ is a cardinal of P. Then letting Λ = Σπ

P∗,
the comparison of the phalanx (P∗,P ′, γ) (using Λ) versus P∗ (using ΣP∗) does not
involve disagreements of strategies.

Lemma 11.1.1 is useful since it reduces such comparisons to ordinary extender
comparisons. Such phalanx comparisons will appear in many places in the proof
of Theorem 11.0.5. A corollary of this is the following version of the Condensation
Lemma for hod mice (cf. [35, Lemma 9.3.2]). For notations used in the statement of
the lemma, see [17, Section 1.3].

Theorem 11.1.2 Suppose (P ,Σ) is an lsa-small hod pair such that P has a top win-
dow [δPα , δ

P) and δPα is not a strong cutpoint of P, Σ has locally strong branch con-
densation and is locally strongly Γ-fullness preserving for some constructibly closed
pointclass Γ � “AD+ + SMC”. Suppose Pb �M � P, M̃ is a hod premouse, and
σ : M̃ → M is a cardinal preserving and Σ

(n)
0 embedding such that σ � ωρn+1

M̄ = id,

where ωρn+1

M̃ = ωρn+1
M ≥ o(Pb) is a cardinal of P.34 Then M̃ is solid and pM is

k-universal for all k ∈ ω. Furthermore, if M̃ is sound above ν = cr(σ) the one of
the following holds:

(a) M̃ =M and σ = id.

(b) M̃ is a proper initial segment of M.

(c) M̃ = Ult∗(M||η,EMα ) where ν ≤ η < o(M), α ≤ ωη and ν = (κ+)M||η where
κ = cr(EMα ); moreover, EMα has a single generator κ.

(d) M̃ is a proper initial segment of Ult(M, EMcr(σ)).

Remark 11.1.3 If δα is a strong cutpoint of P, then it follows simply from the
definition of hod premice that for all κ ∈ [δα, δ), �κ holds in P; this is because
P is a ΣPα -premouse (Σα is the strategy for P(α)) and the � proof of [17] adapts

3In the Mitchell-Steel language, one requires σ to be a weak n-embedding such that σ′′TM̄n ⊆
TMn .

4If ωρn+1

M̃ = ωρn+1
M = o(Pb), then since o(Pb) is a cardinal of P, cr(σ) > o(Pb). Equality can

happen in other cases.
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straightforwardly. On the other hand, if δα is not a strong cutpoint of P, then
Theorem 11.1.2 is false if one required that the embedding σ have critical point δα.
This is because of the fact that no partial extenders of critical point δα are indexed
on the interval [δα, δ

+
α ] in P.

The proof of the theorem is essentially that of [35, Theorem 9.3.2]. The idea
is one compares the phalanx (M,M̃, cr(σ)) against M. Depending on how the
comparison terminates, one gets one of the four possibilities in the statement of
the theorem. Using locally strong Γ-fullness preservation and the fact that cr(σ) >
ωρn+1
M , Lemma 11.1.1 shows that the comparison is an extender comparison (no

strategy disagreements are encountered). This puts us the in the situation to apply
the proof of [35, Theorem 9.3.2] (the Dodd-Jensen-like property we assume as part of
locally strong branch condensation is enough to carry out the proof of [35, Theorem
9.3.2]). To illustrate the main ideas, we present a proof of a special case, which often
shows up in the �-constructions.

Proof.[Proof of a special case] We assume M̃ is sound. Let τ̃ = cr(σ) and let
τ = σ(τ̃). We further assume that: letting κ = ωρn+1

M , τ = (κ+)M, and hence

τ̃ = (κ+)M̃. In this case, we prove that M̃ �M. The reader can see [35, Theorem
9.3.2] for the full argument.

Claim 11.1.4 Let Λ = Σσ
M. Then the comparison of the phalanx (M,M̃, τ̃) and

M using Λ and ΣM respectively is successful. Furthermore, the main branch on the
phalanx side doesn’t drop (in model or degree) and is above M̃, and the M side
doesn’t move.

Proof. Using strong fullness preservation of Σ, Λ is fullness preserving; so the compar-
ison can be carried out. By Lemma 11.1.1, the comparison is an extender comparison
(no strategy disagreements show up in the comparison). Now we use strong branch
condensation to prove the claim. The proof is a fairly standard argument. Let T
and U be the trees on (M,M̃, τ̃) and M respectively that are generated by the
comparison (via Λ and ΣM respectively). The comparison terminates successfully
with Q being the last model of T and S being the last model of U .

Let σT be the copy tree and σ∗ : Q → Q∗ be the copy map, where Q∗ is the last
model of σT . Note then that σT is via ΣM.

Suppose Q is above M. We prove this case is impossible. Suppose Q � S and
hence the branch embedding πT exists. Note that (Q∗)b�Q andQ∗ is a non-dropping
ΣM iterate. Hence by strong branch condensation,

ΣπT
Q,T = ΣM.
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The usual Dodd-Jensen argument yields a contradiction. The main point is that the
tree πT U is via ΣQ,U .

Suppose now S �Q and hence the branch embedding πU exists. Note then that
σ∗(S) �Q∗. Again, by strong branch condensation,

Σσ∗�S◦πU
σ∗(S),σT = ΣM.5

The usual Dodd-Jensen argument then yields a contradiction. The main point is
that (σ∗ � S ◦ πU)σT is according to ΣQ∗,σT .

The above arguments easily give us that: Q = S and πT , πU both exist and they
are equal. We can then find a pair of extenders (E,F ) used on T and U respectively
such that E and F are compatible. By a standard argument, this is not possible.

Hence Q is on the main branch above M̃. Note then that if πT exists, then
cr(πT ) > τ̃ . Say b is the main branch of T . Then b cannot drop (in model or degree)

as otherwise, we have S�Q and πU exists. As before, σ∗(S)�Q∗ and ΣM = ΣπU◦σ∗�S
Q∗,σT .

We get a contradiction as before.
So b doesn’t drop. Since M̃ is κ-sound, ρωM̃ = κ < τ̃ and the branch b is above τ̃

and does not drop in model or degree, we get that b = ∅. And hence Q = M̃. Now
it’s not the case that S is a strict segment of Q = M̃; otherwise, πU exists and

σ∗ ◦ πU :M→ σ∗(S) �Q∗.

We get a contradiction as before.
If S = Q = M̃, then U ’s main branch doesn’t drop. This is because M̃ is

sound. Note also that U 6= ∅ since otherwise, M = M̃ which is impossible (after

all, τ = (κ+)M > τ̃ = (κ+)M̃). Now ρωM = ρωM̃ = κ and if there is an extender
E used along the main branch of U such that ν(E) > κ 6 then S is not κ-sound.
Contradiction.

So for all E used along the main branch of U , ν(E) ≤ κ. If for all such E,
ν(E) < κ, then since M|κ = M̃|κ = Q|κ, S|κ 6= Q|κ. Contradiction. If there
is some such E such that ν(E) = κ, then U must drop since otherwise, ρωS > κ.
Contradiction.

So Q � S. We claim that Q = M̃ �M. It suffices to show U = ∅. Otherwise,
let E = EU0 . Then

lh(E) ≥ τ̃ and lh(E) < o(Q) = o(M̃). (11.1)

5Note that in this case, Sb = σ∗(S)b. The last equality follows from the fact that σ∗ has critical
point > o(Qb) ≥ o(Sb).

6ν(E) is the sup of the generators of E.
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Note that lh(E) is a cardinal of S strictly larger than κ and |o(Q)|S = ρωM̃ = κ. This
contradicts 12.2. This completes the proof of Claim 11.1.4. �

Using the claim, it is easy to see that M̃ �M (that is, case (b) holds). This is
because the branch embedding on the phalanx side must have critical point > κ and
M̃ is κ-sound, so the branch is trivial with end model M̃. �

11.2 Ingredients from the Schimmerling-Zeman con-

struction

In this section, we briefly remind the reader of the �-construction in [17]. First,
the reader should recall from [17] the notions of a protomouse and a pluripotent
level of L[E] (we give definitions of these notions in the context of hod premice in
Section 11.3.1). See the beginning of [17, Section 2] for a fairly detailed discussion
on how protomice appear in interpolation arguments. Basically, protomice arise in
interpolation arguments where the target structure is a pluripotent level. The reader
should see the definition of divisor, [17, Section 2.1], and strong divisor, [17, Section
2.4] (these notions are also defined in Section 11.3.1 for hod premice). Divisors
identify protomice in interpolation arguments and (canonical) strong divisors in some
sense are those (amongst many possible divisors of a given collapsing structure) that
one uses in the course of the construction.

We proceed to briefly outline the proof of �κ in L[E] as done in [17]. To get
the main ideas across in a reasonable amount of space, we will be imprecise at
various places. The reader can see [17, Section 3] for a precise construction of the
�κ-sequence (Cτ : τ < κ+). The proof starts by choosing the collapsing structure
Nτ for κ < τ < (κ+)L[E]: Nτ is the first level of L[E] that satisfies “τ = κ+” and
ρωNτ = κ. There is a club S ⊂ κ+ of such τ in L[E]. We further require that for
each τ ∈ S, J E

τ ≺ J E
κ+ . For each τ ∈ S, let S1 ⊆ S be the set of τ for which the

strong divisors of Nτ exists (and let (µ(Nτ ), q(Nτ )) be the canonical strong divisor
and Nτ (µ(Nτ ), q(Nτ )) be the unique associated protomouse as defined at the end of
[17, Section 2]). Let S0 = S − S1.

For τ ∈ S0, the associated club Cτ ⊂ τ can be constructed by Jensen’s method
of constructing �-sequences in L. In this case, Cτ is a tail-end of the set Bτ of all
τ̄ ∈ S0 ∩ τ such that:

• Nτ̄ is a premouse of the same type as Nτ and nτ̄ = nτ , where for a σ ∈ S, nσ
is the least n such that ωρn+1

Nσ ≤ κ < ωρnNσ .
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• There is a map στ̄ ,τ : Nτ̄ → Nτ that is Σ
(nτ )
0 -preserving with respect to the lan-

guage of premice and such that: τ̄ = cr(στ̄ ,τ ), στ̄ ,τ (τ̄) = τ , στ̄ ,τ (p(Nτ̄ )) = p(Nτ ),
and each α ∈ p(Nτ ) has a generalized witness with respect to (Nτ , p(Nτ )) in
the range of στ̄ ,τ . Here, and later, p(Nτ ) is the nthτ -standard parameter of Nτ .

For τ ∈ S1, the set Cτ will be a tail-end of the set Bτ of τ̄ ∈ S1 ∩ τ that satisfies:

• (µ(Nτ̄ ), |q(Nτ̄ )|) = (µ(Nτ ), |q(Nτ )|); here by definition of divisors, q(Nτ ) is a
bottom initial segment of d(Nτ ), the Dodd-parameter of Nτ .

• There is a map στ̄ ,τ : Nτ̄ (µ(Nτ̄ ), q(Nτ̄ )) → Nτ (µ(Nτ ), q(Nτ )) that is Σ0-
preserving with respect to the language for coherent structures such that:
τ̄ = cr(στ̄ ,τ ), στ̄ ,τ (τ̄) = τ , στ̄ ,τ (q(Nτ̄ )) = q(Nτ ), and each α ∈ q(Nτ ) has a
generalized witness (with respect to (Nτ (µ(Nτ ), q(Nτ )), q(Nτ )) in the range of
στ̄ ,τ .

Now we focus on the key point: the proof that Bτ is unbounded in τ if τ ∈ S1

and cof(τ) > ω in L[E]. Fix such a τ and let κ < γ < τ be arbitrary. We want
to find a γ < τ̄ < τ in Bτ . Working in L[E], fix some θ >> κ and let X ≺ Hθ be
countable such that all relevant objects are in X, in particular {κ, τ, γ} ∈ X. Let
σ : M̄ → M be the uncollapse map of X ∩M, where M = N (µ(Nτ ), q(Nτ )). We
write σ−1(x) = x̄ for each x in the range of σ. Let τ̃ = sup(σ′′τ̄). Let σ̃ : M̄ → M̃
come from the (cr(σ), τ̃)-extender derived from σ. Also, let σ′ : M̃ →M be given by
the interpolation lemma [17, Lemma 1.2]. In this case, M̃ = (N , F̃ ) is a protomouse
(even if N (µ(Nτ ), q(Nτ )) = Nτ since in this case, Nτ is a pluripotent level of L[E]
and the map σ′ is not cofinal). The way one shows τ̃ ∈ Bτ is as follows. Let M∗

be the largest segment of N such that F̃ measures all sets in M∗. One then shows
that Ult(M∗, F̃ ) is Nτ̃ . Say M = (M−, F ). This is accomplished by applying the
condensation lemma [17, Lemma 1.6] to φ : Ult(M∗, F̃ )→ πF (M∗) such that

φ(πF̃ (f)(a)) = σ′(f)(πF (a))

where πF is the F -ultrapower embedding applied to the largest initial segment of
M− that makes sense.

The key for the proof above is that we can always compare two iterable pure
extender models; in this case, we compare the phalanx (πF (M∗),Ult(M∗, F̃ ), τ̃)
against πF (M∗). If one adapted this argument to hod mice, it fails because the hod
mice πF (M∗) and Ult(M∗, F̃ ) generally belong to two different pointclasses, and
hence cannot be directly compared (though if the map σ′ has critical point ≥ o(Pb)
for some hod premouse P with a top window, then these objects can be compared).
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The fix for this, as done in the next section, is to sometimes allow for the collapsing
structure of τ , Nτ , to not be an initial segment of the hod mouse and incorporate
this kind of collapsing structures into the construction. It is this aspect that forces
the construction to yield a weaker result, i.e. �κ,2, rather than �κ.

One other new situation in the hod mouse case that does not come up in the
L[E] case is the following. Suppose in the above, M = Nτ is B-active. Then the
way branches are coded into the model (using the B-operator as discussed in the
previous section) allows us to show that M̃ is a B-active hod premouse. If one used
the traditional coding of branches, then M̃ may fail to be a hod premouse; this is
the reason we switch to the coding of branches via the B-operator. We will discuss
this in more details in the next section.

11.3 The proof

We give a proof of Theorem 11.0.5, making use of the notions, notations, and proofs
in [17] whenever applicable. We only focus on the details that are new in our situation
and direct the reader to constructions in [17] that are obviously generalizable to our
situation.

11.3.1 Some set-up

We will use the fine-structure terminology and notations from [17, Section 1], gen-
eralized to our context in an obvious way. For example, notions in [17] that are
defined using the language of premice are defined here using the language of hod
premice; when we talk about a coherent structure in this paper, we mean a structure
M of the form (Q, F ) where Q is an amenable structure in the language of hod
premice and F is a whole extender at (κ, λ) (in the language of [17, Section 1] ) with
dom(F ) = ℘(κ) ∩ Q|ᾱ for some ᾱ ≤ (κ+)M and Q � Ultn(Q|ᾱ, F ) = N , where n
is the least such that ρn+1

Q|ᾱ = κ. We say N is the hod premouse associated with M .

The notion of a generalized witness for some ordinal α with respect to a pair (M, s)
where M is a coherent structure, s is a finite set of ordinals (or a generalized witness
for an ordinal α with respect to a hod premouse N associated with M and some
finite set of ordinals r∪ s) in [17] is generalized in an obvious way to our context.7 A
protomouse P = (Q, F ) is a coherent structure where F is an extender with critical

7Let M,N, κ, λ be as above and s ⊂ λ is finite. The standard witness Wα,s
M for α with respect to

M and s to be the transitive collapse of hM (α∪{s}), where hM is the canonical Σ1-Skolem function
of the coherent structure M . Similarly, Wα,r∪s

N denotes the standard witness for α with respect

to N and r ∪ s and is the transitive collapse of H̃n+1
N (α ∪ {r ∪ s}), where h̃n+1

N is the canonical
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κ such that F does not measure ℘(κ)Q. A pluripotent level of a hod premouse P is
an E-active initial segment Q of P such that cr(EQtop) < κ and ωρ1

Q = κ, where κ is
a cardinal of P .

Fix (P ,Σ) as in the hypothesis of Theorem 11.0.5. Fix κ ≥ δP
b
, a cardinal of

P . Working in P , let µ = δP
b

and S ⊂ κ+ be the club of κ < τ < κ+ such that
P|τ ≺ P|κ+. Let N ∗τ � P be the collapsing level for τ , that is N ∗τ the least initial
segment N of P such that N � τ = κ+ and ρωN = κ. Let γτ be the sup of indexes of
extenders E on the sequence of N ∗τ such that cr(E) = µ. Without loss of generality,
we may assume throughout this paper that

µ is measurable in P ; κ ≥ o(Pb); and supτ∈S(γτ ) ≥ κ+.8

The following follow easily from the definitions and our assumption.

Proposition 11.3.1 1. o(N ∗τ ) > τ .

2. γτ ≥ τ .

Extenders E with cr(E) = µ play a special role in this construction. Recall these
extenders are indexed according to the cutpoint indexing scheme. Note that µ is
a strong cutpoint of Pb, that is, there are no partial extenders with critical point
µ on the sequence of P . This is the main difference between our situation and the
L[E]-situation.

Some discussions regarding protomice and divisors are in order. Following [17],
for a hod premouse N such that ωρn+1

N ≤ κ < ωρnN , we say that (ν, q) is a divisor of
N if and only if there is an ordinal λ = λN (ν, q) such that letting pN be the (n+ 1)
standard parameter of N , setting r = pN − q, the following hold:

(a) ν ≤ κ < λ < ωρnN ;

(b) q = pN ∩ λ;

Σ
(n)
1 -Skolem function of the hod premouse N . A generalized witness for α with respect to M and

s is a pair (Q, t), where t ⊂ Q is a finite set of ordinals and such that for any ξ1, . . . , ξl < α, if
M � Φ(i, ξ1, . . . , ξl, s) then Q � Φ(i, ξ1, . . . , ξl, s), where Φ is the universal Σ1-formula. A generalized
witness for α with respect to N and r ∪ s is a pair (Q, t), where t ⊂ Q is a finite set of ordinals
such that given any ξ1, . . . , ξl < α, if N � Φ(i, ξ1, . . . , ξl, r ∪ s) then Q � Φ(i, ξ1, . . . , ξl, r ∪ s), where

Φ is the universal Σ
(n)
1 -formula.

8If κ = δPα , where δP = δPα+1, then since Pb = P|(κ+)P = Lp⊕β<αΣPP(β)(P|δPα ), then P � �κ since
κ is a strong cutpoint cardinal of Pb. If κ > δPα and supτ∈S(γτ ) < κ+, then the proof is significantly
easier. One constructs the �κ-sequence using points τ ∈ S above supτ∈S(γτ ) mimicking essentially
the Schimmerling-Zeman construction and use Theorem 11.1.2.
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(c) h̃n+1
N (ν ∪ {r}) ∩ ωρnN is cofinal in ωρnN ;

(d) λ = min(OR∩h̃n+1
N (ν ∪ {r})− ν).

As in [17], both ν and λ are (inaccessible) cardinals in N . Let N ∗(ν, q) be the
transitive collapse of h̃n+1

N (ν ∪ {r}).
The notion of strong divisors in [17] generalize in an obvious way to our context.

We recall it now. A divisor (µ, q) of N is strong if and only if for every ξ < µ and
every x of the form h̃n+1

N (ξ, pN ) we have x ∩ µ ∈ N ∗(µ, q). If N is pluripotent, we
define the notion of strong divisor in the same way, but with h∗N (the Σ1-Skolem
function of N computed in the language of coherent structures) and dN (the Dodd-
parameter of N ) in place of h̃n+1

N and pN , respectively. As in [17], if N has strong
divisors, the canonical strong divisor (µN , qN ) of N is chosen as follows: qN is the
shortest initial segment of pN such that for some ν, (ν, qN ) is a strong divisor of N
and µN is the largest ν such that (ν, qN ) is a strong divisor of N . Now we define our
collapsing structure Nτ for τ ∈ S.

Definition 11.3.2 Suppose P is a hod premouse and δ is a Woodin cardinal in some
Q � P. We say that δ is a layer Woodin in Q if there is some R ∈ Y Q such that
δ = δR.

Definition 11.3.3 Fix τ ∈ S. Suppose there is a pointclass Ω ( Γ such that there
is a hod pair (R,ΣR) such that

• N ∗τ |γτ �R,

• ρωR = κ,

• R is sound,

• γτ is a cutpoint of R and ΣR|γτ = ΣP|γτ ,

• the order type of R’s layer Woodin cardinals above γτ is a limit ordinal,

• R has a strong divisor of the form (µ, q) where pR = q ∪ r for r above the
supremum λ of the layer Woodin cardinals of R and max(q) is below (γ+

τ )R,

• ΣR has branch condensation, is Ω-fullness preserving, and (R,ΣR) generates
Ω; that is Γ(R,ΣR) = Ω.

We call (R,ΣR) with the above properties the pointclass generator of Ω. Let Γτ be the
Wadge-minimal such pointclass and Nτ be the pointclass generator of Γτ , (µτ , qτ , λτ )
be the (µ, q, λ) associated with Nτ as above (note that Nτ must be distinct from N ∗τ
in this case). If (Γ,R, µ, q, λ) doesn’t exist, we let Nτ = N ∗τ .
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The properties of pointclass generators seem technical; these properties are ab-
stracted from various situations in interpolation arguments. It seems hard to do
with much less. The following proposition justifies the uniqueness of pointclass gen-
erators.

Proposition 11.3.4 Let P , τ,Ω be as in Definition 11.3.3. Let (R0,Σ0) and (R1,Σ1)
be pointclass generators of Ω. Then (R0,Σ0) = (R1,Σ1).

Proof. We compare the pair (R0,Σ0) against (R1,Σ1), lining up the models and the
strategies (as done in Section 4.6). The comparison is possible by the assumption
and is above γτ . The end model is, say, S and the tail strategies of Σ0 and Σ1 on
S are the same. The usual proof using the fact that R0 and R1 are γτ -sound and
the comparison is above γτ shows that S = R0 = R1 (the comparison is trivial) and
Σ0 = Σ1. �

We simply use the notations from [17, page 49] in the definition of our square
sequence below. For instance, (µτ , qτ ) denotes the canonical strong divisor of Nτ (if
exists) in the case Nτ = N ∗τ and denotes the (µτ , qτ ) in Definition 11.3.3 in the case
Nτ 6= N ∗τ (note that (µτ , qτ ) is the unique strong divisor of Nτ with the properties as
in Definition 11.3.3). If Nτ = N ∗τ is a pluripotent level that has no strong divisors,
then (µτ , qτ ) denotes (cr(Etop

Nτ ), p(Nτ )) .
Suppose (ν, q) is a divisor of Nτ ; let r, λ, n be as in the definition of divisor.

Let π : N ∗τ (ν, q) → h̃n+1
N (ν ∪ {r}) be the uncollapse map. We let the associated

protomouse Nτ (ν, q) be the coherent structure (Nτ |ξ, F ) where ξ = π((ν+)M
∗
) and

F = Eπ � (℘(ν) ∩ N ∗τ (ν, q)), if ν > µ. If ν = µ, in which case Nτ 6= N ∗τ , then we
let Nτ (ν, q) be the coherent structure (Nτ |ξ, F ) where ξ = (γ+

τ )Nτ and F = Eπ �
(℘(ν) ∩M∗).

The following proposition is easy to see and justifies that the structure Nτ (ν, q)
are protomice (and not hod premice). See [17, Section 2.1] for a detailed discussion
and proof.

Proposition 11.3.5 Suppose (ν, q) be a divisor of Nτ and π : N ∗τ (ν, q)→ h̃n+1
Nτ (ν ∪

{r}) be the uncollapse map (and in the case Nτ 6= N ∗τ , assume ν = µ). Then
℘(ν)∩N ∗τ (ν, q) ( ℘(ν)∩Nτ . Furthermore, ν is an (inaccessible) cardinal of N ∗τ (ν, q)
and a limit cardinal of Nτ , and λNτ (ν, q) is an (inaccessible) cardinal of Nτ .

We let Mτ = Nτ (µτ , qτ ) be the protomouse associated with (µτ , qτ ).

Definition 11.3.6 Let S1 ⊂ S be the set of τ such that (µτ , qτ ) is defined and
S0 = S − S1.
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Suppose Nτ = N ∗τ , then no divisors of Nτ are of the form (µ, q). This is because
otherwise, λ = λNτ (µ, q) is a limit of Woodin cardinals. Let γ0 < γ1 be consecutive
Woodin cardinals in the interval (µ, λ); then by definition of P , P|γ1 is a Λsts-mouse
where Λ is the strategy of M+(P|γ0). On the other hand, by elementarity, P|γ1 is a
Λ-mouse. Contradiction. 9

A similar argument applies to show that no divisors for Nτ are of the form (ξ, q)
for ξ < µ; though we don’t need this fact in our construction as no divisors (ν, q)
in this paper will have the property that ν < µ. So if (ν, q) is a divisor of Nτ , then
ν > µ. This allows us to simply quote results of [17, Section 2] in this case (in light
of Theorem 11.1.2). In the case that µτ = µ (so Nτ 6= N ∗τ ), more care needs to be
taken since it’s not obvious that all results in [17, Section 2.4] can be generalized to
this case.

Using the remarks above, it is easy to see that if Nτ 6= N ∗τ , then τ ∈ S1 and in
fact Nτ is not an initial segment of P (though Nτ ∈ P by Proposition 11.3.7); also,
if Nτ = N ∗τ is pluripotent, then τ ∈ S1. For τ ∈ S0, Nτ = N ∗τ is not pluripotent and
does not admit a strong divisor.

The following lemma allows us to define our �κ-sequence in a uniform manner.

Proposition 11.3.7 Suppose Nτ 6= N ∗τ . Then Nτ is definable over P (in fact, over
any N ∗ξ or Nξ for ξ > τ) unformly from {τ, γτ}.

Proof. Fix ξ > τ . We first claim that γξ > γτ . To see this, note that τ ≤ γτ ≤
o(N ∗τ ) < ξ. This is because ξ is a cardinal (successor of κ) in Nξ while there is a
surjection from κ onto γτ in Nξ. Since ξ ≤ γξ, the claim follows.

Now let E be the extender on the Nξ-sequence such that cr(E) = µ, lh(E) > γτ ,
and is the least such.10 Let S = Ult(Nξ, E) (this is a Σ0-ultrapower). Let i : S → S∞
be an R-genericity iteration (above γτ ). Now it is easy to see that in the derived
model of S∞ (at the sup of its Woodin cardinals), the pointclass Ω in the definition
of Nτ is a strict Wadge initial segment of ℘(R) and is definable there from {τ, γτ}.
Then Nτ ∈ S∞ and in fact is definable there from parameters {τ, γτ}. The same
holds in S by elementarity and the fact that cr(i) > γτ . Finally, Nτ ∈ Nξ and is
definable there from parameters {τ, γτ , E}. But E is definable in Nξ from {τ, γτ}.
So Nτ is definable in Nξ from {τ, γτ}. �

9Another argument is as follows. Note that each Woodin cardinal in the interval (µ, λ) is
> (µ+)P , and hence µ is strong to λ (in P) by the initial segment condition. This contradicts the
definition and smallness assumption on P since one can easily find an active ω Woodin lsa mouse
in P (as defined in Definition 8.2.2).

10We note that the set of indices for extenders with critical point µ is nowhere continuous.
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Remark 11.3.8 By our smallness assumption on P, the set A = {ξ | κ < ξ <
κ+ ∧ P|ξ is E-active} is non-stationary in P. The reason is A = A0 ∪ A1. Here A0

consists of ξ’s such that the top extender of P|ξ has critical point µ and A1 = A−A0.
A0 in nonstationary by Footnote 10. A1 is nonstationary because otherwise, κ is
subcompact by [17]. As in [17], the fact that A is nonstationary is crucial in our
construction. We use this fact in various arguments to follow.

11.3.2 Approximation of a �κ,2 sequence

We use the notation established in the previous section. Below, as in [17], nτ is the
unique n such that ρn+1

Nτ = κ < ρnNτ and pτ is the standard parameter of Nτ . Let also
p∗τ be the standard parameter of N ∗τ .

Definition 11.3.9 Suppose τ ∈ S0, let ~Bτ = {B0
τ} be the set of τ̄ ∈ S∩τ satisfying:

• Nτ̄ is a hod premouse of the same type as Nτ . 11

• nτ = nτ̄ .

• There is a map σ0
τ̄ τ : N ∗τ̄ → Nτ that is Σ

(nτ )
0 -preserving with respect to the

language of hod premice such that

(a) τ̄ = cr(σ0
τ̄ τ ) and σ0

τ̄ τ (τ̄) = τ .

(b) σ0
τ̄ τ (p

∗
τ̄ ) = pτ .

(c) for each α ∈ pτ , there is a generalized witness for α with respect to Nτ
and pτ in the range of στ̄ τ .

Note that if τ ∈ S0, then N ∗τ = Nτ and either crt(Etop
Nτ ) ≥ κ or ρNτ1 > κ. Recall

the definition of (µτ , qτ ), pτ , dτ for τ ∈ S1 in Section 11.3.1. Below, mτ is |qτ |. We
also let rτ = dτ − qτ be the top part of dτ .

Definition 11.3.10 Suppose τ ∈ S1. Let B1
τ be the set of τ̄ ∈ S1 ∩ τ satisfying:

• (µτ̄ ,mτ̄ ) = (µτ ,mτ ).

11In this case, it simply means: Nτ is E (B)-active if and only if Nτ̄ is E (B)-active. If Nτ is
E-active (equivalently, Nτ̄ is E-active), then Etop

Nτ is indexed according to the cutpoint (Jensen)

indexing scheme if and only if Etop
Nτ̄ is indexed according to the cutpoint (Jensen, respectively)

indexing scheme. Recall that all E-active hod mice, where E is indexed according to the Jensen
indexing scheme, in our paper will be of type A.
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• There is a map σ1
τ̄ τ : Mτ̄ → Mτ that is Σ0-preserving with respect to the

language of coherent structures such that

(a) τ̄ = cr(σ1
τ̄ τ ) and σ1

τ̄ τ (τ̄) = τ .

(b) σ1
τ̄ τ (qτ̄ ) = qτ .

(c) for each α ∈ qτ , there is a generalized witness for α with respect to Nτ
and qτ in the range of σ1

τ̄ τ .

Suppose in addition that either crt(Etop
N ∗τ ) ≥ κ or ρ

N ∗τ
1 > κ, let B0

τ be the set of
τ̄ ∈ S ∩ τ satisfying:

• N ∗τ̄ is a hod premouse of the same type as N ∗τ .

• nτ = nτ̄ .

• There is a map σ0
τ̄ τ : N ∗τ̄ → N ∗τ that is Σ

(nτ )
0 -preserving with respect to the

language of hod premice such that

(a) τ̄ = cr(σ0
τ̄ τ ) and σ0

τ̄ τ (τ̄) = τ .

(b) σ0
τ̄ τ (p

∗
τ̄ ) = pτ .

(c) for each α ∈ pτ , there is a generalized witness for α with respect to N ∗τ
and pτ in the range of σ0

τ̄ τ .

Finally, if B0
τ exists, let ~Bτ = {B0

τ , B
1
τ}. Otherwise, let ~Bτ = {B1

τ}.

As in [17], it is easy to see that in both cases στ̄ τ , σ
0
τ̄ τ , σ

1
τ̄ τ (if exist) are uniquely

determined, Σ0 (and not Σ1), and non-cofinal. By [17, Lemma 3.3], for each τ ∈ S
such that B0

τ is defined, and τ̄ ∈ B0
τ ,

B0
τ ∩ τ̄ = B0

τ̄ −minB0
τ . (11.2)

And similarly, if B1
τ is defined, then for all τ̄ ∈ B1

τ ,

B1
τ ∩ τ̄ = B1

τ̄ −minB0
τ . (11.3)

The following is the key lemma (cf. [17, Lemma 3.5]).

Lemma 11.3.11 For each τ ∈ S of uncountable cofinality, for i ∈ {0, 1}, if Bi
τ is

defined, then Bi
τ is a club subset of τ on a tail end. That is, there is a τ̄ < τ such

that Bi
τ − τ̄ is closed and unbounded in τ . If i = 0, we can take τ̄ = 0.
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Using the lemma and 11.2, 11.3, by the argument on [17, pg 52-55] , we can construct
a �′κ,2-sequence on S. We summarize the construction next. First for τ ∈ S, for i
such that Bi

τ is defined, let

• τ i(0) = τ ;

• τ i(j + 1) = min(Bi
τ(j+1));

• liτ = the least j such that Bi
τ(j) = ∅.

Now let

• Bi,∗ = Bi
τ i(0) ∪ · · · ∪Bi

τ i(liτ−1);

• σi,∗τ̄ τ = σiτ i(1)τ i(0) ◦ · · · ◦ σiτ i(j)τ i(j−1) ◦ σiτ̄ τ i(j) whenever τ̄ ∈ Bi,∗
τ and j is such that

τ̄ ∈ Bi
τ(j).

By the exact same proof as in [17, Lemma 3.4], we get the coherency of the Bi,∗
τ

sets.

Lemma 11.3.12 For τ ∈ S, for i such that Bi
τ is defined, suppose τ̄ ∈ Bi,∗

τ . Then
Bi
τ̄ is defined and Bi,∗

τ̄ = Bi,∗
τ ∩ τ̄ .

For each τ ∈ S, for i such that Bi
τ is defined, let βiτ be the least β in Bi,∗

τ ∪ {τ}
such that Bi,∗

τ − β is closed in τ . Using Lemmata 11.3.11 and 11.3.12, we easily get
that letting

Ci,∗
τ = Bi,∗

τ − βiτ , (11.4)

then for τ̄ ∈ βi,∗τ , τ̄ ≥ βτ ,

βiτ = βiτ̄ and Ci,∗
τ ∩ τ̄ = Ci,∗

τ̄ . (11.5)

Now note that if C0,∗
τ is defined, then o.t.(C0,∗

τ ) may not be ≤ κ, while if C1,∗
τ

is defined then o.t.(C0,∗
τ ) ≤ κ. As in [17, pg 54-55], we can shrink C0,∗

τ to a set
C0,′
τ ⊆ C0,∗

τ such that

• o.t.(C0,′
τ ) ≤ κ;

• C0,′
τ is a closed subset of S ∩ τ and if cof(α) > ω, then C0,′

τ is also unbounded
in τ ;

• C0,′
τ ∩ τ̄ = C0,′

τ̄ .
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So letting ~C ′τ = {Ci,′
τ | i ∈ {0, 1} ∧ Ci,′

τ is defined}, we get that the sequence

〈~C ′τ | τ < κ+〉 is a �′κ,2-sequence on S. Since S is club subset of κ+, by a standard
combinatorial argument (cf. [2]), the �′κ,2-sequence on S can be turned into a �κ,2-
sequence. Our main task is to prove Lemma 11.3.11. This will take up the rest of
the section.

Remark 11.3.13 It’s clear from [17, pg 54-55], Definitions 11.3.9 and 11.3.10 and
Proposition 11.3.7 that the square sequence �κ,2 is definable from κ in P and the
definition is uniform in κ.

11.3.3 When τ ∈ S0

Fix τ ∈ S0. Assume τ is a limit point of S uncountable cofinality. Recall B0
τ is

defined to be the set of τ̄ ∈ S such that

• nτ = nτ̄ .

• N ∗τ̄ is a hod premouse of the same type as Nτ .

• There is an embedding σ0
τ̄ τ : N ∗τ̄ → Nτ such that σ0

τ̄ τ is Σ
(nτ )
0 -preserving (in the

language of hod premice) and

(a) τ̄ = cr(σ0
τ̄ τ ) and σ0

τ̄ τ (τ̄) = τ .

(b) σ0
τ̄ τ (p

∗
τ̄ ) = pτ , where recall p∗τ̄ is the standard parameter of N ∗τ̄ .

(c) for each α ∈ pτ , there is a generalized witness for α with respect to Nτ
and pτ in the range of στ̄ τ .

To simplify the notation, let D denote B0
τ and στ̄ ,τ denote σ0

τ̄ ,τ .

Lemma 11.3.14 D is unbounded in τ .

Proof. Given τ ′ < τ , we find τ̃ ≥ τ ′ in D. In P , form an elementary hull of {Nτ , τ ′,S}
in H(κ++) (in which everything relevant is present). Let H be the transitive collapse
of the hull and σ0 : H → Hκ++ be the uncollapse map. Set:

• x̄ = σ−1
0 (x) for any x in range of σ0,

• σ = σ0 � N̄τ : N̄τ → Nτ ,

• τ̃ = sup(σ′′τ̄).
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Note that since τ ∈ S0, Nτ = N ∗τ and either cr(Etop
Nτ ) ≥ κ or ωρ1

Nτ > κ. Set
n = nτ . Using the interpolation lemma (Lemma [17, Lemma 1.2]), we can find a

map σ̃ : N̄τ → Ñ which is Σ
(n)
0 -preserving and cofinal (the map σ̃ is the ultrapower

map via the (cr(σ), τ̃)-extender derived from σ). Note that τ̃ = (κ+)Ñ . Also, by the
interpolation lemma, there is a map σ′ : Ñ → Nτ satisfying σ′ � τ̃ = id, σ′(τ̃) = τ ,
and σ′ ◦ σ̃ = σ.

We have that

• Ñ is a hod premouse of the same type as Nτ .

• Ñ is sound.

• ωρωÑ = ωρn+1

Ñ ≤ κ.

The above follow from the proof of [17, Lemma 3.7] for the most part, except for
the first item in the case when Nτ is B-active. In this case, the first item follows
from [20, Lemma 2.36] and hull condensation of Σ.12

It remains to see that Ñ is indeed N ∗τ̃ . We apply Theorem 11.1.2. (a) cannot

hold since τ̃ = cr(σ′) = (κ+)Ñ < τ = (κ+)Nτ . (c) cannot hold because Ñ is sound.
(d) cannot hold since τ̃ is a cardinal in Ult(Nτ , ENττ̃ ) while Ñ definably collapses τ̃ .
So (b) holds. This easily implies Ñ = N ∗τ̃ . �

Lemma 11.3.15 D is a closed subset of τ .

Proof. Let τ̃ be a limit point of D. We show that τ̃ ∈ D. Form the direct limit
〈Ñ , στ̄ τ̃ | τ̄ ∈ D ∩ τ̃〉 of the system 〈N ∗τ̄ , στ∗τ̄ | τ ∗ ≤ τ̄ ∧ τ ∗, τ̄ ∈ D ∩ τ̃〉. The
direct limit is well-founded and there is a Σ0 embedding σ : Ñ → Nτ (defined by
σ(στ̄ τ̃ (x)) = στ̄ ,τ (x)). It is easy to check that:

(a) σ ◦ στ̄ τ̃ = στ̄ τ .

(b) τ̃ = στ̄ τ̃ (τ̄), στ̃ τ (τ̃) = τ , and τ̃ = cr(σ).

(c) σ is Σ
(n)
0 preserving where n = nτ (with respect to the language of coherent

structures).

12Indexing branches using the B-operator allows the proof of [20, Lemma 2.36] to go through in
this situation. The traditional approach to indexing branches does not seem to imply that Ñ is a
hod premouse.
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We need to see that Ñ = N ∗τ̃ . First, we show that Ñ is a hod premouse of
the same type as Nτ . Note that Π2-properties which hold on a tail end are upward
preserved under direct limit maps (cf. [17, pg 8-9]). Furthermore, N ∗τ̄ is of the
same type as Nτ for each τ̄ ∈ D ∩ τ . So Ñ is of the same type as Nτ (as either
a passive hod premouse, or a B-active hod premouse, or an E-active hod premouse
with cr(Etop

Ñ ) > µ, in which case Ñ is of type A, or else an E-active hod premouse

with cr(Etop

Ñ ) = µ, in which case ωρ1
Ñ > κ; these statements can be expressed in a

Π2-fashion).

Recall that for τ̄ ∈ D, we use h̃τ̄ to denote h̃
(nτ̄+1)
N ∗τ̄

, the Σ
(nτ̄ )
1 -Skolem function

of N ∗τ̄ . Here note that nτ̄ = nτ = n. Let p̃ = στ̄ τ̃ (p
∗
τ̄ ) for τ̄ ∈ D ∩ τ̃ . Given any

x ∈ Ñ , there is τ̄ ∈ D ∩ τ̃ and x̄ ∈ N ∗τ̄ such that x = στ̄ τ (x̄). There is ξ < κ such

that x̄ = h̃τ̄ (ξ, pτ̄ ). This Σ
(n)
1 -statement is preserved by στ̄ τ̃ , so x = h̃n+1

Ñ (ξ, p̃). So

Ñ = h̃n+1

Ñ (κ ∪ {p̃}).
This gives ωρn+1

Ñ = ωρωÑ ≤ κ. But κ is a cardinal in P , so we indeed have equality.
For each α ∈ pτ , there is a generalized witness for α with respect to (Nτ , pτ ) in range
of σ. This is because rng(σ) contains rng(στ̄ ,τ ) for any τ̄ ∈ D ∩ τ̃ and rng(στ̄ ,τ )
contains such a witness. This takes care of (c) in the definition of D. This easily
implies that Ñ is sound and p̃ is the standard paramter of Ñ . We can now apply
Theorem 11.1.2 as in the proof of Lemma 11.3.14 to conclude that Ñ = N ∗τ̃ . �

Lemmata 11.3.14, 11.3.15 together complete the proof of Lemma 11.3.11 in the
case τ ∈ S0.

11.3.4 When τ ∈ S1

Fix τ ∈ S1 a limit point of S of uncountable cofinality. If B0
τ is defined, then as

in the previous section, using the fact that crt(Etop
N ∗τ ) ≥ κ or ρ

N ∗τ
1 > κ, we can show

that B0
τ is closed and unbounded in τ . So let us now focus on the case B1

τ is defined.
Define D ⊂ τ to be the set of τ̄ ∈ S such that

• (µτ , q
∗
τ̄ ) is a strong divisor of Nτ̄ where q∗τ̄ is the bottom segment of pτ̄ of length

mτ (recall mτ is the length of qτ ).

• Letting M∗
τ̄ be the protomouse of Nτ̄ associated with (µτ , q

∗
τ̄ ), there is a map

στ̄ τ :M∗
τ̄ →Mτ that is Σ0-preserving (with respect to the language of coherent

structures) such that

(a) τ̄ = cr(στ̄ τ ) and στ̄ τ (τ̄) = τ .

(b) στ̄ τ (q
∗
τ̄ ) = qτ .
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(c) for each α ∈ qτ , there is a generalized witness for α with respect to Nτ
and qτ in the range of στ̄ τ (in the language of coherent structures).

We will show that there is some τ̄ < τ such that Bτ − τ̄ = D − τ̄ . Part of this is to
show that for all sufficiently large τ̄ ∈ D, (µτ , q

∗
τ̄ ) = (µτ̄ , qτ̄ ).

Lemma 11.3.16 D is unbounded in τ .

Proof. Let τ ′ < τ . As before, we find τ̃ ∈ D above τ ′. We note thatMτ may be Nτ ;
this happens when Nτ = N ∗τ is pluripotent. Since protomice are present, we carry
out the argument in the language of coherent structures.

We let σ0, H be defined as in Lemma 11.3.14. Again, we denote x̄ for σ−1
0 (x). We

let σ : M̄τ → Mτ and τ̃ = sup σ′′τ̄ . As before, τ ′ ≤ τ̃ < τ . Let σ̃ : M̄τ → M̃ be
the (cr(σ), τ̃)-ultrapower map derived from σ and σ′ : M̃ →Mτ be the factor map.
As in [17, Lemma 3.10], we have:

• σ̃(κ̄, τ̄) = (κ, τ̃).

• cr(σ′) = τ̃ and σ(τ̃) = τ .

• hM̃(κ ∪ {q̃}) = M̃ where q̃ = σ̃(q̄τ ); in other words, M̃ is Σ1-generated by
κ ∪ {q̃}.

• ωρωM̃ = ωρ1
M̃ = κ and q̃ ∈ RM̃, the set of very good parameters for M̃.

• The range of σ̃ contains a generalized solidity witness for α with respect to
(Mτ , qτ ) for each α ∈ qτ .

• q̃ = pM̃ and M̃ is solid and sound.

Note that as in Lemma 11.3.14, σ̃ is Σ0 (but not Σ1) and is not cofinal. This
implies that M̃ is a protomouse, even if Mτ is a hod premouse (in which case,
Mτ = Nτ is pluripotent).

We show M̃ = Nτ̃ (µτ , q̃). LetR0,R1 be the hod premice associated withMτ ,M̃,
respectively. We have that R0 = Ultn(N ∗0 , F ), where F is the top extender (frag-
ment) ofMτ and N ∗0 is largest (strict) segment ofMτ such that ωρn+1

N ∗0
≤ cr(F ) and

F measures all sets in N ∗0 ; in the other case, R1 = Ultk(N ∗1 , F̃ ), where F̃ is the top
extender (fragment) of M̃ and N ∗1 is the largest (strict) segment of M̃ (equivalently,
of Mτ ) such that ωρk+1

N ∗1
≤ cr(F̃ ) and F̃ measures all sets in N ∗1 . Let πi : N ∗i → Ri

be the ultrapower maps and π2 : R1 → π0(N ∗1 ) be the factor map

π2(π1(f)(a)) = π0(f)(σ̃(a)).
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Note that π2 � τ̃ = σ̃ � τ̃ = id.
Note that pR1 = π1(pN ∗1 )∪pM̃ (cf. [17, Lemma 2.16, 2.19]). In the case N ∗τ 6= Nτ ,

and hence µτ = µ, π1(pN ∗1 ) is the part of pR1 above π1(µ), the supremum of R1’s
layer Woodin cardinals, and pM̃ is the part below π1(µ).

The argument in [17, Lemma 3.10] then shows that (µτ , q̃) is a strong divisor of
R1.13 To show M̃ = Nτ̃ (µτ , q̃), we show R1 = Nτ̃ . This then will show τ̃ ∈ D as
desired. There are two cases to consider.
Case 1. Nτ = N ∗τ .

If cr(F ) = cr(F̃ ) > µ, then it is easy to see that Pb �R0,R1. Note that in this
case, R0 = Nτ = N ∗τ . So we can apply Theorem 11.1.2 as in the proof of Lemma
11.3.14 and conclude that R1 = Nτ̃ = N ∗τ̃ . Now suppose cr(F ) = µ (so µτ = µ).
Recall from the discussion above that we know (µτ , q̃) is a strong divisor of R1 and q̃
is the bottom part of the standard parameter of R1 below π1(cr(F̃ )). We show that
R1 = Nτ̃ 6= N ∗τ̃ by the following claims (note that we already know that (µ, q̃) is a
strong divisor of R1). We also will get then that (µτ , q̃) = (µτ̃ , qτ̃ ) in this case.

Let γτ be defined as in Definition 11.3.3 for Nτ ; let γτ̃ , γ̃ be defined similarly for
N ∗τ̃ ,R1, respectively. Let Λ be R0’s iteration strategy.

Claim 11.3.17 γ̃ = γτ̃ .

Proof. Suppose not. Assume γ̃ < γτ̃ (the other case is similar). Let E be least on
the extender sequence of Nτ̃ such that

• cr(E) = µ,

• lh(E) ≥ γ̃.

Let S = Ult(R0, E). Note that γ̃ is a cutpoint of S and iE(µ) is a limit of Γ-full
Woodin cardinals above γ̃. By SMC in Γ, we can conclude that R′ ∈ S, where R′ is
a sound hod premouse extending R1|γ̃, having τ̃ = κ+, γ̃ as a cutpoint, and projects
to κ. 14

13The proof of this fact does not depend on whether µτ > µ.
14 By genericity iterations, without loss of generality, we may assume that a real witnessing the

Wadge reduction of Λπ2 to Λ is generic over S. In S’s derived model at iE(µ), we can find R1.
This means, in the derived model of S, there is some hod mouse R extending R1|γ̃, having τ̃ = κ+,
γ̃ as a cutpoint, and projects to κ; furthermore, we can demand that (µτ , q̃) is a strong divisor
of R and q̃ is the bottom part of the standard parameter of R below the supremum of R’s layer
Woodin cardinals. Let Ω be the Wadge-minimal pointclass that has a pointclass generator with
these properties. Note that this determines the unique pointclass generator SΩ for Ω. This implies
that SΩ ∈ S.
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Fix R′ ∈ S as above. R′ defines a surjection f from κ onto τ̃ . Since R′ ∈ S,
f ∈ S. This contradicts the fact that S � τ̃ = κ+. �

Claim 11.3.18 There is a pointclass Ω with pointclass generator a sound hod mouse
that projects to κ, extends P|γ̃, having τ̃ = κ+, γ̃ as a cutpoint, and the set of layer
Woodin cardinals above γ̃ has limit order type. R1 is the generator for the Wadge
minimal such pointclass.

Proof. Clearly, such Ω exists since the pointclass generated by R1 is such. Let Ω0

be the pointclass R1 generates and Ω1 be a pointclass satisfying the hypothesis of
the claim. Let N generate Ω1 with the properties in the statement of the claim.
Note that at this point, we know R1 and N are: sound, projects to κ, extends P|γτ̃ ,
satisfies κ+ = τ̃ , and have γτ̃ as cutpoint.

We claim that Ω0 = Ω1. Suppose for contradiction that Ω0 ( Ω1 (the other
case is similar). Then, using R-genericity iteration and elementarity, in the derived
model of N (at the supremum of its Woodin cardinals) there is a pointclass with a
generator S that is sound, projects to κ, extends P|γτ̃ , satisfies κ+ = τ̃ , and have
γτ̃ as cutpoint. Some such S is in N by a similar argument as in Footnote 14. This
implies as in Claim 11.3.17 that τ̃ is not a cardinal in N . Contradiction.

Now we can compare R1 against N . The comparison is an extender comparison,
is successful, and is above γτ̃ . Since both models are κ-sound, projects to κ, and
κ < γτ̃ . We conclude that N = R1. �

Using the claims and the fact that (µτ , q̃) is a strong divisor of R1 (note that
max(q̃) < (γ+

τ̃ )R1 and q̃ is the bottom part below π1(cr(F̃ )) of the standard parameter
of R1) we easily verify that R1 = Nτ̃ and hence M̃ = Nτ̃ (µτ , q̃). Hence τ̃ ∈ D as
desired.
Case 2. Nτ 6= N ∗τ .

In this case, µτ = µ. As above, R0 = Nτ and (µτ , qτ ) is a strong divisor of Nτ .
We aim to show that R1 = Nτ̃ . As above, (µ, q̃) is a strong divisor of R1 by the
proof of [17, Lemma 3.10]; also max(q̃) < (γ̃+)R1 = (γ+

τ̃ )R1 and q̃ is the bottom part
below R1’s limit of layer Woodin cardinals π1(cr(F̃ )) of the standard parameter of
R1. This easily implies, using Claim 11.3.18, that Nτ̃ 6= N ∗τ̃ , R1 = Nτ̃ , µ = µτ̃ ,
q̃ = qτ̃ and hence M̃ = Nτ̃ (µτ̃ , qτ̃ ). So τ̃ ∈ D as desired. �

Lemma 11.3.19 D is a closed subset of τ .
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Proof. Let τ̃ be a limit point of D. We show that τ̃ ∈ D. As in Lemma 11.3.15, form
the direct limit 〈M̃, σ1

τ̄ τ̃ | τ̄ ∈ D∩ τ̃〉 of the system 〈M∗
τ̄ , σ

1
τ∗τ̄ | τ ∗ ≤ τ̄∧τ ∗, τ̄ ∈ D∩ τ̄〉.

The direct limit is well-founded (so we identify M̃ with its transitive collapse) and
there is a Σ0 embedding σ : M̃ → Mτ (defined by σ(σ1

τ̄ τ̃ (x)) = σ1
τ̄ ,τ (x)). It is easy

to check that (cf. [17, Lemma 3.11]):

(a) M̃ is a coherent structure.

(b) σ ◦ σ1
τ̄ τ̃ = σ1

τ̄ τ .

(c) τ̃ = σ1
τ̄ τ̃ (τ̄), σ1

τ̃ τ (τ̃) = τ , and τ̃ = cr(σ).

(d) hM̃(κ ∪ {q̃}) = M̃ where q̃ = σ1
τ̄ τ̃ (q

∗
τ̄ ), so ωρωM̃ = ωρ1

M̃ = κ and q̃ ∈ RM̃.

(e) For every α ∈ qτ , there is a generalized witness for α with respect to (Mτ , qτ ) in
the range of σ. Hence q̃ = pM̃ = σ−1(qτ ) and M̃ is sound and solid.

The first four clauses are clear. The last follows from the fact that the direct limit
M̃ satisfies Π2-statements which hold on a tail-end of D ∩ τ̃ .

Note that M̃ is always a protomouse (this is because σ is not cofinal). If µτ > µ
(or equivalently Nτ = N ∗τ ), we can appeal to the proof of [17, Lemma 3.11] to get
that M̃ = Nτ̃ (µτ , q̃) and (µτ , q̃) is a strong divisor of M̃. Otherwise, the same
conclusion follows from the proof of Claim 11.3.18.

The previous paragraph gives τ̃ ∈ D as desired. �

Lemma 11.3.20 There is a τ̄ < τ such that for all τ ′ ∈ D− τ̄ , (µτ , q
∗
τ ′) = (µτ ′ , qτ ′).

Consequently, B1
τ − τ̄ = D − τ̄ .

Proof. We need to prove that there is τ̄ < τ such that for every τ ′ ∈ D − τ̄ ,
(µτ , q

∗
τ̄ ) = (µτ ′ , qτ ′). Assume for contradiction that there is a sequence 〈τi | i < δ〉

that is increasing, cofinal in τ such that (µτi , qτi) 6= (µτ , q
∗
τi

). We may assume without
loss of generality that the sequence 〈µτi | i < δ〉 is monotonic and all qτi ’s have the
same length, say m.

If µτ = µ, then we claim that for each i < δ, (µτi , qτi) = (µτ , q
∗
τi

). This follows
from the proof of Lemma 11.3.16, where we prove that in this case, Nτ 6= N ∗τ and
so for each i < δ, Nτi 6= N ∗τi and µτi = µ = µτ and qτi = q∗τi . This contradicts the
assumption that (µτi , qτi) 6= (µτ , q

∗
τi

). So we must have that µτ > µ, so Nτ = N ∗τ .
This implies that for each i < δ, Nτi = N ∗τi (again, by remarks in Section 11.3.1
and the argument in Lemma 11.3.16). So it must be the case then that µτi > µ
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(recall that N ∗τi cannot have divisors of the form (µ, q) for some q) and so (µτi , qτi),
by definition, is the canonical strong divisor of Nτi .

By the definition of (µτi , qτi), each qτi is a bottom part of q∗τi , say q∗τi = qτi∪sτi (sτi
may be empty). Recall we have shown µτ , µτi > µ (so we can freely quote results of
[17, Section 2.4 and Lemma 3.12] in the arguments that follow). Now we observe that
µτi > µτ for all i < δ. This is because the argument in [17, Lemma 3.12] shows: if
qτi = q∗τi , then µτi must be > µτ by maximality of µτi for Nτi and the assumption that
(µτ , q

∗
τi

) 6= (µτi , qτi); otherwise, qτi is a strict bottom segment of q∗τi , and hence[17,
Lemma 2.26] shows that no ν ≤ µτ is such that (ν, qτi) is a strong divisor of Nτi .

Set for some (equivalently for all sufficiently large) i < δ, q = στiτ (qτi), s =
στiτ (sτi), r = rτ , ν = supi<δµτi . Now (ν, q) is a divisor of Nτ (see [17, Lemma 3.12]).
Since ν > µτ > µ, (ν, q) cannot be a strong divisor of Nτ . Then a calculation as in
[17, Lemma 3.12] shows that for some i < δ, (µτi , qτi) is not a strong divisor of Nτi .
Contradiction. �

Lemmata 11.3.16, 11.3.19, 11.3.20 together complete the proof of Lemma 11.3.11 in
the case τ ∈ S1.



Chapter 12

LSA from PFA

For a cardinal κ, let ℘0(κ) = κ; ℘n+1(κ) = 2℘n(κ) for all n < ω. We prove the
following theorem.

Definition 12.0.21 A sequence 〈~Cα | α ∈ λ〉 is a �(κ, λ) sequence if it satisfies the
following properties.

(i) 0 < |~Cα| < κ for all limit α ∈ λ.

(ii) C ⊆ α is club in α for all limit α ∈ λ and C ∈ ~Cα.

(iii) C ∩ β ∈ ~Cβ for all limit α ∈ λ, C ∈ ~Cα and β ∈ Lim(C).

(iv) There is no club D ⊆ λ such that D ∩ α ∈ ~Cα for all α ∈ Lim(D).

We say that �(κ, λ) holds if a �(κ, λ)-sequence exists.

Clearly, �λ,<κ implies �(κ, λ+) and if κ ≤ κ′, then �(κ, λ) implies �(κ′, λ). �(2, λ)
is �(λ).

Theorem 12.0.22 Suppose κ is a cardinal such that κω = κ. Suppose for all α ∈
[(℘0(κ))+, (℘3(κ))+], ¬�(3, α). Then there is a model M containing OR ∪ R such
that M � LSA.

As in [31], we immediately have the following corollary.

Corollary 12.0.23 Assume one of the following theories.

1. PFA.

2. There is a strongly compact cardinal.

269
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3. There is a cardinal λ ≥ (℘3(ℵ2))+ such that the set {X ≺ Hλ+ | Xω ⊂
X ∧ X is ω2-guessing ∧ |X| = ℵ2} is stationary.

Then there is a model M containing OR ∪ R such that M � LSA.

Proof. For (1) and (3), let κ = ℵ2. It is well-known that both (1) and (3) imply
the hypothesis of Theorem 12.0.22 (cf. [32] and [33] for (3)). For (2), let κ be a
strong limit cardinal of uncountable cofinality above a strongly compact cardinal.
The hypothesis for Theorem 12.0.22 holds at κ by the construction in [21]. �

Theorem 12.0.22 obtains models of LSA from a combinatorial principle that does
not involve large cardinal properties. Therefore, in contrast to the previous chapter
where one shows there are LSA models inside the derived model at some limit of
Woodin cardinals, here we use the core model induction method to construct some
model of determinacy (which plays the role of the derived model in the previous
section) that satisfies LSA. The proof of Theorem 12.0.22 is built on that of [31],
which in turns is inspired by [25] and [14].

The rest of the chapter is dedicated to proving Theorem 12.0.22. We assume the
hypothesis of Theorem 12.0.22 along with the following simplifying assumption on
cardinal arithmetic:

∀α ∈ [κ, κ++] 2α = α+. (12.1)

Note that assumption 12.1 implies that

∀α ∈ [κ+, κ+++], αω = α.

This is because κω = κ. We will use this fact many times later on. Later, we show
how to get rid of assumption 12.1. Our smallness assumption throughout this section
is:

(†) : in V [G], there is no model M containing R ∪OR such
that M � “ZF + AD++Θ = θα+2 + θα+1 is the largest Suslin
cardinal below θα+1 ”.

Before plunging in the the details, we give a very rough outline of the proof
of Theorem 12.0.22. Fix κ as in the hypothesis of Theorem 12.0.22. We operate
under assumptions (†) and 12.1. Let P = Col(ω, κ). In V P, let Ω be the “maximal
pointclass of determinacy” (as defined in [31]). Let P− be the direct limit of hod
pairs (M,Σ) such that Σ � HC ∈ Ω and Σ is Ω-fullness preserving and has branch
condensation. Let P be the appropriate “Lp”-closure of P− (defined in Section 12.1).
So P− is an initial segment of P . [31] shows that P � o(P−) is a regular limit of
Woodin cardinals. In V P, we carry out a hybrid Kc-construction over P (to be
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explained in Section 12.2). Either the construction stops prematurely (before stage
κ+++ for various reasons to be specified in Section 12.2), in which case we show that
a model of LSA has been reached; otherwise, we reach a model P+ (extending P) of
height κ+++. Then we consider the stack S of (appropriately defined hod) mice over
P+. Using the proof of [5, Theorem 3.4], we show that cof(o(S)) ≥ κ+++. Using the
fact that S ∈ V , we show that cof(o(S)) < κ+++. Contradiction.

12.1 Some core model induction backgrounds

We continue to assume (†) and 12.1 in this section. We recall some notions and
results from [31]. In V [G], where P = Col(ω, κ) and G ⊆ P is V -generic, let

Ω =
⋃
{℘(R) ∩M | R ∪OR ⊂M ∧M � AD+}.

[31] shows that, under (†),1 the Solovay sequence 〈θΩ
α | α ≤ γ〉 of Ω is of limit length.

Furthermore, if A ∈ Ω, then there is a hod pair (or sts hod pair) (P ,Σ) ∈ Ω such
that A ∈ Γb(P ,Σ).

Let P− be the direct limit of all hod pairs (M,Σ) such that M is countable in
V P and Σ is an (ω1, ω1 + 1)-strategy of M that is Ω-fullness preserving, positional,
commuting, has branch condensation, and Σ � HC ∈ Ω. We will say that a pair
(P ,Σ) with these properties is nice and let F be the direct limit system of all nice
hod pairs. [31] shows that if (M,Σ � V ) ∈ V , then Σ can be uniquely extended to a
(κ+4, κ+4)-strategy Σ+ (and hence Σ+ � V ∈ V ). SayM iterates (via Σ+) to P−(α)
for some α < γ = λP

−
, we let Σα be the Σ+-tail of Σ+. Σα only depends on α and

does not depend on any particular choice of (M,Σ+) as long as Σ+ is nice. Let

Σ = ⊕α<λPΣα,

and

P = LpΣ(P−).

That is P is the collection of P− �M such that M is sound, ρω(M) ≤ o(P−),
thenM is a Σ-premouse over P− and for every countable, transitiveM∗ embeddable
into M via π, M∗ is (ω1 + 1)-iterable as an (anomalous) hod mouse with strategy
Λ such that Λ � HC ∈ Ω.

1[31] uses a stronger assumption, namely no models of “ADR+Θ is regular” exist. But the same
proof works using (†); the main point is that the HOD analysis now can be carried out up to models
of LSA.
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Lemma 12.1.1 Let λ be the ordinal height of Ω, so λ = o(P−) = δP .

1. No levels of P projects across λ. Hence ρω(P) = o(P) and P � ZFC−.

2. P � δP is a regular limit of Woodin cardinals

3. λ ≤ κ++.

4. In V , o(P) < λ+ and cof(o(P)) ≤ κ.

Proof. (1) and (2) follow from [31, Lemma 3.78]. (3) follows from 2κ = κ+ and the
fact that ω1 = (κ+)V in V [G].

For (4), first note that P ∈ V . Let ~C be the �λ-sequence built in P , where

λ = o(P−) is the ordinal height of Ω as defined above. ~C is not threadable (by the
maximality of P). So if o(P) = λ+ or cof(o(P)) ≥ κ+, then using our hypothesis ∀α ∈
[κ+, κ+4],¬�(α), we can find a thread for ~C by standard arguments. Contradiction.

�

Remark 12.1.2 As in Chapter 9, we let φ(U, V ) be the formula that expresses the
fact that U is a mousefull pointclass with all the properties that Ω has and V is a hod
pair (Q,Λ) such that Code(Λ) ∈ U and Λ is U-fullness preserving and has branch
condensation. Then the F above is Fφ,Ω etc. From this point on, we will often
suppress φ,Ω from our notations; this should not be confusing since all the notations
that come into the following constructions are relative to (φ,Ω).

In V [G], as done in the previous section, for each X ⊆ ℘ω1(P), we let QX be the
transitive collapse of X, δX = δQX , and πX : QX → P be the uncollapse map. Let
ΣX be the πX-pullback strategy for QX .2 For X ⊆ Y ∈ ℘ω1(P), let πX,Y = π−1

Y ◦ πX
and σX,Y : QY → P be given by

σX,Y (q) = πX(f)(πΣY
QY ,∞(a))

where a ∈ (QY |δQY )<ω and q = πX,Y (f)(a).
Let S ∈ V be the set of X ≺ Hκ+++ such that Xω ⊆ X, κ + 1 ⊂ X, |X| = κ,

X ∩ P is cofinal in o(P). Note that S is stationary.
Recall the notions of ((φ,Ω))-condensing sets and honest extensions discussed in

Chapter 9. The following facts follow easily from [31] and Chapter 9.

2Typically, X = X∗ ∩ P for some countable X∗ ≺ Hκ+++ . And ΣX is the πX∗ -realization map,
where πX∗ is the uncollapse map of X∗.
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Lemma 12.1.3 (i) Lower part covering holds for (φ,Ω). (φ,Ω) is maximal, ho-
mogeneous, and captured by a stationary set Sφ,Ω ⊆ S.

(ii) ∀∗X ′ ∈ Sφ,Ω, X = X ′ ∩ P is a condensing set.

(iii) Suppose Y is an honest extension of a condensing set X and there are maps
i : QY → R and σ : R → P such that σ ◦ i = πY and every x ∈ R has the form
i(f)(a) for f ∈ QY and a ∈ [δR]<ω. Then letting Λ be the τ -pullback strategy
of R, and τ(i(f)(a)) = πY (f)(πΛ

R|δR,∞(a)), then τ is well-defined, (sufficiently)

elementary, and τ � R|δR = πΛ
R|δR,∞ � R|δ

R.

(iv) Suppose X is condensing and Y, Z are honest extensions of X such that QY =
QZ, then ΣY = ΣZ.

Remark 12.1.4 Let X be as in (i) of the lemma. Then it is easy to se that any
Y = Y ∗ ∩ P where Y ∗ ≺ Hκ+++ is such that Y ∗ is countable (in V [G]) is an honest
extension of X.

12.2 Hybrid Kc-constructions and stacking mice

In this section, we proceed to describe the hybrid Kc-construction over P . We use
the notations and definitions from the previous section. We fix a condensing set
X ∈ V (X exists by the previous section); and we assume that X = X ′ ∩ P where
X ′ ≺ Hκ+++ is of size κ in V . We build in V [G] a sequence (N ∗ξ ,Nξ : ξ ≤ Υ) of
levels of our Kc-construction such that N0 = N ∗0 = P , Nξ = Cω(N ∗ξ ) for all ξ ≤ Υ
and Υ ≤ κ+++. Though it is clear from the construction that Nξ,N ∗ξ ∈ V for all ξ.

Before defining the sequence, we discuss the kind of background extenders being
used in this construction. Suppose Nξ has been constructed and is in V , is passive,
℘(δP)Nξ = ℘(δP)P , and suppose F is a (cr(F ), o(Nξ))-extender that coheres the
sequence of Nξ. Suppose Y ≺ Hκ+++ (or Y ≺ Hλ for λ ≥ κ+++) is in V and is
countable (in V [G]) and Y contains all relevant objects. Let πY be the corresponding
uncollapse map. We say Y is good if Y ω ⊆ Y in V , κ ∪X ⊂ Y and Y is an honest
extension of X.3 Let (PY ,N Y

ξ ) = π−1
Y (P ,Nξ). Suppose N Y

ξ has a unique πY -
realization strategy ΣY

ξ such that ΣY
ξ � HC ∈ Ω (these properties will be maintained

during the course of our construction). We say that F is correctly backgrounded if
one of the following holds:

3Technically, we should write Y ∩P is an honest extension of X, but we will be sloppy here and
from now on.
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• if cr(F ) = δP and the least cutpoint above δP is the largest cardinal in Nξ, then

(a,A) ∈ F if and only if for all good Y such that (a,A) ∈ Y , π
ΣYξ
Nξ,∞(a) ∈ A. In

this case, we say that F is πY -certified over (N Y
ξ ,Σ

Y
ξ ).

• if cr(F ) > δP , then say, λ = F (cr(F )), F is certified by a collapse in the sense
of [5], that is, there is Z ≺ HV

κ+++ (in V ) such that |Z| is κ∗, where κ∗ = |o(P)|,
o(P) + 1 ⊂ Z, Zκ ⊆ Z,4 and letting π : MZ → Z be the uncollapse, we have:
Nξ|cr(F ) ∈MZ , cr(πZ) = cr(F ), and

F is the trivial completion of (π � ℘(cr(πZ)) ∩Nξ) � λ.

We continue with the notations of the previous paragraph. Let γξ be the supre-
mum of indices of extenders on the Nξ-sequence with critical point δP . Suppose
γξ < o(Nξ) and let γξ ≤ λξ ≤ o(Nξ)5 be such that ρω(Nξ) ≥ λξ and there is a stack
~T ∈ Nξ based on Nξ|λξ according to the internal strategy Σ

Nξ
λξ

such that Σ
Nξ
λξ

(~T )

is undefined. Suppose also ~T is such that the theory developed above (Chapter 3)

dictates that a cofinal branch b for ~T needs to be added to Nξ and Nξ is so that

(Nξ, Bb) is amenable.6 We call such a tuple (Nξ, λξ, ~T ) appropriate.
We now discuss how a branch b is chosen to extend Nξ for an appropriate tuple

(Nξ, λξ, ~T ). Suppose Y ≺ Hκ+++ is good and contains all relevant objects. Let

(N Y
ξ , λ

Y
ξ , γ

Y
ξ ,

~T Y ) = π−1
Y (Nξ, λξ, γξ, ~T ). Then the B-sequence of N Y

ξ
7 above λYξ is

according to:

(a) either a short tree strategy of N Y
ξ |λYξ , which we denote Σsts

Y,ξ if γYξ is definably
Woodin over N Y

ξ |λYξ ;

(b) or the strategy ΣY,ξ of N Y
ξ |λYξ , where ΣY,ξ is the canonical Q-structure guided

strategy of N Y
ξ |λYξ if o(N Y

ξ ) < o(MΣY,ξ,]
2 );

(c) or else the canonical ΣY,ξ-strategy ΛY,ξ of N Y
ξ |λYξ = MΣY,ξ,]

2 (N Y
ξ |ε), where ΣY,ξ

is the canonical Q-structure guided, πY -realization strategy of N Y
ξ |ε.

4Note that |o(P)| = |Ω| < κ+++. Futhermore, Z[G]ω ⊆ Z[G] in V [G].
5In fact, the theory developed in Section 2, 3 dictates that λξ > γξ. This is because we don’t

activate new strategies above γξ until we reach the first E-active Nξ|λ above γξ. At that point, we
activate the short-tree strategy of Nξ|λ.

6Bb is a code for b as done in [20, Section 2] and outlined in Chapter 11. We only note that this
amenable coding ensures condensation under very weak hull embeddings, cf. [20, Lemma 3.10] and
this fact is in turns used to show that �κ,2 holds in hod mice.

7Recall, this is the sequence of branch predicates that codes up some internal strategy of N Y
ξ .
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We let ΨY,ξ denote Σsts
Y,ξ in case (a), ΣY,ξ in case (b), and ΛY,ξ in case (c).

Remark 12.2.1 We will discuss the construction of ΨY,ξ in the next section. At
this point, we assume it exists and just want to extend the internal strategy of Nξ
one more step.

Let bY = ΨY,ξ( ~T Y ) and cY be the downward closure of πY [bY ] ⊂ T . We remind

the reader that in case (a), the stack ~T Y has the form (R0, T ,R1, ~U) and is an

N Y
ξ -authenticated stack (of length 2), where R0 = N Y

ξ |λYξ and ~U is a stack on

MΣR1(α),]

2 for some α < δR1 − 1. The branch bY in this case is given according to

the canonical strategy ofMΣR1(α),]

2 . We note that at this point of the construction,

the πY -realization strategy for R1(α) and that of MΣR1(α),]

2 have been constructed.
Similarly, in cases (b) and (c) we have constructed ΨY,ξ and hence can define bY .

Remark 12.2.2 The reason we have case (c) as well as feeding in stacks onMΣR1(α),]

2

in case (a) is because we want our hod mice to be g-organized in the sense of [20].
g-organization ensures that S-constructions go through as discussed in Chapter 6.

In the following, we write ∀∗Y to mean “for some club C, Y ∈ C ∩Sφ,Ω”. Now, [31,
Lemma 3.62] shows that for any ν < lh(T ),

either ∀∗Y ν ∈ cY or ∀∗Y ν /∈ cY .

We then define b as follows: for all ν < lh(T ),

ν ∈ b if and only if ∀∗Y ν ∈ cY .

We say that b is suitable for (Nξ, λξ, ~T ). Letting R = (Nξ, Bb), we say b is according

to ΣRλξ , which is a “one step extension” of Σ
Nξ
λξ

.

The procedure above allows us to define the object LpΣNξ (Nξ) in the case γξ <
λξ = o(Nξ) as follows.

Definition 12.2.3 Suppose γξ < λξ = o(Nξ). We let LpΣNξ (Nξ) be the union of
Nξ�M such that ρω(M) ≤ o(Nξ) and for a club of good Y that contains all relevant
objects, π−1

Y (M) � LpΨY,ξ,Ω(NY
ξ ).

Now suppose Nξ is such that either γξ = o(Nξ) or γξ < λξ = o(Nξ). If γξ = o(Nξ),
we let N+

ξ = Jγ[Nξ] for γ being least such that Jγ[Nξ] is not sound or else N+
ξ =

(Nξ)], the least E-active mouse extending Nξ (so N+
ξ is the least mouse of the form
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(Jα[Nξ], E) for some E). Otherwise, let N+
ξ be the largest sound (not just Nξ-

sound) M� LpΣNξ (Nξ) such that either M defines a failure of Woodinness of γξ or
else ρω(M) < ρω(Nξ) if such an M exists, or else, we let N+

ξ be the largest sound

level of LpΣNξ (Nξ) (N+
ξ may be LpΣNξ (Nξ)).

Definition 12.2.4 The models Nξ,N ∗ξ are defined as follows: for all ξ ≤ Υ,

(a) if ξ is limit, let Nξ be limξ∗→ξNξ∗;

(b) if ξ = ξ∗ + 1, there are a couple of cases:

(i) if Nξ∗ is passive and there is a correctly backgrounded extender F that
coheres the Nξ∗-sequence, then let N ∗ξ = (Nξ∗ , F ).8

(ii) if Nξ∗ is passive and case (i) does not hold, then Nξ = N+
ξ∗.

The N ∗ξ ,Nξ constructed above are hod (sts)-premice in the sense of the previous
chapters.

Let Y ≺ N ∗ξ be an honest extension of X. Let N Y
ξ be the transitive collapse of

Y and πY be the uncollapse map. We say that Λ is the πY -realization strategy of
N Y
ξ if whenever i = π

~T : N Y
ξ → Q is the iteration map along stack ~T according to

Λ, then the map k : Q → N ∗ξ defined as: for f ∈ N Y
ξ , a ∈ (δQ)<ω,

k(i(f)(a)) = πY (f)(π
Λ~T ,Q
Q,∞ (a))

is well-defined, elementary9, k ◦ i = πY , and k � δQ = π
Λ~T ,Q
Q,∞ � δ

Q.
We maintain as part of the construction the following:

1. For every Y countable substructure of N ∗ξ (in V [G]) that contains all relevant
objects (e.g. X) and Y is an honest extension of X, let πY ,N Y

ξ be defined as
above, then if N Y

ξ is lsa-small and is not of lsa type, then there is a unique
πY -realization strategy ΣY

ξ for N Y
ξ . Additionally, ΣY

ξ � HC ∈ Ω and is locally
Ω-fullness preserving,10 has local strong branch condensation (in the sense of
Chapter 9). We will define ΣY

ξ in the next section.

8If there are F0 such that cr(F0) = δP and F1 such that cr(F1) > δP such that (Nξ∗ , F0) and
(Nξ∗ , F1) are both hod premice, then we give priority to F0. The uniqueness of extenders F with
crt(F ) = δP is clear from the definition of F . The uniqueness of extenders F with crt(F ) > δP is
proved by the usual bicephalus argument.

9By this, we mean if ~T is a k-maximal stack then k is a weak k-embedding in the sense of [8].
10Ω-fullness preserving means whenever i : N Y

ξ → Q is an iteration map according to ΣYξ , then

Qb is Ω-full.
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2. ρω(N ∗ξ ) ≥ o(P) for all ξ ≤ Υ. In other words, o(P) is (δP)+ in N ∗ξ and in Nξ
for all ξ ≤ Υ.

3. N ∗ξ is solid and universal for all ξ ≤ Υ. So Nξ is sound for all such ξ.

Definition 12.2.5 (Relevant extender) Suppose F is on the Nξ-extender sequence
for some ξ ≤ Υ. We say that F is relevant if the resurrection of F (in the sense of
[8]) is correctly backgrounded.

Granting that (1)-(3) are maintained for each ξ. We say the construction stops
prematurely when Υ is the least such that NΥ satisfies the following:

(i) There is an increasing sequence (δn : n < ω) of Woodin cardinals above δP

such that δP is the least < δ0-strong and (δn : n ≥ 1) are the Woodin cardinals
above δ0.

(ii) There are no (relevant) extenders E on the NΥ-sequence such that there is
some n such that cr(E) ≤ δi < lh(E).

(iii) I am a sts hod premouse over M+(NΥ|δ0) =def(NΥ|δ0)].

(iv) I am E-active with top extender F such that cr(F ) > δn for all n < ω.

From this, we then show that there must be a model of LSA.

Remark 12.2.6 In (1)-(3) above, suppose now N Y
ξ is such that N Y

ξ � “the largest
cardinal δ is Woodin and δP is strong to δ”, and ΨY,γ is the short tree strategy of
(N Y

ξ |δ)] �N Y
ξ . That is, N Y

ξ is of lsa type. Then it is not clear that there is a πY -
realization strategy for N Y

ξ . However, if the construction above N Y
ξ does not define

a failure of Woodinness of γξ = δ (the construction will be the construction with
respect to the short tree strategy of Nξ), then we can still carry on the construction
until it stops (perhaps prematurely) because we can still use iterability above δ to prove
solidity and universality for the models of the construction. If this were the case, then
there will be no (relevant) extenders E such that cr(E) = δP or cr(E) ≤ δ < lh(E)
being added during the course of the construction.

Remark 12.2.7 (I) The extender sequence of Nξ utilizes two indexing schemes:
the cutpoint indexing scheme (for extenders with critical point δP) and the
Jensen indexing scheme (for extenders with critical point > δP). This follows
from the definition of correctly backgrounded extenders for relevant extenders;
if E is non-relevant (so E is on the sequence of a “level of Lp”), our convention
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is E is indexed according to the Jensen indexing scheme. The Jensen indexing
scheme could be replaced by the Mitchell-Steel indexing scheme, but we choose
not to do so out of convenience; we want to quote direct results from [5] and
[1] as well as using results of Chapter 9.

(II) If γξ = o(Nξ), then the construction above (as dictated by the theory in Chap-
ters 2, 3) does not immediately activate the strategy for Nξ. Instead, it con-
structs an E-active Nε, where ε > ξ is the least such that Nε is E-active before
activating the strategy for Nε. It is easy to see that cr(ENε) > γε.

(III) If Nξ is not of lsa type, then (3) follows from (2) and (1) by what has been
proved in Chapters 3 and 9.

(IV) Suppose ΣY
ξ is as in (2) and N Y

ξ is not of lsa type. Then ΣY
ξ is positional and

commuting by results of Section 4.5.

Suppose the construction does not stop prematurely. Let N = NΥ. So o(N ) =
κ+++ by Lemma 12.4.2. Let δN > δP be the unique γ such that N � “δP is strong
to γ and γ is Woodin” if it exists; otherwise we let δN = 0. Note that by the
remarks above, which is a consequence of our smallness assumption (†), δN is a
strong cutpoint of N . Following [5], we define the following stack of hod mice above
N . The following definition takes place in V [G] but it is easily seen that S(N ) ∈ V .

Definition 12.2.8 Let S(N ) be the stack of sound hod premice M if δ = 0 or else
Σsts
M+(N|δ)-mice extending N such that ρω(M) = o(N ) and for every countable M∗

embeddable into M via πM∗ such that X ∪ {X,P−,P ,N} ⊂ rng(πM∗), rng(πM∗) is
an honest extension of X,M∗ is (ω1+1)-iterable above δ via a strategy ΛM∗ such that
if δN = 0, then ΛM∗ � HC ∈ Ω, Λ is locally Ω-fullness preserving and has local strong
branch condensation. Furthermore, if E is on the M-sequence such that cr(E) = δP

and lh(E) ≥ o(N ), then for every suchM∗ as above such that E ∈ rng(πM∗), letting
ν be the length of π−1

M∗(E), then for any a ∈ [ν]<ω, A ∈ ℘(δP)|a| ∩ P such that

(a,A) ∈ E ∩ rng(πM∗), then πΛM∗
M∗||ν,∞(π−1

M∗(a)) ∈ A.

The following facts about S(N ) more or less follow immediately from results in
[5].

Lemma 12.2.9 Suppose Υ = κ+++ and N = NΥ.

(i) For M0,M1 ∈ S(N ), either M0 �M1 or M1 �M0. In other words, S(N )
is a hod premouse (and is ω-small).
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(ii) For all M� S(N ), there is some R� S(N ) such that M�R. In particular,
S(N ) � ZFC−.

(iii) cof(o(S(N ))) ≥ κ+++.

Proof. (i) and (ii) are analogs of [5, Lemma 3.1] and [5, Lemma 3.3] respectively and
follow straightforwardly from the condensation lemma, Theorem 11.1.2. The point
is that if δN = 0, then the theory developed above allows us to perform comparisons
(and shows that no strategy disagreement can occur); otherwise, the construction
above δ is with respect to a fixed (short-tree) strategy predicate, so the comaprison
is again an extender comparison. (iii) follows from the proof of [5, Theorem 3.4],
noting that κ+++ ≥ ℵ3, is countably closed and 2κ

++
= κ+++ in V [G]. �

12.3 Iterability of lsa-small, non-lsa type levels

Now we inductively prove (1)-(3) hold for all ξ ≤ Υ. First, we verify that (1)-(3)
holds for ξ = 0. By Lemma 12.1.1, no P−�M�P projects across δP ; also P � ZFC−,
and hence ρω(P) = o(P). By definition, P = N ∗0 .

Lemma 12.3.1 (1)-(3) hold for ξ = 0. Hence N0 = N ∗0 = P.

Proof. Fix Y as in the statement of (1). Let δY = δN
Y
0 . By definition, ΣY

0 has
branch condensation as it is the join of strategies with those properties. Furthermore,
note that ΣY

0 acts on N Y
0 in the following way. Let (Q, ~T ) ∈ I(N Y

0 ,Σ
Y
0 ) and let

i : N Y
0 → Q be the iteration map and ΣQ,~T be the ~T -tail of ΣY

0 .

Suppose x ∈ Q, then there is some f ∈ N Y
0 and a ∈ i(δY )<ω such that

x = i(f)(a).

Let k : Q → N0 be defined as follows:

k(i(f)(a) = πY (f)(π
ΣQ,~T
Q(i(δY )),∞(a)),

for any f ∈ N Y
0 and any a ∈ i(δY )<ω. Note that since X is a condensing set and

i◦πX,Y � δX is according to ΣX
0 , rng(k) is an honest extension ofX. By Lemma 12.1.3,

k is well-defined, Σ1-elementary (and cofinal), k ◦ i = πY , and k � δQ = π
Σ~T ,Q
Q|δQ,∞ � δ

Q.

It is clear that this is the only way to define k; the uniqueness of ΣY
0 also follows.

We remark that local strong branch condensation is just branch condensation in
this case. Now to see that ΣY

0 is Ω-fullness preserving, it suffices to show Q is Ω-full.
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But this follows from the definition of condensing sets and the fact that Y and rng(k)
are honest extensions of X. Also, we get local strong Ω-fullness preservation.

We have shown (1). (2) holds by the remark immediately before the lemma and
(3) follows from (2) and (1) by Remark 12.2.7. �

Verifying that (1)-(3) hold at limit ξ is easy; we leave it to the reader. Next, we
verify that (1)-(3) hold for ξ∗ implies (1)-(3) hold for ξ = ξ∗ + 1. This is the main
case.

Let Y ∈ V be an honest extension of X; we assume also Y = Y ∗ ∩ N ∗ξ for some
Y ∗ ≺ HV

κ+++ . We assume N ∗ξ (and hence N Y
ξ ) is lsa-small and is not of lsa type;

more precisely, we assume that letting γξ be the supremum of indices of extenders E
on the N ∗ξ sequence such that cr(E) = δNξ , then someM�N ∗ξ defines the failure of

Woodinness of γξ. We now define the strategy ΣY
ξ for N Y

ξ .11 We write xY for π−1
Y (x)

for x ∈ N ∗ξ ∩ rng(πY).

Definition 12.3.2 (Normal form) An iteration ((Pα, ~Tα) | α < η) on P0 = N Y
ξ

is said to be in normal form if the following hold:

(i) ~Tα is a stack of normal trees with base model Pα and last model Pα+1.

(ii) If λ ≤ η is limit, Pλ = limα<λPα.

(iii) Either ~Tα uses no extenders in the top block of Pα or its images or Pα+1 =
Ult(Pα, E) for some extender E on the Pα-sequence with cr(E) = δPα or else
~Tα is completely above δPα.

(iv) If η = α + 1 for some α, then for all β < α, ~Tβ does not drop.

We define ΣY
ξ for stacks in normal form. We say that a stack ((Pα, ~Tα) | α < η)

in normal form, where P0 = N Y
ξ , is according to ΣY

ξ if: letting τ0 = πY � P0,
iγ,τ : Pγ → Pτ be iteration maps, and κPγ be the cutpoint cardinal that begins the
top block of Pγ 12

(A) there are maps τα : Pα → N ∗ξ for all α < η;

11Technically, since we construct ΣYξ in V [G], we should denote it ΣY,Gξ . But in fact ΣY,Gξ ∩V ∈ V
and ΣY,Gξ does not depend on the choice of G. This will be clear from the construction of ΣY,Gξ . So

in effect, we are constructing an invariant name Σ̇Yξ in V whose interpretation in V [G] is ΣY,Gξ for

any G. For notational simplicity, we will simply write ΣYξ without the “G”.
12κPγ = i0,γ(δP).
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(B) for all γ ≤ α < η, τγ = τα ◦ iγ,α;

(C) for all α < η, the Pα-tail of ΣY
ξ∗ , Λα, is the τα-pullback strategy and πΛα

Pα|κPα ,∞ =

τα � Pα|κPα ;

(D) if η = α + 1 and ~Tα drops and say ~Tα is k-maximal, then either ~Tα is “Lp-

based”, that is there is some Q � Pα such that ~Tα is based on LpΛα,Q,Ω(Q) (or

LpΛstsα,Q,Ω(Q)) and is above o(Q) or else there is a (unique) branch b of ~Tα, some

ξ′ < ξ, and a weak-deg(b)-embedding τη : M~Tα
b → Nξ′ . Otherwise, there is a

(unique) branch b and map τη :M~Tα
b → Nξ such that τα = τη ◦ iα,η.

It is clear how to extend ΣY
ξ to all stacks of normal trees. This is because all

stacks of normal trees on N Y
ξ can be decomposed into stacks in normal form. We

will need to define maps τα in the definition of ΣY
ξ in such a way that makes ΣY

ξ a
πY -realization strategy.

The next lemma shows that if R is a ΣY
ξ -iterate of N Y

ξ via map i, letting δR =

i(δP
Y

) and F is an extender on the R-sequence with critical point δR, then F is
certified. The lemma proves something a bit more general.

Lemma 12.3.3 Suppose Y is a countable, elementary in Nξ and is an honest ex-
tension of X. Suppose i : N Y

ξ → R and σ : R → Nξ are such that πY = σ ◦ i, and
letting Z be rng(σ), then Z is an honest extension of Y . Let Λ be the σ-pullback
strategy on R. Then:

(a) If j : R → S is a Λ-iteration based on Rb and suppose δS = sup j[δR] = j(δR),
then letting τ : S → Nξ be the map: τ(j(f)(a)) = σ(f)(πΛS

S|κS ,∞(a)), where

f ∈ R, a ∈ [κS ]<ω, and ΛS is the tail of Λ. Then τ is well-defined, elementary,
and πΛS

S|κS ,∞ = τ � (S|κS).

(b) Suppose F is an extender on the R-sequence with cr(F ) = κR = i(δP). Then F
is σ-certified over (R||lh(G),ΛR||lh(G)).

Proof. (a) follows from Lemma 12.1.3 and the fact that the iteration map j is
continuous at δR.

For (b), first, note that i is continuous at (δ+)N
Y
ξ and is cofinal in ((κR)+)R. This

is because πY is continuous at (δ+)N
Y
ξ and is cofinal in (δ+)P . Finally, F is total over

R; this follows from the continuity of i.
Now, let S = Ult(R, F ), iF be the ultrapower map. Let Z be countable, honest

extension of X such that Y ≺ Z and rng(σ) ⊆ rng(πZ) . Let σZ = π−1
Z ◦ σ. Let
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Figure 12.3.1: Hypothesis of Lemma 12.3.3

G = σZ(F ) 13 and iG : N Z
ξ → Ult(N Z

ξ , G) =def W be the ultrapower map. Let
τZ : S → W be the copy map and ψ : Ult(N Z

ξ , G)→ Nξ be the map

ψ(iG(f)(a)) = πZ(f)(π
ΣZξ
NZξ ,∞

(a)).

Since G is πZ-certified over (N Z
ξ ||lh(G), (ΣZ

ξ )NZξ ||lh(G)), ψ is well-defined, elementary,

and ψ ◦ iG = πZ . Now,

σ = ψ ◦ τZ ◦ iF ,

so letting ΛS be the ψ ◦ τZ-pullback strategy for S, then by strategy coherence for
hod mice, ΛS agrees with ΛR on R||lh(F ). Now let τ : S → Nξ be defined as follows:
for all a ∈ [lh(F )]<ω and f ∈ R,

τ(iRF (f)(a)) = σ(f)(πΛR
R||lh(F ),∞(a)).

By Lemma 12.1.3, τ is well-defined, elementary, and agrees with πΛS
S,∞ up to δS and

hence with σ up to R||lh(F ). This proves part (b). �

The following remarks summarize how we can inductively define maps τα and
hence define ΣY

ξ on stacks in normal form.

Remark 12.3.4 (i) If ~Tα = 〈E〉 for cr(E) = δPα, then

τα+1(iPαE (f)(a)) = τα(f)(πΛα
Pα||lh(E),∞(a)).

Lemma 12.3.3(b) shows that τα+1 is well-defined, elementary,14, agrees with τα
up to lh(E), and π

Λα+1

Pα||lh(E),∞ = τα+1 � Pα||lh(E),∞.

13If F is the top extender of R, then by σZ(F ), we mean σZ [F ].
14If τα is a weak k-embedding for some k, as is typical of realization maps, then so is τα+1.
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R̄0

W̄0

R̄α+1

W̄α+1

N̄ξ,Z ,Ψ
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W∗ = WZ
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π

τ̄0

ε
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τ0

iG

τα+1 = τ

τ̄α+1

Figure 12.3.2: Sketch of Remark 12.3.4(ii)

(ii) With the exact same situation as i and suppose cofV (o(N ∗ξ )) ≤ κ,15 we claim
that the S =def Pα+1-tail of Ψ =def ΣY

ξ−1 is ΨS , the τα+1-pullback strategy of S.
This is strategy coherence at α + 1. Suppose not. Write τ for τα+1 and i for
i0,α. This is basically the proof of Theorem 2.7.6 in [10] (see Figure 12.3.2).
We briefly sketch it here. Let Y ≺ Z and Z ∈ V is countable (in V [G]), honest
extension of X. Let WY be a Ψ-hod mouse with ω many Woodin cardinals and
WZ = Ult(WY , E), where E is the (crit(πY ), o(N Z

ξ ))-extender derived from
πY,Z. So letting j = iG ◦ i, j extends to j+ : WY → W and τ extends to
τ+ : W → WZ, where N Z

ξ �WZ (this is because o(N Y
ξ ) is a cardinal cutpoint

in WY and πY,Z is cofinal in o(Nξ,Z)). Let π : M → HV
κ+4 be the inverse of

the transitive collapse of some countable elementary substructure of HV
κ+4 in V

containing all relevant objects. For any a ∈ HV
κ+4 ∩ ran(π), let ā = π−1(a). Let

ḡ ⊆ Col(ω, κ̄) be M-generic with g ∈ V and S̄, j̄, τ̄ be the objects in M [ḡ]
witnessing the failure of the claim in M [ḡ]. Since M is countable, there is a
map ε : W̄Z → WY such that π � W̄Y = ε ◦ π̄Y � W̄Y . Let Φ be the ε-pullback
of Ψ. By the proof of Theorem 2.7.6 in [10], working in M [ḡ], the uB code
for Ψ̄ gets moved to the uB code for its S̄-tail and also to the uB code for the
τ̄ -pullback of Φ. This is a contradiction.

(iii) If ~Tα is below δPα then it is according to Λα and so τα+1 is given by the inductive

15Cofinally many ξ has the property that cofV (o(N ∗ξ )) ≤ κ. In our case, ξ = ξ∗ + 1, this holds
because Nξ∗ � ∀κ�κ by Chapter 9.
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assumption on Λα. Strategy coherence at α+ 1 is maintained here. See Lemma
12.3.3(a).

(iv) If ~Tα is above δPα and is not Lp-based, then the map τα+1 is given by the Kc-
construction theorem (cf. [1, Theorem 3.2]) and our smallness assumption on

the hod mice that we are constructing. If ~Tα is above δPα and is Lp-based, then
~Tα drops and we can’t undo the drop, so no more realizations are needed.

(v) Suppose λ < η is limit. Let for α < λ

τλ(iα,λ(x)) = τα(x).

So we get τλ : Pλ → N Y
ξ is such that for all α < λ, τα = τλ ◦ iα,λ. Using

the above argument, we get strategy coherence at λ. Finally, we verify that
letting π : Pλ|δPλ → N ∗ξ be the iteration maps by the τλ-pullback strategy Λλ,
π = τλ � δPλ. Let ν < δPλ. We note that Λλ is the Λα-tail by strategy coherence
at λ. Let iα,λ(ν

∗) = ν for some α < λ and ν∗ < δPα. Then

τλ(ν) = τα(iα,λ(ν
∗)) = πPα|κPα ,∞(ν∗) = π(iα,λ(ν

∗)) = π(ν).

The following lemma gives some useful consequences regarding uniqueness of
strategies, whose proof is essentially the proof of Lemma 10.3.6.

Lemma 12.3.5 (i) Suppose π : Q → P is elementary such that X ⊂ rng(π).
Suppose i : Q → R is such that i � δP is according to the π-pullback strategy
and τ0, τ1 : R → P are such that τ0 ◦ i = τ1 ◦ i = π. Then the τ0-pullback
strategy is the same as the τ1-pullback strategy.

(ii) Suppose Y is countable, elementary in Nξ and is an honest extension of X.
Suppose κ is a cardinal of Nξ and ωρn+1

NYξ
≤ κ < ωρnNYξ

. Let Ψ = ΣY
ξ .

(a) Suppose (~T ,R) ∈ I(N Y
ξ ,Ψ) is such that π

~T ,b exists and τ : N Y
ξ → S is

Σ
(n)
0 and cardinal preserving and S � R. Suppose (~U ,Q) ∈ I(N Y

ξ ,Ψ) is

such that π
~U ,b exists, Qb = Sb, and τ � P = π

~U � P, then Ψτ
~T ,S = Ψ.

(b) Suppose (~T ,R) is such that π
~T ,b exists and is according to Ψ. Suppose U is

a normal tree of limit length on R(β) according to Ψ~T ,R, where β < λR−1.
Suppose c are cofinal branches of U (considered as a tree on R) and there is

a map τc :MU
c → Nξ such that πY � P = τc ◦ πUc ◦ π

~T ,b.Then c = Ψ~T ,R(U).
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Figure 12.3.3: Lemma 12.3.5 (ii)(a)

Proof. (i) follows straightforwardly from Lemma 12.1.3 (iv). The main point is that,
letting Λi be the τi-pullback strategy (for i = 0, 1), then letting σi : R → P be

σ(i(f)(a)) = π(f)(πΛi
R,∞(a))

for f ∈ Q and a ∈ δR. Then σi[R] is an honest extension of X.
(ii)(b) follows easily from (i) and Remark 12.3.4(ii). For (ii)(a) (see Figure 12.3.3),

suppose Ψτ
~T ,S 6= Ψ, then by results of Section 4.4.1, there is a low-level disagreement,

that is there is ( ~W ,R0,W∗) such that:

• ~W is according to both strategies.

• R0 is the last model of ~W .

• W∗ is a tree of limit length on R0(β) for some β ≤ λR0 − 1.

Let b = Ψ( ~WaW∗) and c = Ψτ
~T ,S( ~WaW∗). Let σ : Q → Nξ be the realization map;

hence
πY � P = σ ◦ π ~U ,b = σ ◦ τ � P . (12.2)

Note that there are embeddings τb :MW∗,b
b → P and τc :MW∗,b

c → P such that:

σ ◦ τ � P = τc ◦ π
~W (12.3)

and
πY � P = τb ◦ π

~W . (12.4)

By (i) and Equations 12.2, 12.3, 12.4, b = c. Contradiction. �
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Figure 12.3.4: Branch condensation

Lemma 12.3.6 ΣY
ξ has locally strong branch condensation, and is Ω-fullness pre-

serving.

Proof. Ω-fullness preservation follows from the construction of ΣY
ξ (see Lemma 12.3.3

and the subsequent remarks). We first prove branch condensation (see Figure 12.3.4).
Suppose not. Let N = N Y

ξ and Ψ = ΣY
ξ and suppose the following hold: there are

stacks ~T aU and ~W on N such that

• ~T is via Ψ with end model R.

• ~U is according to Ψ and i = i
~W : P → Q is the iteration map.

• There are cofinal branches b, c of U and π :MU
b → Q such that

1. i = π ◦ iUb ◦ i
~T .

2. c = Ψ(~T aU).

3. b 6= c.

Let Ψ0 be the π-pullback strategy of Ψ ~W,Q and Ψ1 be Ψ~T aUac. RecallM+(U) =

M(U)]. We may assume:

Λ0 =def (Ψ0)stsM+(U) = (Ψ1)stsM+(U) =def Λ1. (12.5)
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In the case there is Q�M+(U) which is a Q-structure for δ(U) then (Ψ0)stsM+(U) =

(Ψ0)M+(U) and similarly for Ψ1. We assume this is not the case; otherwise, the
argument is similar and simpler.

Let σ : Qb → P be the πY -realization map, so that

πY � P = σ ◦ π ~T aU ,b.

In the above, we note that π
~T aU ,b exists and is the same as π

~T aUac and this map does
not depend on the choice of the cofinal branch; i.e. π

~T aU ,b = π
~T aUab,b = πU ,bb ◦ π

~T

(even though b may drop).
By results of Section 4.4.1, if 12.5 fails, then there is a minimal disagreement

( ~W∗,Y) ∈ B(M+(U),Λ0)∩B(M+(U),Λ1) in the sense of Definition 4.4.2. Note that
Y is of successor type and (Λ0) ~W∗,Y(α) = (Λ1) ~W∗,Y(α) for all α < λY−1. Furthermore,

there is a stack ~U∗ on Y such that there are distinct branches b∗ = (Λ0) ~W∗,Y 6= c∗ =
(Λ1) ~W∗,Y . Note that

πU ,bb ◦ π
~T � P = πUc ◦ π

~T � P .

Note further that there are τb∗ :M~U∗,b
b∗ → P and τc∗ :M~U∗,b

c∗ → P such that

πY � P = τb∗ ◦ π
~U∗
b∗ ◦ π

~W∗,b ◦ πU ,bb ◦ π
~T � P , (12.6)

and

πY � P = σ ◦ π ~U ,b = τc∗ ◦ π
~U∗
c∗ ◦ π

~W∗,b ◦ πU ,bc ◦ π
~T � P . (12.7)

This is because

π
~U∗
b∗ ◦ π

~W∗,b = π
~U∗
c∗ ◦ π

~W∗,b.

Equations 12.6 and 12.7 contradict Lemma 12.3.5 (which implies that b∗ = c∗).
So 12.5 holds. By our assumption, Q(c,U)�MU

c and is a Λ1-mouse and Q(b,U)�
MU

b and is a Λ0-mouse. Results of Chapter 6 imply that Q(b,U) = Q(c,U) (by
comparisons) and hence b = c. Contradiction.

The argument above shows branch condensation. The other clause of strong
branch condensation follows from a very similar argument, so we leave it to the
reader. �

Lemma 12.3.7 ΣY
ξ is locally strongly Ω-fullness preserving.
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Figure 12.3.5: Strong Ω-fullness preservation

Proof. Ω-fullness preservation follows from the previous lemma. We now prove
the other clause of locally strongly Ω-fullness preservation (see Figure 12.3.5). Let

N = N Y
ξ and Ψ = ΣY

ξ . Suppose (~T ,S) ∈ I(N ,Ψ) is such that π
~T ,b exists. Suppose

Sb �W � S is such that for some n and some cardinal κ of W ,

o(Sb) ≤ ωρn+1
W ≤ κ < ωρnW .

Suppose τ : R → W is cardinal preserving, is Σ
(n)
0 , and ωρnR > cr(τ) ≥ ωρn+1

R =
ωρn+1
W . We want to show the τ -pullback of the strategy Σ~T ,W is Ω-fullness preserving.

Note that τ � Rb = id and Rb = Wb. This implies rng(π
~T ,b) ⊆ rng(τ). Let

σ : Wb = Sb → P be the πY -realization map, so that πY � N b = σ ◦ π ~T ,b. Since
X ⊂ rng(σ) and rng(σ) is an honest extension of X.

We now show Στ
~T ,W is Ω-fullness preserving. To see this, let (W∗, ~U) ∈ I(W ,Στ

~T ,W)

be such that π
~U ,b : Rb → (R∗)b exists and let τ ~U be the copy tree on W with last

model W∗. So πτ
~U ,b : Wb → (W∗)b exists. Let ψ : (R∗)b → (W∗)b be the copy

map and σ∗ : (W∗)b → P be given by the construction of Ψ, so σ∗ ◦ πτ ~U ,b = σ and

σ∗ ◦ πτ ~U,b ◦ σ = πY � N b.
Note that ψ = id and rng(σ∗) is an honest extension of X. So (W∗)b is Ω-full.

This is our desired conclusion. �

An easy corollary of the above Lemmata is the following.

Corollary 12.3.8 Suppose Y ≺ Z ≺ Nξ are countable (in V [G]), honest extensions
of X, Y, Z ∈ V , and Y = Y ∗ ∩ Nξ, Z = Z∗ ∩ Nξ for some Y ∗ ≺ Z∗ ≺ HV

κ+++. Let
πY,Z = π−1

Z ◦ πY . Then ΣY
ξ = (ΣZ

ξ )πY,Z .
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Proof. Let δY = π−1
Y (δP) and δZ = π−1

Z (δP). By our assumption on Y and Z, we
have:

πZ � δZ = π
ΣZξ
NZξ ,∞

� δZ ,

and

πY � δY = π
ΣYξ
NYξ ,∞

� δY = πZ ◦ πY,Z � δY .

Using the above equations, Lemma 12.3.5, and the proof of Lemma 12.3.7 (espe-
cially the idea that if two strategies disagree, then there is a lower-level disagreement),
we obtain the desired conclusion.

�

Corollary 12.3.9 ΣY
ξ is positional and commuting.

Proof. This follows from Lemmata 12.3.6, 12.3.7, and results of Section 4.7. �

Now, we discuss how to lift Ψ = ΣY
ξ to a (necessarily unique) (κ+4, κ+4)-strategy

Ψ+ with branch condensation and show Code(ΣY
ξ ) ∈ Ω.

Recall Ψ is an (ω1, ω1)-strategy for N Y
ξ with branch condensation, is positional

and Ω-fullness preserving. Furthermore, Ψ∩V ∈ V and is independent of the choice
of generic G. By arguments in [31], Ψξ+1,X ∩ V can be uniquely extended to an
(κ+4, κ+4) strategy with branch condensation and is positional. We also call this
extension Ψ. We briefly give a sketch as to how to obtain a (κ+4, κ+4)-strategy Ψ+

extending Ψ with branch condensation and is positional in V [G].
In V [G], suppose T is of limit length < κ+4 and is according to Ψ+. We show

how to define Ψ+(T ) (stacks of normal trees can be handled similarly). In V , let
A ⊆ κ+++ code Hκ+++ and a (nice) Col(ω, κ)-name Ṫ ∈ Hκ+4 for T (here we use
our cardinal arithmetic assumption 12.1). Let

MA = LΛ
κ+4 [A,MΨ,]

2 ]

where Λ is the unique (κ+4, κ+4)-strategy for M =def MΨ,]
2 , the minimal E-active

Ψ-mouse with two Woodin cardinals. We note that the existence of MΨ,]
2 follows

from [31, Section 3.2]. By ¬�(κ+4),

MA � there are no largest cardinals.
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In particular (((κ+++)V )+)MA < κ+4, so in MA, which is closed under Λ, we can use
Λ to perform a generic genericity iteration to make A-generically generic (see [10] or
[20] for more on generic genericity iterations). Let Q ∈MA be the result of such an
iteration. There is a Q-generic h ⊆ Col(ω, δQ0 ) such that Hκ+++ , G, Ṫ ∈ Q[h], where
δQ0 is the first Woodin cardinal of Q. Since Q is closed under Ψ; we can generically
interpret Ψ on any generic extensions of Q (as done in [20] or in Chapter 6).16 This
allows us to define Ψ+(T ) as the branch chosen by the interpretation of Ψ applied
to T in Q[h]. The well-definition and uniqueness of Ψ+ follow from hull arguments
in [31, Section 3.2].17

Using Ψ+, now suppose Ψ is a strategy, we can define the stack of Θ-g-organized
mice over R, Lp

GΨ+
(R, Code(Ψ)), in V [G] (cf. [20, Definition 4.23]),18 and show

that there is a maximal initial segment M � Lp
GΨ+

(R, Code(Ψ)) such that M is
constructibly closed and M � AD+ + SMC + Θ = θΨ. This implies Code(Ψ) ∈ Ω.

Remark 12.3.10 If Ψ is a short-tree strategy, we hold off on showing that Ψ ∈ Ω.
The idea is that we’ll wait until we reach a level Nγ (if exists) extending Nξ such that
some Q�Nγ is a Q-structure for δNξ and then we can show (ΣY

ξ )Q ∈ Ω by the above
discussion (for Y as above). If we never reach such a level Nγ, then we’ll see in the
next section that the construction stops prematurely. This will allow us to conclude
that a model of LSA exists.

Corollary 12.3.11 Let N = N Y
ξ . Then ρω(N ) ≥ o(N b) = o(P) and N is n-solid

and n-universal for all n ∈ ω.

Proof. By induction, we prove for all n < ω, ρn(N ) ≥ o(N b) and N is n-solid and
n-universal. For n = 0, clearly N is 0-sound. We just prove this for the case n = 1;
the case n > 1 is similar (one just has to work with the n− 1-reduct).

Without loss of generality, we assume that Ψ is a strategy; otherwise, ρω(N ) ≥
δN > o(N b) and there is nothing to prove.

16If Ψ is a strategy, we could have simply let M =MΨ,]
1 ; but if Ψ is a short-tree strategy, then

one seems to need MΨ,]
2 to apply results in Chapter 6. Relevant results in [20] can be applied to

MΨ,]
2 as well.

17LetM,M∗ be such that T ∈M∩M∗; let τ, τ∗ be nice Col(ω, κ)-terms forM,M∗ respectively. In
V [G], let X[G] contain all relevant objects and X ≺ Hκ+4 is good. Let ā = π−1

X (a) for all a ∈ X[G].
Then letting b0, b1 be the branches of Ū given by applying [20, Lemma 4.8] in LΛ∗ [tr.cl.(τ̄), <1

,M], LΛ∗ [tr.cl.(τ̄∗), <2,M] (built inside MX [G]), where <1 is a well-ordering of τ̄ and <2 is a well-
ordering of τ̄∗. Then b0 = b1 as both are according to Λ, since (M,Λ∗) generically interprets Λ in
V [G].

18[31] shows that Code(Ψ) is self-scaled in the sense of [20, Definition 4.22] if Ψ is a strategy.
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Claim 12.3.12 ρ1(N ) ≥ o(N b).

Proof. Suppose not. Let δY = π−1
Y (δP), Ψ = ΣY

ξ . Let Q = Ult0(N , ν) where ν is the
order 0 total measure with critical point δY . Let q = iν(p) where p = p1(M). Hence

(i) N b is a cutpoint initial segment of Q and o(N b) is the cardinal successor of δY
in Q.

(ii) We can regard Q as a hod premouse over (N b,ΨN b) with strategy ΣQ ∈ Ω that
is commuting and is Ω-fullness preserving.19

(iii) There is some A ⊆ δY such that A is Σ1-definable over Q from q and A /∈ N b.

We say that a triple (Q,ΣQ, q) satisfying (i)-(iii) is minimal if there is no ΣQ iteration
~T with iteration map i : Q → R and some r < i(q) (in the reverse lexicographic
order) such that (R,ΣR,~T , i(N b), r) satisfies (i)-(iii).

Fix two minimal triples (R,ΣR, r) and (S,ΣS , s). We can then compare them
above N b. Letting i : R → W and j : S → W be iteration maps. Note that
i(r) = j(s) and so

ThRΣ1
(δY ∪ {r}) = ThSΣ1

(δY ∪ {s}).

This means ThRΣ1
(δY ∪ {r}) is ODΩ

N b,ΨNb
for any minimal (R,ΣR, r). By MC(ΨN b),

ThRΣ1
(δY ∪ {r}) ∈ N b.20

This contradicts (iii).
�

The claim and Theorem 11.1.2 (which is built on the results of Section 4.9) imply
that N is 1-solid and 1-universal. By similar arguments, we get the conclusion for
all n ∈ ω.

Now if Ψ is a short-tree strategy, then the first conclusion holds as ρω(N ) ≥ δN >
o(N b) discussed above. Furthermore, N is iterable above ρω(N ) and hence the proof
that N is n-solid and n-universal for all n ∈ ω is as usual.

�

Finally, we show that there are (enough) extenders with critical point δP being
put on the extender sequence of the Nξ’s during the course of the construction.

19We can take ΣQ be theQ-tail of Ψ. By Lemma 12.3.7, ΣQ is Ω-fullness preserving. By Corollary
12.3.9 and results of Section 4.7, ΣQ is positional and commuting.

20Note that we take Y so that N b = LpΨN|δY ,Ω(N|δY ).
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Definition 12.3.13 (Extender-ready levels) We say that Nξ is extender-ready
if for a V -club Cξ of Y ≺ Nξ which is an honest extension of X and Y ∈ V is count-
able in V [G], letting N Y

ξ = π−1
Y (Nξ), Ψ = ΣY

ξ and γYξ be the supremum of the

indices of extenders on the N Y
ξ -sequence with critical point δY =defπ

−1
Y (δP) (we let

γYξ = ((δY )+)N
Y
ξ if N Y

ξ has no such extenders on its sequence), we have that no
sound M� LpΨ,Ω(N Y

ξ ) projects across γYξ and every M� LpΨ,Ω(N Y
ξ ) is sound.

Remark 12.3.14 Extender-ready levels are those Nξ’s that are eligible to be ex-
tended to a hod premouse (Nξ, F ) where F has critical point δP . Let Y,M be as in
the above definition, it is easy to see that M also does not project across o(N Y

ξ ).

The lemma below shows that the collection of correctly-backgrounded extenders
with critical point δP is sufficiently rich. For instance, if PY = π−1

Y (P), and N Y
ξ =

LpΣPY ,Ω(PY ), then N Y
ξ is extender-ready (Corollary 12.3.11 shows that no level of

N Y
ξ projects below o(PY ) and Theorem 11.1.2 and Corollary 12.3.11 show that every

level of LpΣPY ,Ω(N Y
ξ ) is sound). Lemma 12.3.15 shows that if Nξ is extender-ready

then for every Y ∈ Cξ, there is an a correctly backgrounded extender E with critical
point δY such that (N Y

ξ , E) is a hod premouse.

Lemma 12.3.15 Suppose Nξ is extender-ready. Fix Y ≺ Nξ in Cξ. Let N =
N Y
ξ ,δY = π−1

Y (δP), and Ψ = ΣY
ξ be the πY -realization strategy for N . Then there is

an extender EY with cr(EY ) = δP such that EY is πY -certified over (N ,Ψ).

Proof. Let γ = o(N ). Let E = EY be the following extender over N : for a ∈ [γ]<ω

and A ∈ ℘(δY )|a| ∩N ,

(a,A) ∈ E ⇔ πΨ
N ,∞(a) ∈ πY (A).

Fix a Y ≺ Z ∈ Cξ such that Z = Z ′ ∩ HV
κ+++ and Z ′ ≺ HV

κ+++ contains all
relevant objects. Naturally, MZ′ [G] ≺ Hκ+++ [G] and πZ′ extends to act on all of
MZ′ [G]. Let π = πΨ

N ,∞ and π′ = (πΨ
N ,∞)MZ′ . Let πZ′ : MZ′ → Z ′ be the uncollapse

map (we also denote the extension map πZ′). Recall that Ψ is Ω-fullness preserving,
commuting, and has branch condensation; furthermore, π � N b = πY � N b and
π′ � N b = πY,Z � N b.

It is easy to see that E is the extender E ′ defined as follows: for a ∈ γ<ω and
A ∈ ℘(δY )|a| ∩N ,

(a,A) ∈ E ′ ⇔ π′(a) ∈ πY,Z(A).
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We need to see that (N , E) is a hod premouse.
Amenability: Let η < γ and ξ < o(N b), we show: E ∩ (η<ω ×N|ξ) ∈ N .
Let A = (Aα | α < δY ) enumerate N|ξ. Let

B = πY (A) ∩ (π(η)× π(η)).

Then B ∈ Nξ|δP and so is ODΩ. Now for all a ∈ η<ω, for all α < δY ,

(a,Aα) ∈ E ⇔ π(a) ∈ Bπ(α)

This shows E∩ (η<ω×N|ξ) is ODΩ
Ψ. By SMC and the fact that N is extender-ready,

E ∩ (η<ω ×N|ξ) ∈ N .
ΘX-completeness: Let ε < δY , c ∈ γ<ω, A = (Aα | α < ε) ∈ N be such that

Aα ∈ Ec for all α < ε. We need to show: π(c) ∈ πY (
⋂
α<εAα) =

⋂
α<πY (ε) πY (A)α.

Since πY (ε) = π(ε), let α < πY (ε) and M be a Ψ-iterate of N such that letting
i : N → M be the iteration map and ΨM be the M-tail of Ψ, then there is some
α∗ < i(ε) such that πΨM

M,∞(α∗) = α. Now,

∀ν < ε(π(c) ∈ πY (A)π(ν)).

Note that letting τ :M→ πY (N ) be given by the construction of Ψ then ΨM is
the τ -pullback strategy, by Lemma 12.1.3, we get

∀ν < i(ε)(πΨM
M,∞(i(c)) ∈ πY (A)

π
ΨM
M,∞(ν)

).

In particular,

πΨM
M,∞(i(c)) = π(c) ∈ πY (A)α.

Since α is arbitrary, we’re done.
Normality: Let c ∈ γ<ω, f : [δY ]|c| → δY be such that f ∈ N b and ∀∗Ecu f(u) <

max(u) or equivalently πY (f)(π(c)) < max(π(c)). We want to find a ξ < max(c)
such that

πY (f)(π(c)) = π(ξ) = πY (cξ)(π(c)),

where cξ is the constant function with range {ξ}.
Let M be a Ψ-iterate of N such that πΨ

N ,M = πN ,M exists, and let, ΨM be
the M-tail strategy of M induced by Ψ, and τM : M → Nξ be the πY -realization
map given by the definition of Ψ. Let EM be the extender that is τM-certified over
(M,ΨM), that is:
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(a,A) ∈ EM ⇔ πΨM
M,∞(a) ∈ τM(A).

It is easy to see that πN ,M[EN ] ⊆ EM.
Let M∞ = M∞(N ,Ψ) be the direct limit of all non-dropping Ψ-iterates and

π : N → M∞ be the direct limit map. Let g = π(f). Then by the construction of
Ψ and Lemma 12.1.3, the natural map k :M∞ → Nξ has critical point π(δY ) (and
πY � N = k ◦ π). So EM∞ is defined as:

(a,A) ∈ EM∞ ⇔ a ∈ k(A).

In particular,

k(g)(π(c)) = πY (f)(π(c)) < max(π(c)).

Since cr(k) = π(δY ), it is easy to see that EM∞ is normal. By normality and
amenability of EM∞ , there is ξ′ such that

πE∞(g)(ξ′) = π(c).

So by elementarity, the desired ξ exists and ξ′ = π(ξ).
Coherence: We now show:

1. Ult0(N , E)|γ = N .

2. Let ν = max{(δ+
Y )N , γξ}. Then ν is a cutpoint of Ult0(N , E) and γ = ((ν)+)Ult0(N ,E).

For 1), let τ : Ult0(N , E)→ Nξ be the natural map:

τ(iE(f)(a)) = πY (f)(πΨ
N ,∞(a))

for all f ∈ H+
X and a ∈ γ<ω. It’s clear that τ � γ = πΨ

N ,∞ � γ. This implies
Ult0(N , E)|γ is isomorphic to πY [N ] and hence isomorphic N .

For 2), suppose not. Using the fact that N is extender-ready, we first observe
that,

N � ∀ν ≤ α < γ (|α| ≤ ν). (12.8)

Let F be on the sequence of Ult0(N , E) such that

(i) crit(F ) = δY .

(ii) lh(F ) ≥ ν.

(iii) lh(F ) is the least such that (i) and (ii) hold.
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ξ , τ(F ))
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k

Nξ

πZ σ
πY

Figure 12.3.6: Coherence

We have then that lh(F ) ≥ γ by the definition of ν and the fact that Ult0(N , E)|γ =
N .21

Let τ and Z be defined as above. Let M = Ult0(N , E), i be the correspond-
ing ultrapower map. Let t : M → Ult(M, F ) be the ultrapower map by F and
u : N Z

ξ → Ult(N Z
ξ , τ(F )) be the ultrapower map by τ(F ). Let k : Ult(M, F ) →

Ult(N Z
ξ , τ(F )) be the natural map and σ : Ult(N Z

ξ , τ(F )) → Nξ be the realiza-
tion map. The existence of σ comes from the fact that τ(F ) is πZ-certified over
(N Z

ξ ||lh(τ(F )), (ΣZ
ξ )NZξ ||lh(τ(F ))).

Claim 12.3.16 lh(F ) = γ.

Proof. Note that ξ is a cutpoint in Ult(M, F ) and is the least such > δY . So by 12.8,

lh(F ) = (ν+)Ult(M,F )

Suppose lh(F ) > γ. Let Q�M||lh(F ) be least such that

N �Q∧Q � |γ| = ν.

Note that W is a level of LpΨ,Ω(N ). This is by by SMC and the fact that

πZ ◦ τ � N = πΨ
N ,∞ .

This contradicts the assumption that (N ,Ψ) is extender-ready. �

Now we show F is πY -certified over (N ,Ψ). This would give E = F ∈ Ult(N , E).
Contradiction.

Let Λ = ΣZ
ξ . First note that

21If ν is not a cutpoint of Ult0(N , E), then there is some extenderH on the sequence of Ult0(N , E)
such that cr(H) ≤ ν < lh(H). This easily implies that there is some extender F on the sequence of
Ult0(N , E) such that cr(F ) = δY and lh(E) ≥ ν.
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• πΨ
N ,∞ = π

Λτ(N )

τ(N ),∞ ◦ πΨ
N ,NZξ

.22

• τ � N = πΨ
N ,NZξ

.

• σ � τ(N ) = π
Λτ(N )

τ(N ),∞.

Let c ∈ [o(N )]<ω, A ∈ PY , we have:

A ∈ Fc ⇔ c ∈ t(A)

⇔ c ∈ t(i(A)) (because i(A) ∩ δY = A)

⇔ τ(c) ∈ u ◦ τ(i(A)) (Corollary 9.2.9)

⇔ τ(c) ∈ u(πY,Z(A))

⇔ σ(τ(c)) ∈ πY (A) (because πY (A) = σ(u(πY,Z(A))))

⇔ πΨ
N ,∞(c) ∈ πY (A).

This finishes the proof of the lemma. �

Lemma 12.3.15 implies that if Nξ is extender-ready then N ∗ξ+1 = (Nξ, E) where
using the notation of Lemma 12.3.15

(a,A) ∈ E ⇔ ∀Y ∈ Cξ((a,A) ∈ Y → π−1
Y (a,A) ∈ EY ).

We continue by proving another condensation lemma for relevant extenders with
critical point δP . This condensation property does not seem to follow from Theorem
11.1.2.

Lemma 12.3.17 Suppose Nξ is E-active, say Nξ is of the form (N−ξ , Fξ), where

cr(Fξ) = δP . Suppose π : M = (M−, F̃ ) → Nξ is Σ0 and cofinal, or Σ2, with
cr(π) > o(P) and suppose further that M−�N−ξ . Then F̃ is on the sequence of Nξ.

Furthermore, let Y be a good hull that contains all relevant objects, let πY :
MY [G] → Hκ+++ [G] be the uncollapse map, and let xY = π−1

Y (x) for all x in the
range of πY . Let Ψ be the πY -pullback strategy for MY and suppose that ΨM−,Y =
(ΣY

ξ )M−,Y = (ΣY
ξ )π

Y

M−,Y , then Ψ = (ΣY
ξ )MY = (ΣY

ξ )π
Y

MY , where ΣY
ξ is the strategy for

N Y
ξ defined above.

22NZ
ξ is not literally a Ψ-iterate of N , but N iterates into a hod initial segment of NZ

ξ . By

πΨ
N ,NZξ

, we mean (πΨ
N ,∞)MZ′ .
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Proof. The preservation of π guarantees that M is a hod premouse. Recall that
o(P) is the cardinal successor of δP in both Nξ and M and the models agree up to
P .

We work with MY and N Y
ξ and first show that F̃ Y is on the sequence of N Y

ξ .
Let Λ = ΨM−,Y = (ΣY

ξ )M−,Y .

Claim 12.3.18 For A ∈ ℘(δP) ∩ P and a ∈ [o(MY )]<ω, (a,A) ∈ F̃ Y if and only if
πΛ
M−,Y ,∞(a) ∈ πY (A).

Proof. First, note that F̃ Y is total over N Y
ξ and hence it makes sense to apply F̃ Y

to N Y
ξ . Also, Ult(N Y

ξ , F̃
Y ) embeds into Ult(N Y

ξ , F
Y
ξ ) via the natural map τ :

τ(iF̃Y (f)(b)) = iFYξ (f)(πY (b)),

and

τ �MY ||lh(F̃ Y ) = πY �MY ||lh(F̃ Y ).

Now,

(a,A) ∈ F̃ Y ⇔ (τ(a) = πY (a), A) ∈ F Y
ξ (πY (A) = τ(A) = A)

⇔ πΛ
M−,Y ,∞(πY (a)) ∈ πY (A) (definition of F Y

ξ )

⇔ πΛ
M−,Y ,∞(a) ∈ πY (A). (Corollary 9.2.9)

This finishes the proof of the claim. �

The claim and Lemma 12.3.15 imply that F̃ Y is on the N Y
ξ -sequence. By ele-

mentarity, F̃ is on the Nξ-sequence.

Ψ = (ΣY
ξ )MY = (ΣY

ξ )π
Y

MY follows from Lemma 9.1.9 and the proof of Lemma
12.3.6 (the main point is the fact that if the strategies disagree then we can find a
lower-level disagreement).

�

Now suppose N ∗ξ is a sts hod premouse, that is there is some δ such that
M+(N ∗ξ |δ) � N ∗ξ and N ∗ξ � δ is Woodin and δP is the least < δ-strong cardinal.
Let Y be as above. Suppose N ∗ξ defines a failure of Woodinness of δ, then N Y

ξ is
iterable via the πY -realization strategy and this is also the Q-structure guided strat-
egy for stacks above ρω(N Y

ξ ). Suppose N ∗ξ does not define a failure of Woodiness
of δ then it is not clear that for Y as above, N Y

ξ is iterable via a πY -realization
strategy. However, in this case, ρω(N Y

ξ ) ≥ δ and N Y
ξ is iterable above δY via the

πY -realization strategy. This is enough to show that N Y
ξ is solid and universal, hence

N ∗ξ is solid and universal. In either case, Nξ is defined and sound. If ξ < Υ, we can
then define N ∗ξ+1 and go on with our construction.
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12.4 Kc breaks down and a model of LSA

We have shown in the previous section that the construction lasts κ+++ steps if every
Nξ is lsa-small and is not of lsa type (or more accurately speaking, every Woodin
cardinal δ in Nξ eventually fails to be Woodin with respect to the short tree strategy
in Nγ for some γ > ξ). Suppose the construction lasts κ+++ steps; as in the previous
subsection, let N = Nκ+++ . We also let S = S(N ).

Lemma 12.4.1 cof(S) < κ+++.

Proof. Let λ = κ+++. As shown in Chapter 9, S � �λ,2. Also, S ∈ V by definition.
Working in V , ¬�(3, κ+4) implies then that o(S) < κ+4 and ¬�(3, κ+++) now implies

that cof(o(S)) < κ+++ since otherwise, the canonical�λ,2-sequence ~C of S (as defined
in Chapter 9) has a thread D. The thread D will produce a hod mouseM such that
o(M) ≥ o(S) and ρω(M) ≤ λ. This contradicts (ii) of Lemma 12.2.9. �

Lemma 12.4.1 contradicts (iii) of Lemma 12.2.9. Now we assume the construction
stops prematurely. We obtain a model of LSA from this assumption. Recall in this
case, Υ is the least such that NΥ is a sts hod premouse that satisfies:

(i) There is a unique Woodin cardinal δ0 > δP such that δP is the least < δ0-strong.

(ii) There are ω many Woodin cardinals above δ0, say these Woodin cardinals are
(δn : 1 ≤ n < ω).

(iii) There is an extender F with crt(F ) > supn δn such that NΥ = (R, F ) for some
R.

(iv) NΥ is a sts hod premouse over M+(NΥ|δ0) =def(NΥ|δ0)].

(v) For every countable Y ≺ NΥ (Y is an honest extension of X), letting Q =
(NΥ|δ)] and QY = π−1

Y (Q), then N Y
ξ is ω1 + 1-iterable above QY via the πY -

realization strategy.

(i)-(iv) follow easily from the assumption that the construction stops prematurely.
(v) follows from results in [1] (we tacitly assume that πY is minimal relative to some
enumeration of N Y

Υ − QY of order type ω; otherwise, just replace πY with such an
embedding that agrees with πY � QY ). Let λ = supnδn and for every Q�M�NΥ,
let ΣM be the internal sts strategy of Q as defined in M.

Lemma 12.4.2 Suppose the construction stops prematurely. Then Υ < κ+++.
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Proof. If the construction stops prematurely, then NΥ is E-active. This clearly
implies that Υ < κ+++ because if Υ = κ+++, then NΥ is the lim inf of Nα for α < Υ
and hence is passive. �

Now suppose there is some M�NΥ satisfying Definition 8.2.2, then the results
of Section 8.2 show that the derived model ofM (at the sup of its Woodin cardinals)
satisfies LSA. Suppose this is not the case. We would like to produce an active ω
Woodin lsa mouse as in Definition 8.2.2 from NΥ.

Lemma 12.4.3 Let M be the transitive collapse of HullNΥ(P ∪ p(NΥ)) and let π
be the transitive collapse. Then there is a countable substructure of some N �M
satisfying Definition 8.2.2.

Proof. First, note that we have the following:

ρω(NΥ) ≥ o(P) and ρω(M) ≤ o(P) (in fact, ρω(M) = o(P)).

Now we claim that

Claim 12.4.4 (i) if Y ≺M is an honest extension of X, letting πY be the uncol-
lapse map and xY = π−1(x) for x in range πY or x =M, then MY is iterable
via the π ◦ πY -realization strategy.

(ii) Suppose Y is as in (i) and τ :M∗ →MY is either Σ0 cofinal or Σ2 elementary
and cr(τ) > o(PY ), then the comparison (MY ,M∗, cr(τ)) against MY does
not use extenders with critical point (δP)Y .

(iii) M is ω-sound.

Proof. For (i), we just check that every iteration tree T on MY above (δP)Y has a
unique π ◦ πY -realizable branch. Suppose without loss of generality that T is not
Lp-based, so in this case T is above PY . By [1], there is a maximal π ◦ πY -realizable
branch b for T , but this branch is precisely the cofinal branch guided by the Q-
structure Q(T ), i.e. b is the unique such that Q(b, T ) = Q(T ).23 The case that
T uses extenders ≤ (δP)Y is similar and has been treated in details in the previous

section; the general case that ~T is a stack can be treated as follows: decompose ~T
into a sequence of stacks 〈~Ti : i < α〉 where for each i, ~Ti is either strictly below (δP)Y

23The theory developed about for sts hod mice shows that there cannot be another cofinal, π◦πY -
realizable branch c 6= b. This is because we can compare Q(c, T ) against Q(b, T ), the comparison
does not involve strategy disagreement, and hence is successful. This implies Q(c, T ) = Q(b, T )
and hence c = b.
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or its images, or only uses extenders with critical point (δP)Y or its images, or else is
strictly above (δP)Y or its images; inductively on i, we construct π ◦ πY -realization

maps σi on M~Ti using the above discussion.
(ii) follows from Lemma 12.3.17. For (iii), the point is that the relevant phalanx

comparisons in the proof of solidity and universality are successful and by (ii), no
extenders with critical point (δP)Y are used. �

Suppose without loss of generality, no countable substructures of any N �M
satisfies Definition 8.2.2. We claim that for Y as in (i) of the above claim, MY

does. Again, let Y be as above and it suffices to showMY satisfies Definition 8.2.2.
Everything is clear except, perhaps, for (1). So let Σ be the π ◦ πY -realization
strategy for MY and Q = MY |((δY0 )+ω)M

Y
. By the argument as in Claim 12.4.4

and Lemma 12.3.6, Σstc
Q has (locally) strong branch condensation. Similarly to 12.3.7,

Σstc
Q is also (locally) strongly Ω-fullness preserving and hence is (locallly) strongly

Γ(Q,Σstc
Q )-fullness preserving.24

�

Again, Lemma 12.4.3 and results in Section 8.2 show that the new derived model
of N as in the conclusion of Lemma 12.4.3 (at the sup of its Woodin cardinals)
satisfies LSA.

Now by boolean comparisons, there is some (M,Σ) ∈ V satisfying Definition
8.2.2. By taking a countable hull ofM if necessary, we may assumeM is countable
(in V ). Let M− be the class model obtained by iterating the top extender of M
OR many times and M∞ be the result of an R-genericity iteration of M− via Σ.
Then (new) derived model N of M∞ satisfies LSA as shown by Section 8.2. By
homogeneity of Col(ω, κ), there is in V a model M containing R ∪ OR such that
M � LSA.

Proof.[Proof of Theorem 12.0.22] The arguments above prove the consistency of
LSA from the hypothesis of Theorem 12.0.22 plus the simplifying assumption 12.1.
To eliminate 12.1, simply note that the constructions above can be done in V Q,
where Q = Q0 ∗ Q1 and Q0 = Col(κ+, κ+) ∗ Col(κ++, κ++) ∗ Col(κ+++, κ+++) and
Q1 = Col(ω, κ). It’s easy to see that in V Q0 , 12.1 holds and continues to hold in V Q.
Furthermore, the models Nξ (built by the construction above inside V Q) are in V .
The arguments above then can be applied in V Q to obtain the consistency of LSA.
�

24We don’t need (ii) to prove (iii); we just need the phalanx comparisons are successful. (ii) gives
that the comparison is above (δP)Y .
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ntn(~T ), 32
oM(κ), 27
pnQ, 244

s(~T , X, ξ), 52

tn(~T ), 32
(strong) cutpoint, 20
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almost non-dropping, 34
almost non-dropping stacks, 34
appropriate tuple, 274
authentic hod-like lsp, 53
authentic iterations, 54

background triple, 61
bad blocks, 102
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certified pair, 99
certified phalanx, 99
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comparison stack, 82
completely mouse full, 117
condensing set, 183
continuable drop, 31
continuable stack, 31
correctly backgrounded extender, 273
cutpoint of P , 57
cutpoint of a stack, 30

divisor, 254

extender comparison, 83
extender disagreement, 83
extender-ready levels, 292
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faithful strategy, 48
fatal drop, 26

finite stack, 45

generalized stack, 37
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hod pair construction, 72
hod pairs, 58
hod premouse, 58
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structure, 253
hod-like lsp pair, 38
honest extension, 183
hull condensation, 47
hybrid J -structures, 18
hybrid layered premouse, 20

internal Σ closure, 131
irreducible tree, 30

layered hybrid J -structure, 19
layered hybrid J -structures, 19
layered hybrid premouse, 20
layered strategy premouse, lsp, 22
limit type, 29
locally strong branch condensation, 245
locally strongly Γ-fullness preserving, 244
low level comparison, 106
low level disagreement, 79
low level strong branch condensation, 124
lsa type I, II, 29
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meek, 29
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minimal low level disagreement, 79
mixed hod pair construction, 238
model component of a short tree strategy,

43
mouse full, 117
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non-meek hod pair, 130
non-trivial terminal node, 31

pluripotent level, 254
pointclass generator, 255
prehod pair, 113
proper Type II, 28
protomouse, 253

reducible tree, 30
relevant extender, 277

self-capturing background triple, 63
self-wellordered, 18
shifted amenable function, 18
short tree game, 42
short tree strategy, 43
SMC, 150
standard indexing scheme, 23
standard witness, 253
strategy disagreement, 83
strategy premouse, sp, 22
strong Γ-fullness preservation, 77
strong branch condensation, 87
strong divisor, 255
strong fullness preservation, 77
strong mouse capturing, 150
sts hod pairs, 59
sts indexing scheme, 55
sts mouse, 57
sts premouse, 56
successor type, 29
Suslin capturing, 61

terminal node, 31
the short tree component of a strategy, 41
top window, 29

un-dropping extender, 36
un-dropping iteration game, 36

un-dropping short tree game, 43
unambiguous sp, 50

weak comparison, 106
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