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Chapter 1

Introduction

The main goal of this manuscript is to advance descriptive inner model theoretic
methods to the level of the Largest Suslin Aziom (LSA), which is a descriptive set
theoretic axiom asserting that there is a largest Suslin cardinal and that the largest
Suslin cardinal is a member of the Solovay sequence. The underlying theory is
Woodin’s ADT. For all illustrative purposes, we can ignore the “+” and assume AD.
The effect of the “+” is that if we also additionally assume that V' = L(p(R)) then
the fragment of V' coded by the Suslin, co-Suslin sets of reals is 3J; elementary in V.
The Solovay sequence is a closed-in-O sequence (6, : « < Q) such that

1. Oy =sup{f: 3f : p(w) — B(f is an OD surjection)},
2. if 0, < © then 0,41 =sup{fB: 3f : p(0,) — B(f is an OD surjection)},
3. for limit A < Q, 05 = sup,. 0a-
We can now state LSA more precisely. LSA is the conjunction of the following axioms:
1. AD™.
2. For some ordinal o, © = 6,71 and 6, is the largest Suslin cardinal < ©.

By a result of Woodin, LSA implies that ADg fails. The aforementioned result of

Woodin says that under AD", ADg implies that © = 6, for some limit ordinal o.
Suppose there is a transitive model of LSA containing the reals and ordinals, call

it M. Because the Wadge order is well-founded, we can find a I' C p(R)* such that

1. p(R)yNnL(I'R) =T,
2. L(I',R) F LSA and
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3. for any I'* C T, if ['* has the above two properties then I'* =T

We then say that L(I',R) is the minimal model of LSA. The terminology makes
sense: for instance, if I'# exists then it is easy to see that L(I',R) is the hull of R
and a class club of indiscernibles. What is controversial is our use of “the”. There
could be two models of AD" whose sets of reals are not Wadge compatible, making
the coexistence of two incompatible “minimal models” of LSA possible. However,
we will show (see the proof of Theorem 10.3.1) that L(I',R) is contained in both of
these models, provided they exist.

In this manuscript, we establish three kinds of results that can be stated without
mentioning the technical technology developed to prove them. The first set of results
deals with the minimal model of LSA. Assume V is the minimal model of LSA. Then
the following holds.

(A) (Theorem 7.2.2) HOD F GCH.
(B) (Theorem 10.2.1) The Mouse Set Conjecture holds.

The second set of results contains a single result which shows the consistency of
LSA relative to large cardinals. We will show the following.

(C) (Corollary 10.3.1) Suppose the theory ZFC + “there is a Woodin cardinal that is
a limit of Woodin cardinals” is consistent. Then so is LSA.

The third type of results establishes the existence of the minimal model of LSA
assuming combinatorial principles or forcing axioms. The following set of results
belong to this group.

(D) (Corollary 12.0.23) Assume PFA. Then there is a transitive M such that R, Ord C
M and M F LSA.

The precursors of these results already exist in print. The first author demon-
strated versions of (A), (B), and (C) for the theory ADg + “© is a regular cardinal”.
The second author proved the version of (D) for the same theory. The interested
reader should consult [10], [I1] and [31]. The reason to prove such results is to
demonstrate that the underlying technical theory is robust and can be used in a
wide range of situations.

A few words on the goal of inner model theory and its descriptive set theoretic
counterpart, descriptive inner model theory, are perhaps in order. However, what
follows is not a historical exposition. A more accessible introduction can be found
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in [13].

As is well known, the main goal of the two aforementioned subjects is the con-
struction of canonical inner models for large cardinals. The meaning of “canonical”
must be clarified. While there may be other approaches, the current interpretation
of “canonical model” is a model that is a mouse, i.e., a model constructed from a
sequence of extenders E. Thus, mice have the form LQ[E]. To avoid coding extra in-
formation into mice, E must satisfy several conditions. Iterability of mice guarantees
that mice are canonical. For instance, given two mice M and N, either RM C RV
or RNV C RM and the constructibility order of RM and RV are compatible.

Among the reasons that one might like to build canonical models for set theory,
one that stands out is the following. Inner model theory and its more modern sister,
descriptive inner model theory, have been used to establish lower bounds for various
set theoretic statements. It has been the most successful tool for attacking the PFA
Conjecture.

Conjecture 1.0.1 (The PFA Conjecture) The following theories are equiconsis-
tent.

1. PFA.

2. LFC + “There is a supercompact cardinal”.

It is a well known theorem of Baumgartner that the consistency of clause 2 implies
the consistency of clause 1. As for the converse, inner model theoretic methods have
been used since late 60s to establish partial results. The current best known result
is (D) stated above. While there can be other methods free of inner model theory
that settle the PFA Conjecture (see for instance [32]), it is hard to conceive another
method that will solve the descriptive counterpart of the PFA Conjecture. Below
uB stands for the set of universally Baire sets. Recall that these are exactly those
sets of reals whose continuous preimages in compact Hausdorff spaces have the Baire

property.

Conjecture 1.0.2 Assume PFA. There is I' C uB such that L(I',R) F LSA and if
H = HODYM®) gnd © = OLTR) | then V3t E “there is a superstrong cardinal”.

The advantage of Conjecture 1.0.2 is that instead of postulating the existence of a
model with a large cardinal it specifies the model that should satisfy the large cardinal
axioms. To prove Conjecture 1.0.2, we need to analyze the model H = HOD!('®),
and the technical aspect of this manuscript does exactly that but for the minimal

model of LSA. While the analysis of the model H = HOD*T'®) without extra
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minimality assumptions on L(I',R) alone will not solve Conjecture 1.0.2, it is an
essential step towards its resolution. The additional step is to develop the theory
behind the core model induction without any minimality assumptions. The core
model induction is the technique that allows us to prove results like (D) and its
variations. Completing these two steps without minimality assumptions is the main
objective of descriptive inner model theory.

What the analysis of H yields is that it is a hod mouse. These are models
constructed from extender sequences and also from iteration strategies, so they are
of the form LQ[E , f)] The iteration strategies coded in 3 are iteration strategies for
(initial segments of) the model itself. Hod mice just like mice satisfy GCH. Thus,
statement (A) is just a direct corollary of the analysis of H.

The first author developed theory of hod mice assuming that the minimal model
of ADg + “© is regular” doesn’t exist (see [10]). The next nice closure point is LSA,
and developing the theory of hod mice assuming that the minimal model of LSA
doesn’t exist is the technical part of this manuscript. The main new problem that
we need to deal with here is the notion of “short tree strategy mice”.

Let us explain what this is. The analysis of the model H goes by inductive
characterization of sets of reals of various Wadge ranks. Suppose (0, : o < ) is the
Solovay sequence. What one shows is that for each a <  a set of reals of Wadge
rank 6, codes an iteration strategy ¥ for some countable hod mouse P. It then
follows (non-trivially) that the direct limit of all X-iterates of P is H|0,.

What we said is true except in one case. When 6,, is the largest Suslin cardinal
below 6,1, any set of Wadge rank 6, cannot code an iteration strategy for a hod
mouse. Fix an « such that 6, is the largest Suslin cardinal below 6,,;. Let X be the
strategy for some hod mouse P such that the Wadge rank of ¥ is 6,,;. What can
be shown is that P satisfies the following two conditions.

(i) P has a largest Woodin cardinal denoted by 7.
(ii) Working in P, let x” be the least < §”-strong cardinal. Then in P, x” is not
§%-strong and x” is a limit of Woodin cardinals.

Define the short tree component, X%, of ¥ as follows.
1. dom(¥5%¢) = dom(X)
2. Suppose T € dom(X) and b = X(T). Then X%(T) = b provided 77 (67) >
§(T). Otherwise, £5¢(T) = M] .

The short tree component of a strategy is not an unfamiliar object at least to
those familiar with the core model induction. For instance, let P be M,|(5+%)M«
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where M, is the minimal proper class mouse with infinitely many Woodin cardinals
and ¢ is its least Woodin cardinal. Let A be the canonical strategy of P, the one
induced by the strategy of M,,. Then A**¢ € L(R), and (i) if 7 is a short tree on P
then A**(T) is the unique branch b of T such that Q(b, T) exists and (ii) if T is a
maximal tree on P then A**(T) = (Lp,(M(T)))F®.

Getting back to our discussion, the set of reals of Wadge rank 6,, at least in the
minimal model of LSA, is X5, This fact forces us to consider mice relative to %5,
and this is a rather complicated matter. The basic issue is that we cannot close
mice under X5 using the usual procedure for feeding in a strategy. For instance,
suppose we are performing a construction producing mice relative to Y. Suppose
our method of feeding X% is the most naive one. At stage 3 we consider the least
tree T such that 35¢(7) has not been told to the model. Suppose T is maximal,
so we must not tell the model any branch of 7. It could be the case that later on
in the construction while taking fine structural cores, 7 collapses to a short tree.
Thus we have 7 : N' = M, T € M nNrng(n), N is a core of M and 7 is the core
embedding. By elementarity, 771(7") doesn’t have a branch indexed in N'. However,
7~ 1(T) is short and hence it must have a branch indexed in N. A large portion
of this manuscript deals with this issue. We present a solution to this problem in
Section 3.8.

Why do we need minimality assumptions? The reason is that the theory of
hod mice has been developed using examples. In many models of ADT, we have
been able to identify patterns that led to a successful theory. Without a minimality
assumption, it is hard to understand every pattern that could exist. Of course,
one hopes that after understanding enough patterns and special cases, we can lay
down a complete theory without minimality assumptions. There has been a recent
success in this direction. In an unpublished work, John Steel has proven a general
comparison theorem for hod mice without any minimality assumptions. However,
Steel’s comparison argument, to the authors’ best knowledge, does not shed light on
how to construct hod mice whose strategies have the desired Wadge rank, at least
for now.

Nevertheless, there is a method for constructing hod mice whose strategies have
a desired Wadge rank, a method that doesn’t assume any minimality assumptions.
The following conjecture is at the heart of it.

Conjecture 1.0.3 Assume there is no mouse with a superstrong cardinal. Suppose
0 1s a Woodin cardinal and X > 6 is an inaccessible cardinal. Suppose further that
V\ has an iteration strategy ¥ that acts on trees that are based on Vs, and that ¥ has
a unique extension in VU9  Suppose also that A C R is a universally Baire set.
Let N be the mouse constructed by the fully backgrounded construction of Vs and let
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g C Coll(w, ) be generic. Then in V[g|, the strategy of N induced by the extension
of ¥ has Wadge rank at least the Wadge rank of A, where A, is the extension of A
to Vlgl.

In fact, in a sense even at stages where we do have a successful theory of hod mice,
proving Conjecture 1.0.3 plays a fundamental role. Unfortunately, all known proofs
of Conjecture 1.0.3 use minimality hypotheses.

Chapters 2-8 develop the basic theory of hod mice for ADT models up to the
minimal model of LSA; a consequence of this analysis is (A). The last four chapters
focus on applications. Chapter 11 proves that [, » holds in HOD of AD* models up
to the minimal model of LSA for all HOD-cardinals . Our main use of this chapter
is Chapter 12, where a proof of (D) is given. Chapter 9 develops the basic theory of
condensing sets, which is needed in constructions of hod mice in various situations.
Chapter 10 uses the material in developed in the previous chapters to prove (B) and
(C). The last chapter (Chapter 12) proves (D) by constructing a hybrid version of
Ke¢. This chapter uses methods developed in the previous chapters and [31].

The history of the manuscript is as follows. The first author started the technical
portion of this work sometime in 2007-2008. Later, sometime in 2008-2009, John
Steel joined the project. Some of the material presented in this manuscript goes
back to this time. However, to the first author’s best knowledge, there were several
gaps in the proofs from this period. In particular, the notion of short tree strategy
mouse was not defined correctly. The definition of short tree strategy mouse given
in this manuscript is due to the first author (see Definition 3.8.5). This notion was
introduced during Spring of 2012. Many of the ideas that appeared in Chapter 4-7
go back to 2007-2012 period. Several important ideas came after Spring 2012. It
is truly difficult to say what idea came when, and it is best to leave such matters
alone. The material in Chapter 8 (due to first author) was proved in the Fall 2015.
The material in Chapter 11 (due to the second author) was proved in 2014-2015; as
mentioned above, it is used in arguments in Chapter 12 and has potential applica-
tions elsewhere. The material in Chapter 9 has precursor in the first author’s work
[11] that proves a version of (D) under an additional large cardinal hypothesis for
ADg + “© is a regular cardinal”; it then was adapted by the second author in [31]
to prove the version of (D) for ADg + “© is a regular cardinal”. Though the termi-
nology has been changed somewhat, the material in Chapter 9 is a straightforward
adaptation of the aforementioned papers. Chapter 10 is due to the first author and
was done mostly in the Fall of 2015. Chapter 12 is joint work of the two authors and
was done in the Fall of 2015 when the authors visited the Isaac Newton Institute for
Mathematical Sciences.
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Chapter 2

Hybrid J-structures

The main goal of this chapter is to prepare some terminology to be used for the rest
of this manuscript. One important notion introduced in this chapter is that of the
un-dropping game (see Definition 2.7.3). We will use it in the next chapter to prove
a comparison theorem for hod mice (see Corollary 4.6.10).

2.1 Layered hybrid [J-structures

In what follows, given a transitive set (or structure) M we will use o(M) to denote
the ordinal height of M. Also, given a set X, we let trc(X) be the transitive closure
of X. We also let treX = (tre(X U{X}), X, €).

Definition 2.1.1 (Definition 1.1 of [10]) Given a function f, we say f is amenable
if the domain of f consists of transitive structures and for some formula ¢ and for
alla = (M, A, €) € dom(f)

1. f(a) Co(a) and 0 € f(a),
2. letting B = sup f(a), B < o(a) is the unique ordinal v such that a E ¢[y],!
3. whenever n < sup f(a), f(a) Nn € M.

We let ¢¢ be the formula ¢ above.

'We seem to need this condition in order to develop fine structure of models of the form J E.f
where f is a shifted amenable function. These are introduced below.

17
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We say f is a shift of an amenable function or a shifted amenable function if for
all a = (M, A, €) € dom(f), f(a) C Ord, f(a) C [min(f(a)),min(f(a)) + o(a)),
and there is an amenable function ¢ such that (i) dom(f) = dom(g) and (ii) for all
a € dom(f) and v < o(a), f(a) = {min(f(a)) +~ : v € g(a)}. Notice that if f is
a shift of an amenable function then it uniquely determines g. We say that g is the
amenable component of f.

Jumping ahead, we remark that iteration strategies and mouse operators provide
an ample source of amenable functions. For instance, let M = ./\/lﬁléé and let X be
its canonical iteration strategy. We define f as follows. Let first dom(f) be the set
of structures of the form [J,(7) where T is a normal iteration tree on M of limit
length and is according to X. Next, define f(7,(7)) = b where b = X(T). Then f is
amenable. We will refer to such an f as an amenable function given by an iteration
strategy. The reason we define the domain of f to be the set of 7, (7) instead of just
the set of trc” is that the later may not satisfy clause 2 of Definition 2.1.1.

Recall that a transitive structure M = (M, A) is called amenable if for every
X € M, AN X € M. Following [35], we say M is a J-structure over X if M =
(JAX),B) = (‘jf(X)| ,A, B) is an amenable structure. Keeping the notation,
we also say M is an acceptable J-structure if for all § < « and for all 7 < wp, if
o(t)N jﬂﬁl Z ‘754 then there is a surjection f: 7 — wf in jﬂﬁl. Finally, we say X
is self-wellordered if there is a wellordering of X in [J;(X). We are now in a position
to introduce the hybrid J-structures.

Definition 2.1.2 (Hybrid J-structures) We say M = (J*/(X), B) is a hybrid
J -structure over a self-well-ordered set X with indexing scheme ¢(x) if M is an
acceptable J-structure such that in M, f is a shift of an amenable function with
amenable component g such that

1. for alla € M, a € dom(f) if and only if in M, there is 5 such that a is the
unique transitive structure b= (M, A, €) € jﬁA’f(X) such that

T B CZEC+ ¢[b)”

and if v is such that b E ¢4[y] then B +~v < a and M E “cf(y) is not a
measurable cardinal”, and

2. for all a € M, if a € dom(f) then min(f(a)) is the least ordinal § satisfying
clause 1 abowve.

Suppose M is a hybrid J-structure with an indexing scheme ¢. We will often
say that “M is indexed according to ¢” or that “M is ¢-indexed”. The following is
an easy but important lemma. We leave its straightforward proof to the reader.
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Lemma 2.1.3 Ifa is as in clause 1 of Definition 2.1.2 then f(a) is indezed at [+
where B =min(f(a)) and vy is such that a E ¢4[7].

Remark 2.1.4 Notice that it follows from clause 1 of Definition 2.1.2 that the func-
tion a — min(f(a)) is injective on dom(f).

Hod mice are a special blend of layered hybrid J -structures introduced below. Be-
fore introducing them we establish some notation. Suppose that M = (J/(X), B)
is a hybrid J-structure over X and £ < a. Then we let M||¢ be M cutoff at &, i.e.,
we keep the predicate indexed at £. We let M|¢ be M||¢ without the last predicate.
Also, recall that if § < « then we write jﬁM instead of jBA’f and, we say A is an (a
proper) initial segment of M and write N' < M (N a M) if there is < a (f < )
such that N = J3".

Definition 2.1.5 (Layered hybrid J-structure) We say M = (4 (X), B) is
a layered hybrid J -structure over self-well-ordered set X with indexing scheme ¢(x,y)
if M is an acceptable J-structure over X such that in M, [ is a function with
domain YM C {Q : Q <« M} such that for all @ € YM, f(Q) is a shift of an
amenable function with amenable component go such that

1. for all a € M, a € dom(f(Q)) if and only if in M, there is  such that a is
the unique transitive structure b= (M, A, €) € jBA’f(X) such that

jﬁAaf t: 44ZFC+ ¢[Q, b]:a

and if & is such that b F ¢y, (€] then B+ & < a, and
2. for all a € M, if a € dom(f(Q)) then min(f(Q)(a)) is the least ordinal [

satisfying clause 1 above.

Suppose M is a layered hybrid J-structure with an indexing scheme ¢. We will
often say that “M is indexed according to ¢” or that “M is ¢-indexed”.

We will often omit ¢ when discussing a particular layered hybrid J-structure. If
M is a layered hybrid J-structure then we let f* and Y™ be as in Definition 2.1.5.
We again have that for each @ € Y™, the function a — min(f™(Q)(a)) is injective
on dom(f(Q)).

Notice that hybrid J-structures can be viewed as a special case of layered hybrid
J-structures. Because of this, in the sequel we will only establish terminology for
layered hybrid [J-structures though we might use the same terminology for hybrid
J-structures.
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Typically, when discussing hybrid J-structures, X will be an iterable structure
and f will be the predicate coding its strategy.? As mentioned above, hod mice are
a special type of layered hybrid 7-structures: the f predicate of a hod mouse codes
a strategy for its layers. When the A predicate of a layered hybrid [J-structure is
a coherent sequence of extenders then the resulting model is called a hybrid layered
premouse.

Definition 2.1.6 (Layered hybrid premouse) Suppose M = jﬁ’f(X) is a ¢-
indexed layered hybrid J-structure over self well-ordered set X. M is called a ¢-
indezed layered hybrid premouse (lhp) sz s a fine extender sequence as in Definition
2.4 of [25] with one exception described below. We write EM for E etc.

Suppose k 1s a limit of cutpoint cardinals of M such that there is an extender
E € EM with crit(E) = k. Then whenever E € E is an extender with critical point
K, the index of E is the cardinal successor of the least cutpoint of Ult(M, E) greater
than k.

Here k is a cutpoint of a layered hybrid premouse N if there is mno extender
F € EN such that crit(F) < k < Ih(F). K is a strong cutpoint of a layered hybrid
premouse N if there is no extender F € EN such that crit(F) < k < Ih(F).

The significance of the last clause of Definition 2.1.6 will be apparent later. It
was independently noticed by the first author and John Steel. Essentially it comes
up as follows. Suppose k is as in Definition 2.1.6 and suppose we have an embedding
j o M|(sT)M — N. Often times we will use such embeddings to guess or recon-
struct extenders on the sequence of M that have critical point x (see for instance
Lemma 4.9.6 and Lemma 4.9.7). In the old indexing scheme (i.e., Mitchell-Steel in-
dexing scheme) to describe extender E we need to first construct Ult(M, E), which
in many cases has longer height than the index of E. This mismatch of heights
creates many unwanted complications. Similar complications arise when we index
extenders using Jensen indexing (recall that this means that extenders are indexed at
the successor of the image of the critical point). In this case, while the two ordinals
match, we need to guess what Ult(M, E) is up to the image of k.

We finish this section by introducing hp that are closed under sharps. We will
use such a closure to introduce short tree strategy premice (see Definition 2.2.3 and
Definition 3.8.4).

2In this case, the 7 defined in Definition 2.1.2 is the length of a tree 7 according to f. The
condition “M F cof(y) is not measurable” in Definition 2.1.2 ensures the structure we build has
sufficient condensation.
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Definition 2.1.7 (Closed hp) Suppose M is an hp and o < o(M). Then we say
M is closed under sharps below « if for all 3 < « there is v € dom(E™) such that

crit(Eé\") > (. We say M s closed under sharps if M 1is closed under sharps below
o(M).

2.2 Layered strategy premice

In this paper, we are concerned with lhp whose f predicate codes a strategy. The
goal of this section is to introduce the language used to describe such structures.

Suppose that M is an lhp. We then say that a shifted amenable function f codes
a partial strategy function for M if

1. dom(f) C {J,(T) : T is a stack on M without a last model},

2. whenever 7T is a stack on M such that J,(7) € dom(f) and whenever { is an
initial segment of 7 without a last model, J, () € dom(f),

3. if g is the amenable component of f then for all J,(7) € dom(f), g(Ju(T)) is
a cofinal branch of 71, and

4. ¢y is the formula defining sup(g(J,(T))) over J.,(T).

Notice that we do not require that (7, (7)) is a well-founded branch of 7, which is
why we call the resulting function just a strategy function.

When defining short tree strategy mice, we will encounter hybrid structures whose
f predicate doesn’t necessarily code a strategy but a partial strategy. We make this
notion more precise. First we make a useful notation.

Notation 2.2.1 Suppose M is a transitive model of a fragment of set theory and T
1s an iteration tree on M of limit length. Then we let

ME(T) = (M(T)*.

In general, given a transitive self-well-ordered set X, we let M™(X) be the minimal
active X -mouse.

Remark 2.2.2 Suppose M is an lhp. We then say that X is a semi-strateqy for M
if the domain of X consists of quadruples (M0,76,M1,Z/7) such that My = M, T
is a normal tree on Mg, My is either the last model of Ty or Ty doesn’t have a last
model and My = M*(Ty), and U is a stack on My. We can then consider amenable
functions that code partial semi-iteration strategies. We will abuse our terminology
and will treat semi-iteration strategies as if they were just strategies.
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Suppose then a shifted amenable function f codes a partial strategy function for
M. We then let ¥/ be the partial strategy function coded by f. More precisely,
letting g be the amenable component of f,

1. dom(%/) = dom(f) and
2. for all T € dom(S7), SH(T) = g(T(T)).

We say f codes a partial strategy if ¥/ chooses cofinal and well-founded branches.
We say f codes a total strategy if ¥/ is a total strategy.

Recall that if M is an Thp, N' < M and ¥ is an iteration strategy for M then
Y is the strategy of N' we get by the copy construction. More precisely, X, is the
id-pullback of X.

Definition 2.2.3 (Strategy premouse, sp) Suppose P is a transitive model of
some fragment of ZFC, X is a self-well-ordered set such that P € X and M is
a ¢-indexed hp. We say M is a ¢-indexed strategy premouse (sp) over X based
on P if fM codes a partial iteration strategy for P and for any a € dom(fM) if
B = min(fM(a)) then M|B is closed under sharps (see Definition 2.1.7).

Definition 2.2.4 (Layered strategy premouse, Isp) Suppose M is a ¢-indexed
lhp. We say M is a ¢-indexed layered strategy premouse (Isp) if for all @ € YM, in
M,

1. fM(Q) codes a partial strategy function for Q such that for every a € dom(fM(Q)),
if B =min(fM(Q)(a)) then M|B is closed under sharps, and

2. if Qo < Q) € YM —{TJo(M)} then letting, fori € 2, % be the partial strategy
function coded by fM(Q;), then (1), is id-pullback of ¥q.

We can also introduce Isp that are over some self-well-ordered set X and are
based on some P € X. We leave this to the reader.

Notice that the fact that M is a layered strategy premouse depends on what ¢
says. Thus, the clauses above should be viewed as part of ¢. The strategy premice
are a special case of layered strategy premice, and we leave the exact definition to
the reader. We let XM be the partial strategy function coded by fM. If Q € YM
then we let 23! be the partial strategy function coded by f(Q).

In most applications, lsps have a very canonical indexing scheme which is origi-
nally due to Woodin. At each stage the stack whose branch is being indexed by f is
the least stack whose branch hasn’t yet been indexed. Here and in future definitions,



2.2. LAYERED STRATEGY PREMICE 23

for any Isp (sp) M (over a self-well-ordered set), we say “M-least” to mean “< -
least”, where <4 is the canonical (constructible) well order on M. We call this the
standard indexing scheme.

Definition 2.2.5 (Standard indexing scheme) We say ¢(x,y) is the standard
indexing scheme if whenever M is an Isp and Q € YM then M E ¢[Q, a] if and only
if

1. a is the M-least set of the form jw(f) where T is a stack on Q such that T is
according to E/Q”, T doesn’t have a last model, 2f71 has the last normal compo-
nent T, then cof(I(T)) is not measurable,® and f(Q)(J,(T)) is undefined,

and

2. for every RAM such that R E ZFC, in R, (Q,a) isn’t the lexicographically R-
least set of the form (Q*, J.,(T)) where Q* € Y® and T is a stack on Q* such

that T is according to ¥5., T doesn’t have a last model and f*(Q*)(T,(T)) is
undefined.

We write ¢gq for ¢.

Suppose M is an Isp and ¥ is a (k, §)-iteration strategy for Q for some Q € YM.
Then it can be the case that Z/QV‘ C . When this happens we get structures relative
to X.

Definition 2.2.6 ((X, ¢)-premouse) Suppose X is a transitive self-well-ordered struc-
ture such as hp, thp, sp or lsp or just a model of some fragment of ZFC. Suppose
further that 3 is a (k,0)-iteration strategy for X and M is a ¢-indexed sp over X.
Then M is called a (X, ¢)-premouse if M C ¥ | M.

Definition 2.2.7 ((X, ¢)-mouse) Keeping the notation of Definition 2.2.6, we say
M is a (X, ¢)-mouse if M has an wy + 1-iteration strategy A such that whenever N
is a A-iterate of M then N is a (X, ¢)-premouse.

We warn the reader that we will often omit ¢ from our notation and say “M is
a Y-mouse” instead of “M is a (X, ¢)-mouse” if ¢ is clear from the context.

3If cof(In(7)) = & is measurable in M, then M can figure out the (necessarily unique) cofinal
branch b of 7 by taking the ultrapower of an extender with critical point x on M'’s sequence.
Furthermore, we do not want to index b for reasons discussed in [20)].
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2.3 Iterations of (X, ¢)-mice

Suppose X is a transitive self-well-ordered structure such as hp, lhp, sp or Isp or just
a model of some fragment of ZFC. Suppose further that ¥ is an (wy, wy)-iteration
strategy for X and ¢ is an indexing scheme. Given two (3, ¢)-mice, we can compare
them using the usual comparison argument.

Theorem 2.3.1 (Theorem 3.11 of [28]) Suppose M and N are two countable k-
sound (3, ¢)-mice with (wy + 1)-iteration strategies A and I' respectively. Then there
are iteration trees T and U on M and N respectively according to A and T respec-
tively, having last models M and ./\/7;\[ such that either

1. the iteration embedding Wg:a-exists‘l, and M7 is an initial segment of /\/ll,f, or

2. the iteration embedding Wﬁfn—em'sts, and ./\/lf]’ is an initial segment of M.

Comparison for Isp is more involved and we do not know how to do it in general.
Below we recall our primary method of identifying the good branches of iteration
trees. Recall that the strategy for a sound mouse projecting to w is determined by
Q-structures. For T normal, let ®(7) be the phalanx of T (see Definition 6.6 of

[24])-

Definition 2.3.2 Let T be a k-normal tree of limit length on a k-sound lsp, and let
b be a cofinal branch of T. Then Q(b, T) is the shortest initial segment Q of M[ , if
one exists, such that Q projects strictly across §(T) (i.e. p(Q) < 6(T)) or defines a
function witnessing 6(T) is not a Woodin cardinal as witnessed by the extenders on
the sequence of M(T).

Next we would like to state a general result stating that branches identified by
O-structures are unique. Suppose that M is an Isp and X is a strategy for M.
If NV is a Y-iterate of M via T then we let X w7 be the strategy of N given by

Sy U) = S(TU).

Definition 2.3.3 Suppose M is a ¢-indexed lsp (perhaps over some set X ) and %
is an iteration strategy for M. We say (M, X) is a layered strategy ¢p-mouse (¢p-lsm)
pair if X has hull condensation (see Definition 1.30 of [10]) and whenever N is a
Y-iterate of M wia T then N is a p-indexed lsp and ¥V C X7

4In [28], this is stated in a somewhat stronger form, namely that [0, a]r doesn’t drop in model
or degree.
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We say an iteration tree 7 is above 7 if all the extenders used in 7 have critical
points > 7.

Theorem 2.3.4 Suppose (M, X) is a ¢-lsm pair. Suppose v < o(M) is such that
sup(YM) < v and p(M) < ~. Then M has at most one (k,w; + 1) iteration
strateqy A that acts on iteration trees that are above vy and whenever N is a A-
iterate of M then N is a ¢-indezed lsp and ¥V C ¥ | N. Moreover, any such
strateqy A is determined by: A(T) is the unique cofinal b such that the phalanx
(7)™ (0(T),deg” (b), Q(b,T)) is wy + 1-iterable (as a (X, $)-phalanz).’

In some cases, however, it is enough to assume that Q(b, T is countably iterable.
This happens, for instance, when M has no local Woodin cardinals with extenders
overlapping it.® While the Isp we will consider do have local overlapped Woodin
cardinals (that is, some strict initial segment of the lsp has overlapped Woodin
cardinals), the Isp themselves will not have such Woodin cardinals. This simplifies
our situation somewhat, and below we describe exactly how this will be used.

Definition 2.3.5 (Definition 2.1 of [29]) Let (M, ) be a ¢-lsm pair and let v <
o(M) be such that sup(YM) < ~. Suppose T is a normal iteration tree on M above
7v; then Q(T) is the unique ®,cym (X, @)-mouse, if there is any, extending M(T)
that has §(T) as a strong cutpoint, is wy + 1-iterable above 6(T) and either projects
strictly across 6(T) or defines a function witnessing 6(T) is not a Woodin cardinal
as witnessed by the extenders on the sequence of M(T).

Countable iterability is usually enough to guarantee there is at most one hp with
the properties of Q(7T). If it exists, Q(7) might identify the good branch of T, the
one any sufficiently powerful iteration strategy must choose. This is the content of
the next lemma which can be proved by analyzing the proof of Theorem 6.12 of [25].
To state it we need to introduce fatal drops and also the following useful notation.

Definition 2.3.6 (O”-stack) Suppose P is an lsp, n,a < o(P) and Q < P|n. We
then let

OF g0 = UM QP :Plnp I M, p(M) <, UYM)<Q and for all E € EM  jf
n € [crit(E), lh(E)) then crit(E) < a}.

Nezt we define the stack (O:éa €< QZQ,a) according to the following recursion:

®The meaning of this is left to the reader.
6An extender E overlaps  if crit(E) < x <Ih(E).
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PO _ P
1. (9777970‘ — On,Q,oc’
P P+l _ P
2. for§+1 < 64 0,00 = Oo(OZ,’yéya),Q,a’

L. P P P&
3. for imit A < o, Op 5, = Ug<,\ O, 8.0r and

4. QP s the least v such that OF5T = O

7,2, 7,90 7,Qa
If @ = P||, then we write O}, for OF, . For § < Qimmw we let OF% =
P 7
On?l\nﬁ’

We can now introduce fatal drops. Suppose T is an iteration tree on some struc-
ture M and N is a node on 7. Then we let 7>y be the portion of 7 that appears
after stage V.

Definition 2.3.7 (Fatal drop) Suppose M is a ¢p-indexed lhp and T is an iteration
tree on M. We say T has a fatal drop if for some o < Ih(T) and some n < o(MT),

T>m7 is a normal iteration tree on (’)7/7\4Z that is above n. We then say T has a fatal
drop at (a,m) if the pair is the lexicographically least satisfying the above condition.

The following is the lemma mentioned above.

Lemma 2.3.8 Let (M,X) be a ¢-Ism pair and let v < o(M) be such that |J(Y ™) <
Ml

1. Suppose T is a normal iteration tree on M above v of limit length and suppose
Q(T) exists. Then there is at most one cofinal branch b of T such that either
Q(T) = M] or Q(T) = M| for some & in the wellfounded part of M.

2. Suppose further no measurable cardinal of M which s > 7 is a limit of Woodin
cardinals. If then T is an iteration tree according to X above v which doesn’t
have a fatal drop and b = X(T) is such that Q(b, T )-exists then Q(b,T) =
Q(T).

Q(T) identifies b because it determines a canonical cofinal subset of rng(x?, N
d(T)), for some o € b, to which we can apply Lemma 1.13 of [10] (which is an
immediate consequence of the zipper argument from [7]).

"In particular, 7 is a strong cutpoint of Onpf .
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Remark 2.3.9 Suppose (M,X) is a ¢-lsm pair and Q € YM. Let R = M if Q is
the largest initial segment of M in Y™ and otherwise, let R be the least member of
Y™M properly extending Q. Suppose T is a tree on M which is above o(Q) and is
based on R. Notice that in this case we can define Q(T) just as in Definition 2.5.5
by using R instead of M.

2.4 Hod-like layered hybrid premice

In this paper, we are concerned with Isp® whose f predicates code a fragment of
their own strategy. The difference of the Isp considered here and those considered in
[10] is that here we will have lsp whose predicate codes the short tree strategy of its
initial segments. The hod mice we will consider in this paper are all layered, and we
start by introducing these objects.

If M is an Isp and & is an M-cardinal then we let

XM ={¢: EM# 0 and crit(EM) = k}.
We also let
oM(k) = max(sup XM, (kT)M).

Suppose M is a transitive structure and 7 is an ordinal. Then we let (n*®)M
be the ath-cardinal successor of n in M if it exists and otherwise, we let it be the
ordinal height of M.

Definition 2.4.1 (Pre-hod-like) Suppose P is an Isp. We say P is pre-hod-like if
one of the following holds:

1. (Type I) For some § such that P F “§ is a Woodin cardinal or a limit of Woodin
cardinals”, P = U,<,/P|(6T™)".

2. (Type II) For some P-cardinal , letting 6 = o” (k), p(P) < & or o(P) is a
limit of ordinals & such that p(P|€) < 9.

We let 6F be the § above.

The next definition isolates the type of hod pairs that give rise to pointclasses
satisfying the Largest Suslin Axiom.

8We write “lsp” for both layered hybrid premouse and layered hybrid premice.
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Definition 2.4.2 (Lsa type) Suppose P is a pre-hod-like lsp. We say P is of lsa
type if there is k < 8* such that o” (k) = 6% and P E “6F is a Woodin cardinal and
k is a limit of Woodin cardinals”.

In this paper we will consider hod mice that are lsa small.

Definition 2.4.3 (Lsa small) Suppose P is a pre-hod-like lsp. We say P is lsa
small if for all P-cardinal k such that oF (k) < 67 and P E “k is a limit of Woodin
cardinals”, P E “oF (k) is not a Woodin cardinal”.

The next definition is somewhat technical. The meaning of it is that we will wait
until we see the sharp of a layer before we will activate the strategy.

Definition 2.4.4 (Proper Type II) Suppose P is a pre-hod-like lsp of Type II.
We say P is of proper Type II if there is & € dom(E”) such that crit(Ef) > 0%,
P& = Te|P|67] and P|[€ is of lsa type.

We can now isolate the layers of pre-hod-like Isp.

Definition 2.4.5 (Layers of Isp) Suppose P is an lsa small pre-hod-like lsp. We
say Q <P is a layer of P if one of the following conditions holds:

1. P is of proper Type II lsa type Isp and Q = MT(P|57).
2. QaP|6” is a pre-hod-like Isp and the following holds.
(a) For some P-cardinal k such that P E “k is a limit of Woodin cardinals”,
59 = 0%(k) and Q is of proper Type II.

(b) Clause 2.a fails, 5 is a P cardinal such that P E “6< is either a Woodin
cardinal or a limit of Woodin cardinals”, Q = OZ;Q"“JQ and if 6< is a limit
of Woodin cardinals of P then

PI((69)7)7 = Q[((69)%)<.
Next we introduce hod-like Isp. These will eventually turn into hod premice. To

do this we need to impose conditions on the layers of Isp, which are just the members
of Y” where P is an Isp.

Definition 2.4.6 (Hod-like lsp) Suppose P is a pre-hod-like lsp. We say P is
hod-like if the following conditions hold.
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1. If P is of Type II then P is of proper Type II.
2. YP ={Q: Q is a layer of P}.

The next definition isolates four types of proper pre-hod-like Isp that we will
encounter in this paper. The types are not necessarily disjoint.

Notation 2.4.7 Suppose P is a hod-like lsp. Let
LP ={6:3Q€YP? 62=6}U{s"}.

Let AP be the order type of L7. We let (67 : a < AP) be the increasing enumeration
of L7. Often we will refer to the intervals (67, 5§+1) as the windows of P. If \¥ is
a successor then we often say that (5fp_l, (5@;) is the top window of P.

Terminology 2.4.8 Suppose P is a hod-like Ilsp.

1. (Successor type) We say P has a successor type if \¥ is a successor ordinal
and 52\’7,71 18 not a measurable cardinal.

2. (Limit type) We say P has a limit type if \¥ is a limit ordinal or \¥ is a
successor ordinal and 5fp_1 1s a measurable cardinal.

3. (Lsa types) Suppose P is of lsa type. We say P has lsa type I if P E “ZFC-
Powerset”. Otherwise, we say P has lsa type II.

4. (Meek) We say P is meek if either it has a successor type or \¥ is a limit
ordinal.

Remark 2.4.9 From now on we tacitly assume that all Isp considered in this paper
are lsa-small. We will, from time to time, remind the reader of this.

Definition 2.4.10 (The internal strategy) Given Q € Y we let X7 be the strat-
eqy of Q coded by f7(Q).

Next, we isolate the bottom part of non-meek limit type hod-like lsp. This
is essentially the part of P that is below the largest measurable limit of cutpoint
Woodin cardinals.

Definition 2.4.11 (The bottom part of Isp) Given a non-meek limit type hod-
like Isp P, we let P’ = (’)Z;;w where “b” stands for “bottom”. We say that

AP -1

P’ is the bottom part of P.

P
7’P||6)\’P_1
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We end this section with the definition of hod initial segments of Isp.

Definition 2.4.12 (Hod initial segment) Suppose P and Q are two hod-like Isp.
We then write P lpog Q and say P is a hod initial segment of Q if P € Y <.

We finish this section by introducing a useful notation.

Notation 2.4.13 Suppose P is a hod-like lsp and ¢ < \P. We define P(€) according
to the following clause.

1. Suppose that 5? 1s a Woodin cardinal of P or a non-measurable limit of Woodin
cardinals of P. Then we let P(€) = O

P pIsP "
6g ,P\ég

2. Suppose (5? is a measurable limit of Woodin cardinals. Let E € EP be the
Mitchell order 0 extender with critical point 67 . Then let P(§) = Ult(P, E)(€).

3. Suppose =~ + 1 and 6 = o”(6). If 67 < 0% then let P(£) = P|((67)).
If 6 = 67 then let P(€) = P.

2.5 Analysis of stacks

Here we review the analysis of stacks of iteration trees from Section 6.2 of [10].
Suppose M is a transitive structure and T is a stack of iteration trees on M?. Let S
and R be nodes in 7. Then we write 725 for the component of 7 that comes after
stage S and 7_;5 for the component of T up to stage S. In the case R appears in T
later than S, we also write ’fgn for the part of T that is between S and R. Notice
that neither ’7'23 nor ﬁ,R might be stacks on S.

Definition 2.5.1 (Cutpoint of a stack) We say S is a cutpoint of T if no normal
component of T<s has a fatal drop and T>s is a stack on S.

Suppose now that 7 is a normal tree on M.

Definition 2.5.2 (Reducible and irreducible trees) We say T is reducible if it
has a cutpoint. Otherwise we say T is irreducible.

9Recall that all trees are normal.
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Suppose next that P is a hod-like Isp. In our current context we must consider
stacks with more severe dropping patterns than those considered in [10]. However,
we will rule out stacks with too many bad drops. The bad drops will consist of fatal
drops and non-continuable drops. The stacks that we will consider can have at most
one of each such drops. We have already introduced fatal drops (see Definition 2.3.7).
Below we introduce non-continuable drops.

Continuing with our P suppose 7T is a normal irreducible tree on P which has a
last model but 77 doesn’t exist.

Definition 2.5.3 (Continuable drop) We then say T has a continuable drop if
T doesn’t have a fatal drop and for some limit type Q € Y, T is based on Q and is
above o( Q).

Besides fatal drops, continuable drops rule out drops in windows (57, 5@1) where
5? is not a measurable cardinal of P. Notice that it is not required that there be no
such drops, but rather that the final branch doesn’t have such a drop.

Definition 2.5.4 (Continuable stack) Suppose T is a stack on P . We say T is
continuable if for every two successive cutpoints S and R, either mS® exists or 7_273
(which is a normal irreducible tree) has a continuable drop.

Say T has a non-continuable drop if 7 has a drop which is not a continuable
drop. The next definition blocks iterations of hod-like Isp that have more than one
non-continuable drops.

Definition 2.5.5 (Stack on hod-like Isp) We say T is a stack on P with normal
components (Mg, To : « < n) if it is produced according to the rules of the usual

—

iteration game except that for every o <mn, T | a is continuable.

Continuing with our P, let T be a stack on P. Given a node R in 7 we say
R is a terminal node in T if player I can legitimately continue 7273 by starting a
new round of the iteration game. We say R is a non-trivial terminal node if it is a
terminal node and the extender chosen from R is applied to R. The following is an
easy lemma.

Lemma 2.5.6 Suppose T is a stack on P and S is a cutpoint of T. Then S is a
non-trivial terminal node of T .

Suppose again that T is a stack on P. We then let
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tn('f) ={R : R is a terminal node in 71}
ntn(T) = {R : R is a non-trivial terminal node in T }.

Given two Q, R € tn(’]i) we write © =7 R if!%, in T, R appears later than Q. We
erte Q <T R if, in ’T O-to-R iteration embedding exists. If Q <T R then we let
WQR Q — R be the iteration embedding given by 7. If Q = P then we just write
7TR We write Q < <Ts R if!1 0 < <7 R and TQR is a stack on Q.

Continuing with P and 7 = (Mg, T - o < 1), suppose C' C tn(71) We say C' is
linear if it is linearly ordered by <Ts,

Suppose now that C'is linear and (R, : a« < n) is a jf’s—increasing enumeration

of C. We let [h(C') = n. Suppose further that 7 is a limit ordinal. Then we let Rf
be the direct limit of the R, under the iteration embeddings 7rR Ry We then say

C C tn(T) is closed if it is linear and for every limit a < [h(C), Rgm € C. Notice
that linearity implies that for each limit oo < [h(C), Rf is a node in 7.

Next, we say C is cofinal if for every node S of T elther S € C or there are
R <Ts Q € C such that S is a node in TR o- The following is another easy lemma.

Lemma 2.5.7 If C is cofinal then every node in C is a cutpoint.

We say C'is a club if it is closed and cofinal. Notice that if C'is closed and cofinal
and S € C then there is a <Ts largest R € C' such that for any Q € C' such that
R <Ts Q, S is a node in ’TRQ

Continuing with our fixed P, suppose T = (My,To : a < 1) is a stack on P.
If R is a non-trivial terminal node of 7 then we let fTR be the least such that
ET‘* € R(fTR + 1), where R = Mn. We also let Tx be the largest initial segment
of 7’273 that can be regarded as a stack on R(fiR +1).

Notice that if 7 doesn’t have a last model but there is a club C' C tn(f) then C'
uniquely identifies the branch of 7. Indeed, let D = {S € tn(T) : IR, Q € C(R =T
S jf Q)}. Let R € D be the jf—minimal member of D and let b be the set of
indices of the nodes of 7 between P and R. Then the union of b with the indices
of the nodes of D constitute a branch bo of 7. Tt is not hard to see that we have
ML =R

Suppose now that 7~ doesn’t have a last model and there is no club C' C tn(T).
Let then D = {S € tn(T) : S is a cutpoint}. It follows from our discussion that D

10LL )
11 “g”

stands for “weakly”
stands for “strongly”.
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has a jﬁs—largest element. Let Sz be this largest element. The following is our last
easy lemma.

Lemma 2.5.8 7125% is a normal tree on Sz such that if it is reducible then it has
either a fatal or a non-continuable drop.

2.6 The iteration embedding 7 Tb

Continuing with P and 7, assume that P is a limit type hod-like Isp which isn’t
meek. Again, we will not be concerned with the particular indexing scheme that P
has. In some cases, regardless of whether 7 has a last model or not, it is possible to
extract an embedding out of the iteration embeddings given by 7 that acts on PP.
We describe this embedding below. First we define it by assuming that T="Tisa
normal irreducible tree. Recall that our Isp are lsa-small (see Definition 2.4.3).

Definition 2.6.1 (77 fo irreducible trees) Let A = \P. Let M = M(T) if T

is of limit length and let M be the last model of T otherwise. Then letting 6 = 65»_,

we let 770 be

1. undefined if T is below § and 77 doesn’t ewist,

2.1 [ PVif T eist,

3. id if T is above &, «7 doesn’t exist and M|(6T)P = P|(61)7,

4. undefined if T is above &, ' doesn’t exist and M|(6T)F # P|(6H)7.

Remark 2.6.2 Notice that in Definition 2.6.1, because T is irreducible and 6%, is
a limit of cutpoints, it cannot be the case that for some o < Ih(T), crit(E]) = 6%,
and crit(E] ) > wpr(65_) (this is because otherwise Tomz,, would be a normal tree

on MT ;). This observation implies that the above clauses are all possible clauses.
Next we define 77 for trees 7.

Definition 2.6.3 (77 for trees) Suppose T is a tree on P. We define ©7° by
induction on cutpoints of T. If there is a cutpoint R of T such that 77PR?P s
undefined then let 77° be undefined. Otherwise let C' = (R4 : o < 1) be the sequence
of cutpoints of T. If C is a club then letting ¢ be the unique branch of T, we let
770 =7l | Pb. Otherwise letting n = v + 1'%, let 77 = 2Ry o TP RyD,

12Notice that 7 is always a successor ordinal.
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Finally we define 7T for stacks.

Definition 2.6.4 (77 for stacks) Suppose T is a stack on P with normal com-
ponents (Mg, To : o < ). If for some a < 7), 7T Tab s undefined then we let 7T
be undefined. Suppose then for every a < n, w'*? is deﬁned Then if mis a limat
ordinal then, letting c be the unique branch ofT we let ©7 TIP. Ifn=v+1
then let 7% = 7Tb o g T170,

Notice that in Definition 2.6.5 we are not assuming that the stack has a last
model. The fragment of the eventual iteration embedding 77 restricted to P° can
be seen without actually having the last branch. Notice also that the actual branch
embedding may not agree with 77?

Definition 2.6.5 (Almost non-dropping stacks) Suppose P is a non-meek hod-
like Isp and T is a stack of iteration trees on P. We say T is almost non- dropping
if 7T s defined on P°. Suppose ¥ is an iteration strategy for P'3. We then let

I(P,S) ={(T,R) : T is according to %, R is the last model of T and x7 is
defined}.

I'P, %) = {(T,R) : T is according to &, R is the last model of T and 77 is
defined}.

Remark 2.6.6 Notice that Zf7_: 1s almost non-dropping then it may only have drops
i some image of the top window of P.

The following notion will be used throughout this paper.

Definition 2.6.7 (Canonical singularizing sequences) Suppose P is a non-meek

hod-like lsp and T is an almost non-dropping stack on P. Let Q = W?’b(Pb). Then
Q is an Isp. For £ +1 < A2, we let

S(T.§) = {o: 3a € (68 + 1)=3f € P(a =T "(f)(a)} NOE,
The following is an easy lemma.

Lemma 2.6.8 Suppose P is a non-meek hod-like Isp and T is an almost non-
dropping stack on P. Let @ = w7 *(P®). Then for any £ +1 < A\, sup(s(T,€)) =

Q
Ogy1-

131t is worth remembering that this entails that Y-iterates of P have the same indexing scheme
as P.
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2.7 The un-dropping game

Before we proceed, we explain the meaning of the un-dropping game. Suppose we are
comparing the strategies of two lIsa type hod-like Isp P and Q. Let X be the strategy
of P and A be the strategy of Q. Let us assume that the pointclasses generated by
(P,%) and (Q, A) are the same. We are then searching for R which is an iterate of
P and Q and ¥xg = Ar. In this comparison we might be forced to consider iteration
trees 7 and U with last models M and A such that 77 and 7 don’t exist and
for some & < min(M,AV), M€+ 1) = N(€ + 1) but Sperny # Mvern. We
can continue the comparison by comparing (M, Y ) and (N, Ay) and producing
(S, ®) which is a common tail of (M, X ) and (N, Ayr). However, (S, ®) cannot be
thought of as a last model of a successful comparison of (P,3) and (Q,A) simply
because 77 and 7 do not exist. What we need to do is to compare (M, X ,) and
(N, Ay) and then somehow get back to P and Q. This is what the un-dropping
game achieves.

To define the un-dropping game, we need to define the sequence of main drops.
It is the sequence of stages in an iteration at which there is a drop below the top
window.

Definition 2.7.1 (The main drops of a continuable stack) Suppose P is a hod-
like lsp and T is a continuable stack. We say md” = (R, ’f; 1 < k) is the sequence
of main drops of T if the following conditions hold:

1. k<w and Rog =P.
2. Ri:i<k)isa jf’s—increasing sequence of cutpoints of T .
3. Fori+1<k, T, = fRiyRH—l and Tj, = 'szk

4. For each i <k, §717Ri +1 < MR, Rl(gfnz + 1) is a limit type hod-like lsp and
Tor, is a stack on Ry(€TRi 4+ 1)1,

5. For each i < k, Riyq is jf’s—least cutpoint Q of T such that R, jis Rii1,
7TR1.9° exists and for every node S # Q of Tsq, ©' st doesn’t exist.

6. For every cutpoint S of 71272;” rTRES® erists.

14Recall the definition of §71*R1‘. It was defined a few paragraphs below Definition 2.5.7.
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Notice that it is possible that in the above definition Ry = R;. This can happen,
for instance, when I starts out with a drop. Next we define the un-dropping extender
of T. This is essentially the extender given by dovetailing the embeddings 77

Definition 2.7.2 (The un-dropping extender of a stack) Suppose 77 15 a hod-
like lsp and T is a continuable stack with a last model. Let (RZ,’E i < k) be
the sequence of the main drops of T and suppose 7Teb s defined. For i < k, let

Ri
—(5TR, and fori+1 <k, let
ol (o) = (oK)
be given by

UiTiJrl(A) = Wﬁ’b(A) M Kit1-

-

Set o7 =a™Pooa] o0 oy --00], and let ET be the (ko, m™(ky))-extender

derived from o7 . More precisely,

—

ET ={(a, A) : a is a finite subset of 77" (ky), A € (p(k0o))?, and a € o7 (A)}.

ET is called the un- dropping extender ofT Suppose Q p0q 7T B (RE). Then we
let ET be the (kg, 62)-eatender derived from o’ . More precisely,

EL ={(a,A) : a is a finite subset of 62, A € (p(ro))”, and a € a%(A)}.

When comparing hod premice we need to consider iterations in which at certain
stages [ is allowed to use the un-dropping extender of the resulting stack. The game
producing such iterations is defined below.

Definition 2.7.3 (The un-dropping iteration game) Suppose P is a hod-like
Isp with an indexing scheme ¢. The un-dropping iteration game on P, Gi*(P, k, A, av),
1s an iteration game satisfying the following conditions:

1. If any of the models produced during a run of G (P, k, A\, «) is ill-founded or
doesn’t have indexing scheme ¢ then player I loses that run.

2. GHP,k, A\, ) has at most k main rounds. Player I starts the main rounds.

3. If pis a run of Gi(P, K, A\, ) and M, is the model at the beginning of the (th
main round of p then the Cth main round of p is a run of Gy(Mc, A, a).
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4. Suppose p is a run of GHP,k, A\, ) and (Mg = € < () are models at the
beginning of the main rounds of p. Suppose & < ~v and v+ 1 < . Then the
iteration embedding m: Mg — M., exists.

5. Suppose p is a run of G (P, Kk, \,a). Then player I can start a main round in
two different ways.

(a) Suppose first p has ( < Kk main rounds where ¢ is a limit ordinal. Let
(My 2 a <€) be the sequence of the models at the beginning of the main
rounds. Let then M. be the direct limit of M, under the iteration em-
beddings. Then the (th main round is played on M.

(b) Next suppose ( = v+ 1. Then I can start a new main round only if the
stack played in the yth main round is continuable. Let then T, be the stack

played in the ~yth main round and suppose ’7_fy 1 continuable with last model
R. Then Player I chooses Q <poq R® and € < 7. Let m : M¢ — M,

be the iteration embedding in T and let Fg be the (5Mg,5Mg)—6xtender
derived from . Set

M = Ult{UIH(M, FL.), ED).

Then I can start a new main round, if she wishes so, on M.
If T is a run of GH(P, k, A\, ), then we let (/\/lg,i, Q. &, Fe, E. i g < n) be such that
1. M. is the lsp at the beginning of the sth main round,
2. 7_2 15 the stack played in the ¢th main round,
3. if R is the last model of’fg and s + 1 < n then Q. Jpoq RY,
4. & <5,
5. F. is the (6%, M%) -extender derived from WfMic‘Mﬂ
6. b, = Eg‘g and
7. both F. and E. are defined iff ¢ +1 < n.
We will often omit & and F as those are not essential. If X is a winning strategy for

IT in G}(P, K, A\, «) then we say ¥ is a (K, \, av)-strategy. We say T is a generalized
stack if it is produced via a run of the un-dropping game.
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It is important to remark that clauses 4 and 5b are in conflict. Clause 4 blocks
the possibility of un-dropping to an earlier model than the model at the end of
the previous main round while 5b allows one to go back. The issue is resolved by
noticing that Player I can un-drop to an earlier model than the model at the end
of the previous main round only once. We require that our iteration strategies be
(w1, wr,wr)-strategies.

Definition 2.7.4 (Hod-like Isp pair) We say (P,X) is a hod-like lsp pair (with
an indexing scheme @) if P is a hod-like lsp (with an indexing scheme ¢) and 3 is a
winning strategy in GiH(P,wr, wy,wi).



Chapter 3

Short tree strategy mice

3.1 The short tree component of a strategy

Suppose (P, %) is a hod-like Isp pair such that P is of Isa type. We suppress the
indexing scheme that the pair (P, X) has from our notations below; the particular
indexing scheme will not matter for what follows. The next definition isolates the
short tree component of ¥ denoted by X5, Let xk = 5;)7,_1 and § = 5;373.

Definition 3.1.1 (The normal short tree component of a strategy) We first
define X" the portion of the short tree component that acts on normal trees. Sup-
pose T is a normal tree on P of limit length. Let b= X(T). We then let

Enstc (7‘) —

b . ] doesn’t exist or w] (§) > 0(T),
M] i otherwise.

Suppose Q is an iterate of P via 7 such that 77 exists. We define the short tree
component of ¥ by concatenating all Egtff.

To make the next definition more inttiitive, we say T is a X-mazimal tree on P if
7T has a limit length, is according to ¥ and the second case of Definition 3.1.1 above
holds for 7. Notice that maximality of 7 depends on . Also, if T is a tree then we
let 7~ be T without its last model if it exists and T otherwise.

The next definitions describe when a stack is according to the short tree strategy
component of X.

Definition 3.1.2 We let
U= N, U,: o <) € dom(X5%)

39
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if there is T = (Mo, To - @ < 1) € dom(X) such that U is the same as T except it
doesn’t have the mazimal branches of T ; more precisely,

1. For every a < n, Ny = M.
2. For every a < n such that 71'71[&-6%2'81537

U To ¢ Tais Xy, 71,-mazimal,
“ T, : otherwise.

3. Letting a be the least, if it exists, such that 7Tl _doesn’t exist, for all B > a—1,
Us =Tz

4. There are finitely many o such that Uy, # Te.-

5. Fither n is a limit ordinal or T,—y has a limit length.

[f71 andU are as above then we writed = T*¢ and say that U is the short component

of T.

Finally, we define the domain of the short tree component of > on generalized
stacks.

Definition 3.1.3 (The short tree component of a strategy: the domain) We
let the generalized stack

U= (Na,ﬁa, Qu, By 1 a < ) € dom(X5%)

if there is a generalized stack T = (Mg, Toy Ra, Fo : @ < 1) € dom(X) such that U
is the same as T except it doesn’t have the mazximal branches of T ; more precisely,

1. for every a <n, Ny = My, Qo = Ry and E, = F,,
2. for every a < n such that U, = 7_2“,
3. there are finitely many o such that U, =+ 7104, and

4. either m is a limit ordinal or the last normal component of ’f;]_l has a limit
length.

!'Notice that « is necessarily a successor ordinal.
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[f’f and U are as above then we writed = T*¢ and say that U is the short component

of T.

Conditions (4) in 3.1.3 and (3) in 3.1.3 ensure that if the relevant stacks are of
limit length, we can take the direct limit. We will not be concerned with quasi-limits
(cf. [19]) here.

The next definition defines the short tree component of . Recall that if T is a
stack of iteration trees then ¢ (’71) is the sup of the generators of 7. Tt can be defined
inductively on the number of normal components of 7 (see Definition 1.15 of [10]).

Definition 3.1.4 (The short tree component of a strategy) Given a general-
1zed stack

Zj = (Naaz/{aa Qaa Ey:a< 77) S dOHl(EStC)7
letting T be such that T*¢ =U and b = 2(71), we let

b : 7{ doesn’t exists or ] (8) > 6(T),
M] . otherwise.

Zstc(zj) — {

Thus, Y5%¢(T) either returns the value of $(7) or MZ— where b = X(7). From
now on, we will use this notation even when X is a partial iteration strategy.

Notice the similarity with the short tree iterability for suitable mice in the context
of core model induction or in the context of HOD analysis and 5. If P is a X%-
suitable premouse and X is fullness preserving iteration strategy for P,2 X% is just
the short tree iterability strategy of P.

3.2 The short tree game and short tree strategy
mice

In order to define short tree strategy mice, we will need to define short tree strategy
in a way that it is independent of a particular strategy. The short tree strategies are
winning strategies for player II in the short tree iteration game introduced below. It
will not be hard to see that if X is a strategy then X5 is a short tree strategy.

2Here ©? and fullness preservation are relative to an AD-model.
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Definition 3.2.1 (The normal short tree game, G*'(P,\)) Suppose P is a hod-
like lsa type ¢-indexed lsp. Let k = 51)7;_1 and 6 = 52}. Then the short tree game

nst P N) ds a two player game on P played as follows. Just like in Gi.(P, \), I plays
the successor steps in GE*'(P, A) according to the rules of G(P,\). Let then T be an
iteration tree produced by a run of GI*'(P, ). Suppose T has a limit length. Then

11 has the following two options:

Option 1. 77° exists, 77 *(k) < §(T) and there is M such that
1. M s ¢p-indezed,

2. M(T) <poa M and M is A-iterable above 6(T) and

3. M is a hod-like lsa type Isp such that & = §(T).
Option 2. Otherwise.

If Option 1 holds then II may choose, but is not required, to play M satisfying
the above clauses. If Il plays M then the game stops. In all other cases, II must
play a cofinal branch b such that either 7] doesn’t exist or w] (§) > 6(T).

Suppose p is a run of GE¥(P,N). II wins p if all models in p are ¢-indexed and
well-founded.

If IT plays according to Option 1 then we say that /7 plays a model (rather than
a branch) or that II’s move is a model and etc. Notice that if T is a tree satisfying
hypothesis of Option 1 then for some node Q of T, P <7 Q, Wg’g exists, Q is a
cutpoint of 7" and T=g is a tree above 7} (k).

Next, we introduce the version of the normal short tree game that has at most w
main rounds.

Definition 3.2.2 (The short tree game) Suppose P is a hod-like lsa type p-indezed
Isp. The short tree game Gi'(P, \,n) is an iteration game that has at most w main
rounds each of which consists of a run of the usual (k, \,n)-iteration game (see Def-
inition 2.5.5) with the following exceptions.

1. Suppose M is a model at the beginning of the main round of some run of the
game and T is a run of (k,\,n) on M. Suppose R is a non-trivial terminal
node in T . If WZ exists then the largest irreducible initial segment of 71273 18
played according to the rules of G™'(R,n). If WZ doesn’t exist then the largest

wrreducible initial segment of 7_;73 15 played according to the rules of the usual
iteration game.
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2. If at any point during the run of a sub-round, Il plays a model then I has to
start a new main round on that model, and all main rounds are started in this
fashion.

Suppose p is a run of GiH(P,\,n). 11 wins p if all models in p are ¢-indexed and
well-founded. Additionally, if p has w main rounds, then I1 wins.

Finally, we introduce the un-dropping short tree game.

Definition 3.2.3 (The un-dropping short tree game) Suppose P is a hod-like
Isa type ¢-indexed lsp. The un-dropping short tree game on P, GI' (P, \,n, &), is an
iteration game that has at most w main rounds each of which consists of a run of
GH(P, A\, n,«) (cf. Definition 2.7.3) with the following exceptions.

1. Suppose M is a model at the beginning of a main round of some play and T is
a run of GH(P, A\, n,«). Suppose T = (M, T, Qc, Ec : < < n). Then for each
¢ <mn, T. is played according to the rules of G*(M,n, ).

2. If at any point during the run of a sub-round, Il plays a model then I has to
start a new main round on that model, and all main rounds are started in this
fashion.

ust

Suppose p is a run of G (P, A\, n, ). I1 wins p if all models in p are ¢-indexed and
well-founded. Additionally, if p has w main rounds, then II wins.

Definition 3.2.4 (Short tree strategy) Suppose P is an lsa type ¢-indexed lsp.
We say A is a short tree (\,n, a)-strategy for P if A is a wining strategy for 11 in
Gt (P, ).

Suppose now P and A are as in Definition 3.2.4. We let b(A) be the set of all
T € dom(A) such that 7 has a last normal component of limit length and A(7) is
a cofinal wellfounded branch of 7. Let m(A) = dom(A) — b(A). We call m(A) the

-

model component of A. Given Ue dom(A) such that the last component of U has a
limit length, we let

MUALT) = MY AU) =D
" | A@U) - otherwise.
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Remark 3.2.5 In many situations, it is expected that winning Git(M, Kk, \) must be
easy for I1: 11 wins it as soon as she plays infinitely many models. However, we will
be interested in strategies for Il that have certain fullness preservation properties.
For instance, suppose M is just a suitable mouse in the sense of L(R). Suppose A

nst

is strategy for I1 in GP** (M, wy) such that whenever T is a tree according to A then
1. if T €b(A), b= A(T) and 7] exists then M] is (X2)*® _full and
2. 4f T € m(A) and N = A(T) then N is suitable in the sense of L(R)

then A is in fact a “short tree iterability strategy” in the sense of L(R), it is L(R)-
fullness preserving. Such strategies are difficult to construct, and in our current
situation, we will be interested in a notion of fullness preservation with respect to a
much more complicated pointclass than (X?)F®),

3.3 Hull and branch condensation for short tree
strategy

The goal of this section is to introduce hull condensation for short tree strategies.
Hull condensation for iteration strategies was introduced in Definition 1.31 of [10]. It
is an important property that is used to show that when doing hod pair constructions
no discrepancies arise due to coring down. Thus if T is according to a strategy with
hull condensation and U is a hull of T (cf. Definition 3.3.3) then it is according to
the strategy.

The difference between strategies and short tree strategies is that short tree strate-
gies have a model component, and this difference causes some complications when
trying to outright generalize hull condensation. The resulting definition is just sim-
ply too strong. Our solution is based on our indexing scheme Definition 3.6.2. In
short tree strategy mice, we only index branches of a certain kind of iterations. We
introduce such iterations.

First we define the unambiguous stacks which are essentially the stacks whose
branches are easy to guess.

Definition 3.3.1 (Unambiguous stacks) Suppose P is a hod-like lsa type lsp and
T is a run of GiH(P, k, \) without any main rounds. We say T is unambiguous if
either, letting md’ = (’Ri,’ﬁ 11 < k) be the sequence of main drops of ’f, k>1 or
one of the following holds:

1. There is a linear closed unbounded C' C ntn(T).
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2. T has a last normal component T such that Ih(T) is a successor ordinal.

3. Clauses 1 and 2 above fail, and T has a last normal component of limit length
such that letting T be this normal component, one of the following conditions

hold:

(a) 77 doesn’t exist.

(b) 770 exists and for some cutpoint S of T and some n < o(S) such that
0%s_y < m, Tos is a normal tree on O3, (see Definition 2.3.6) and is
above 1.

(¢) Clauses 3.a and 3.b fail, there is a cutpoint S of T such that T>s is above

6%s_y, and there is @ <L J(M(T)) such that Q & “6(T) is Woodin” and
rud(Q) E “0(T) isn’t Woodin”.

Recall the notation M™*(7) from Notation 2.2.1.

Definition 3.3.2 (Finite stack) Suppose P is a hod-like lsa type lsp. We say
(Po, Tos P1s Ty s Pro1, Tn1, Prn) is a finite stack on P of length n + 1 if

1. n <w and Py =P,
2. Fori<n—1, T; is a normal ambiguous tree on P; and Py, = M*(T;),

3. Z/_i, if it is defined, is a stack such that for some a +1 < AP U is based on
Pnla+ 1) and U has a last normal component of limit length.

4. Tn_1 is either a normal ambiguous tree on P,_y and P, = M (T,_1) or P, is
the last model of T,_1 and 7= -exists.

The iterations that we will consider in short tree strategy mice are stacks of length
2. We define hull condensation for such stacks.

Definition 3.3.3 (Hull of a stack) Suppose M and N are hod-like lsa type Isp
and T = Mo, To - a <) and U = (Mg, Tz = B < v) are stacks on M and N
respectively such that T is based on M® and U is based on N*. We say (N, H) 1S a
hull of (M, T) if there are (i) an embedding w : N —x, M, (ii) an order preserving
map o : IhU) — IWT) (iii) a sequence 7 = (15 : B < v) of order preserving
maps 73 1 lh(Ug) — Ih(Top) and () a sequence of Xi-elementary embeddings
7= (mf : a < IhUs) A B < v) such that letting <z be the tree order of T and < be

the tree order oflj then
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1. forall (y,a) and (&, B) such thatv,§ < v, a < Ih(U,) and & < Ih(Ue), (7, ) <
(€,8) < (0(7), 74(@)) < (()QW»WM

[(7,0), (€ B)]z N DH = 0 ¢ [(0(7),74(@)), (0/(€), 7e(B)] N DT =0,

2. for every B < v and a < Ih(Up), 72 : g MZ;’([” and 73 (EY) = E To(®)

(o) o Ta(a)’
3. for everyy <v and f < o < lh(U,), T [lh(E N+1l=m7; [lh(E )+ 1,

Uy To(v)

4. foreveryy < v, ifa <y B and |, Blu, ND"" = ) then TROT, s = T (o (8) T

5. for every v < v, if B = predy, (o + 1) then 7,(8) = predr,  (7,(a + 1)) and
e ) = @), )
6. (0,0) <7 (¢(0),7(0)), [(0,0), (¢(0),7(0))]NDT =0, and 7§ = W(TO,O),(U(O),TO(O))O

.
We say (0,7, 7) witnesses that (N, U) is a hull of (M, T).

Definition 3.3.4 (Hull of a stack of length 2) Suppose M is a hod-like lsp and
u = (M,U,Ml,W) and t = (M,T,Mg,g) are two stacks of length 2. We say
(M, u) is a hull of (M,t) if there are (i) a pair (m, ) witnessing that (M,U) is a
hull of (M, T) and (iii) a sequence (0,7, k,}) witnessing that (M1, W) is a hull of
(Ma, S) such that if # exists then (r, %)~ (0,7, k, j) witnesses that (M,U~W) is a
hull of (M, T~8) and if i doesn’t exist then, letting

1. o =0 (M) and

2. for (v,a) € Lh(W) x Ih(W,),

W .
j%b — Ja f( Kvw)b s <MYt eists
2 . otherwise
A . w Wb §<M§ b
then for any (v, 8) € Ih(W) x Th(W,) lettingm =7 M¥e andn =m ~ 70k
(if they exist)

b U

noo’ ot = j7b omo gt
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To finally define hull condensation for short tree strategy, we need to introduce a
few more definitions. Suppose (P, ) is a pair such that P is a hod-like Isa type lsp
and X is a short tree strategy for P. First we introduce two sorts of iterates of (P, %),
I’(P, %) and I(P,X). To start, we let maz(P, ) consist of pairs (7, Q) such that 7
is according to ¥, @ is the last model of T and if T = (M, ﬁ : i < n) then for some
ordinal 7y, 7, has a last normal component of length v+ 1 and ’7_;_ € m(ZMm@an_).
Thus, maz(P, %) is the set of maximal X-iterates of P.

Definition 3.3.5 (I°(P,X) and I[(P,X)) Suppose (P,X) is a pair such that P is
an lsa type lsp and X is a short tree strategy for P. We then let

I"P, %) = {(T,Q) : T is according to ¥, Q is the last model of T and 77 exists},

I(P,Y) ={(T,Q) : T is according to %, Q is the last model of T and if
T = (M;,T; - i <n) then either ©™ exists or T € max(P, %)},

From now on, we fix a natural coding of subsets of HC by sets of reals. We call
such a coding Code.

Definition 3.3.6 Suppose (P,X) is a pair such that P is a hod-like lsa type lsp and
Y 15 a short tree strategy for P. We then let

B(P,%) ={(T,Q) : IR((T,R) € I"(P,£) A Q Tnoa R*)},
and

I*(P,2) ={ACR:3(T,Q) € B(P,S)(A <, Code(S, )}

Definition 3.3.7 (Hull condensation) Suppose P is a hod-like lsa type lsp and
1s a short tree strateqy for P. We say ¥ has hull condensation if

1. for all (T, Q) € B(P, %), Yo7 has hull condensation, and

2. whenever (T,Q) € I(P,Y), u= (Q,U, 01, W) and t = (Q, T, Qs, W') are two
stacks of length 2 on Q such that ¢ is according to X 7 and (Q,u) is a hull of
(Q,t) then u is according to ¥ 7.

Next we introduce branch condensation for short tree strategies. We will need
this notion in the definition of hod mice (see Definition 3.9.3).
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Definition 3.3.8 (Branch condensation for short tree strategies) Suppose (P,Y)
1s such that P is a hod-like lsa type lsp and ¥ is a short tree strateqy for P. We say
¥ has branch condensation if whenever (T, Q,U, R, m,S,c,«, ) is such that

1. (T,Q),(U,R) € I"(P, %),

2. a < R and S is a tree according to Y on R" based on R+ 1) such that
it has limit length and is above 6%,

3. ¢ is a branch of S such that 75 exists, and

—

4. m:8 — Q(B) and 7Tt =1 onS oglhd

C

then ¢ = X 7(S).

3.4 Lsa type pair

Suppose P is a hod-like Isa type Isp and suppose A is a short tree strategy for P.
We would like to introduce the notion of a short tree premouse and in particular,
A-premouse. The main technical problem is that we do not have a reasonable notion
of condensation for short tree strategies. In particular, if A = 3% for some strategy
Y., then it may well be that there is a tree 7 on P such that if b = X(7) then b is
non-dropping and 7/ (§) = 6(7) yet there is a hull & of T such that if ¢ = %(U)
then in fact 7%(8) > 6(U). Thus, A(T) = M] while A{U) = c.

The above scenario is the main difficulty with defining short tree strategy mice.
We have to find a particular indexing of short tree strategies, or rather carefully skip
over “bad trees”, in a way that when 7T above is “cored down” to U above then our
indexing is still preserved. In particular, the branch of U cannot be added too early.
The idea is to wait until branches or rather the Q-structures are certified. Before we
define short tree hybrids, however, we have to make a few definitions that will be
useful to us in the future.

We will only consider short tree strategies A with the property that whenever
7 € dom(A) is an unambiguous stack then A(7) is a branch. If A is a short tree
strategy for P and T is a stack on P according to A with last model N then we
let Ay, 7 be the short tree strategy of N induced by A, i.e., for every U on N ,

Ay 7(U) = A(T7U).

Definition 3.4.1 (Faithful short tree strategy) Suppose P is a hod-like lsa type
Isp and A is a short tree (k, \,n)-strateqy for P. We say A is a faithful short tree
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(k, X\, n)-strategy if whenever T = (M;,T; i < k < w) € dom(A), and R € tn(T)
then, letting U be the largest initial segment of T that is based on R and has no main
rounds, then

1. if U is unambiguous then U € b(Agz.)

2. if clause 3.c of Definition 3.3.1 holds for?j then letting S be the cutpoint node
of U witnessing clause 3.c of Definition 3.3.1 then AS,L?<5 (Uss) is a branch of

U such that Q(b,Uss) exists and Q(b,Uss) I T (M(Uss)).

In the next section we will need to consider short tree iteration strategies that
are partial and their range consists of branches. The next definition introduces this
notion.

Definition 3.4.2 (Short tree strategy without a model component) Suppose
P is a hod-like Isa type lsp. We say A is a partial short tree strategy for P if it is a

partial winning strategy in G (P, w1, wi,wi). If A is a partial short tree strategy for

P then we say it is without model component if m(A) = (.

We can then also define faithful short tree strategies without model component.

Definition 3.4.3 (Lsa type pair) We say (P, A) is a hod-like lsa type pair if P is
a hod-like Isa type lsp and A is an (wy,wy,wy) faithful short tree strategy with hull
condensation. We say (P, ) is a hod-like lsa type pair without model component if
P is a hod-like lsa type lsp and A is an (wy,wy,wr) faithful short tree strategy without
model component.

3.5 (P,Y)-hod pair construction

Suppose that (P,X) is a hod-like Isa type pair. Below we describe a fully back-
grounded construction that, if successful, constructs a Y-iterate of P. We say a
(k, A)-extender E coheres ¥ if P € V,,, Vi CUIlt(V,E) and (X)) [ Vi =X | Vi.

Definition 3.5.1 ((P, X)-coherent fully backgrounded constructions) Suppose
K is an inaccessible cardinal and (P,Y) is a hod-like lsa type pair such that ¥ is a
(K, K, k)-short tree strategy. Then for n < k, we say (M, Ny v < n),(Fy : v <
n), (T : v <n)) is the output of the (P, X)-coherent fully backgrounded construction
if the following holds.
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1. My =10.

2. M, is a hod-like lsp such that in the comparison of P with M., M., doesn’t

move and the comparison results in a tree T, on P according to ¥ such that
either T, has a last model M such that M. <poa M or M., = M(T,).

. Suppose v < 0 is such that either T, has a last model or T, € b(X). Let M be

the last model of T, if it exists and otherwise, letting b = X(7T), let M = J\/le”

Let ¢ be such that M., = M|s and suppose M., = jf’f. Then the following
statements hold.

(a) If M, = M then v =n.

(b) Suppose M., <M. Suppose there is no pair (F*, F) and an ordinal { < &
such that F* € V, 1s an extender over V cohering >, F' is an extender
over My, Veyw C UV, F*) and

F=F" (P = T
such that (jf’f, e E, ¥, F) is a hod-like lsp (here F is the amenable code
of F). Then N, = J1(M,) and M1 = Cu(N,).

(c¢) Again suppose M., < M but there is a pairﬁ(F*, F) and an ordinal ¢ sat-

isfying the above conditions. Then if F € E™ then we let

N,y = (%E’f, c, Fj, f, F’)
where F is the amenable code of F. Also, My = C,(N,). If F ¢ EM
then v =n and we stop the construction.

(d) Again suppose M~ aM and that M|s is an active J-structure such that
its last predicate codes a set A that is not an extender. Let then N, =

(M., A, €) and M1 = C,(N,).

4. Suppose v < n is such that T, is of limit length and T, & b(X). Then v = 1.

Remark 3.5.2 Notice that the constructions introduced in Definition 3.5.1 can be
carried out even when (P,X) is a hod-like lsa type pair without model component.
It can also be carried out when X is a partial strategy. Also, if the background uni-
verse has a distinguished extender sequence then we tacitly assume that the extenders
appearing in the (P,3)-coherent fully background construction come from this dis-
tinguished extender sequence.
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3.6 A short tree strategy indexing scheme

Our goal here is to introduce the notion of a short tree strategy premouse (sts pre-
mouse). As we mentioned in the previous section, the difficulty with doing this lies
in the fact that maximal trees might “core down” to short trees and thus, creating
indexing issues. The idea behind the solution presented here is to add a branch for
a tree as soon as we see a certificate, which in our case will be a 9O-structure, that it
is short. As the Q-structures that we will be looking for are themselves sts premice,
this inevitably leads to an induction.

Technically speaking M in Definition 3.6.1 should not be sp (strategy premouse)
as fV doesn’t quite code an iteration strategy. Its domain consist of finite stacks of
length 2. But recall the abuse of terminology proposed by Remark 2.2.2

Definition 3.6.1 (Unambiguous sp) Suppose M is an sp over some self-well-
ordered set X based on a hod-like lsa type lsp P. We say M is unambiguous if M
is closed under sharps and whenever t = (Po, To, Pl,ﬁ) € M is a finite stack on P
of length 2 according to Y™ such that either

1. U=0 and M E “Tg is an unambiguous tree of limit length” or
2. U is a nonempty stack of limit length

then t € dom(XM). We say M is ambiguous if it is not unambiguous.

The next definition introduces an indexing scheme that we will use to define short
tree premice. The indexing scheme only defines the strategy on certain carefully
chosen stacks. It turns out that this much information is enough to extend the
strategy on all stacks (see Chapter 6). In the next two definitions, instead of explicitly
writing what 1 says, we indicate the impact that it has on the structures satisfying
it. We leave it to the reader to extract the actual formula from our description.

Definition 3.6.2 (¢-sts indexing scheme) Suppose ¥ (z) and ¢(x,y) are two for-
mulas in the language of sp. We say ¢ is a ¢-sts indexing scheme for ¢ if whenever
X is a self-well-ordered set, P € X is a hod-like lsa type lsp and N is an sp over X
based on P then N E [c] if and only if

1. N s closed under sharps,

2. N E “SN s a partial faithful short tree strateqy without model component”,
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3. for some finite sequence t = (770,76,731,1/?) e N on P of length 2 such that t
is according to XV, IM(Ty) is not of measurable cofinality, and INU)? is not of
measurable cofinality, ¢ = J,,(t),

-

4. letting t = (Po, To, P1,U) be as in clause 3 above, the following conditions hold.

(a) There is (v,§) such that letting (M, Ny : v < n),(F, : v <n),U, :
v < 1)) be the output of the (P,XN)-coherent fully backgrounded con-
struction of N in which extenders used have critical points > v (see Def-
inition 3.5.1), Us = Ty.

(b) If N is ambiguous® then t is the N -least stack on P satisfying clause 4.a
and witnessing that N is ambiguous.

(c) If N is unambiguous, then YN (Tq) is undefined and letting (v,€) be the
least witnessing clause 4.a above, N “there is a unique cofinal well-

founded branch b € N of Ty such that [Ty, b] holds”

Notice that ¢ is uniquely determined by ¢. The meaning of clause 4 is as follows.
Clause 4a implies that the domain of the strategy consist of stacks (Py, 7o, P U ) of
length 2 such that 7 is a tree appearing in the (P, v )-coherent fully backgrounded
construction. It is then required that U be based on Pb. Clause 4b says that for
unambiguous stacks we use the standard indexing scheme. Clause 4c¢ says that for
ambiguous stacks indexing branches that have property ¢, which we want to say that
“there is a certified O-structure”. This is done in Definition 3.8.2.

Definition 3.6.3 (Sts ¢-premouse) Suppose X is a self-well-ordered set, P € X
is a hod-like lsa type lsp and ¢(x,y) is a formula in the language of sp. Then M is
an sts g-premouse over X based on P if M is an sp over P with an indexing scheme
1 where 1 1s the ¢-sts indexing scheme.

If ¢(z,y) = “0 = 1" then we say M has a trivial indexing scheme and also say
that M is a trivial sts premouse. Notice that in a trivial sts ambiguous trees do not
have branches.

3By this, we mean the sum of the lengths of the normal components of U.
4This implies that ¢/ = § and 7Tg is N-ambiguous.
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3.7 Authentic finite stacks

Suppose (P,3) is a hod-like Isa type pair. Suppose T is a tree on P according to
3 such that 77 exists and MT(T) E “§(T) is a Woodin cardinal”. When defining
short tree strategy mice, we will be faced with the following question? How can we
guess the iterations of M™(T) that are according to ¥+ (77?7 In this section, we
present an authentication process that allows us to guess the correct iterations of
MF(T).

The main technical object used in our authentication process is s(’f ¢) introduced
in Deﬁmtlon 2.6.7. We start by recalling it. Suppose P is a non-meek hod premouse
and 7T is a stack on P such that 77 exists. Let Q = WTb(Pb) For £ +1 < \€ and
X C Pt we let

S(T.X,6) ={a:3a e (62 +1)3f € X(a=a""(f)(a)} N5,
When X = P’ then we just write s(7, €).

Definition 3.7.1 (Authentic hod-like Isp) Suppose (P,3) is an sts hod-like pair,
T is a normal tree on P according to X such that 7Tt exists and X C PP, Let
S = 7T(PP). Suppose R is a hod-like lsp. We say (T, X) authenticates R if for

some a < X° and some & < o(S(a)), there is a normal tree U on R with last model

S|€° and such that
1. (S(e))® = HullS (xT4[X] U 5(S@)"),

2. whenever v < Ih(U) is a limit ordinal such that there is f + 1 < a with the
property that S & “65,, is a Woodin cardinal” and MU | ~) = 8|65, then
the branch b of U | v is such that for some T € b,

s(T, X, B) C rng(74,)
and
3. if R is of limit type then {x € (S(a))? : x € Hull®(rT*[X])} C rng(7¥?).

We say R is (P, X, X)-authentic if there is T on P according to ¥ such that (T, X)
authenticates R. We also say that R is (P, %, X, T )-authentic.

Notice that there is only one tree U with the above properties. We say U is the
(T, X)-authentication tree on R, and (a, &) are the (T, X)-authentication ordinals.
When X = P we simply omit it from terminology.

®Recall that M||¢ is M up to € with the last predicate
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Clearly the tree U in Definition 3.7.1 is a tree built via a comparison process
in which S doesn’t move. A typical R that we would like to authenticate will be
an iterate of P. When ¥ has nice properties, such as strong branch condensation
(see Definition 4.7.1 and Section 5.5), the clauses 2 and 3 of Definition 3.7.1 can be
satisfied. Next, we would like to define authentic iterations.

Definition 3.7.2 (Authentic iterations) Suppose (P,X) is an sts hod-like pair,
T is a normal tree on P according to ¥ such that 77 exists and X C P°. Let
S = 7P, Suppose R is a hod-like Isp and W is a stack on R. We say
(T, X) authenticates (R, W) if (T, X) authenticates R and, letting U be the (T, X)-
authentication tree on R and («, §) be the T -authentication ordinals, W is according
to ™ -pullback of Ls)e.

Again we omit X when X = PP. We say (R, W) is a (P,%, X)-authenticated
iteration if there is a tree T on P according to ¥ such that (T,X) authenticates
(R,W). We also say that (R,W) is (P,%, X, T)-authentic. When X = PP we

simply omit it from terminology.

Next we define authentic stacks of length 2. These are stacks that will be impor-
tant in our definition of short tree strategy mice in the next section.

Definition 3.7.3 (Authentic stacks of length 2) Suppose (P,X) is an sts hod
pair, X C P® and R is an Isa type hod premouse. Suppose t = (RO,L{,RI,W) 18
a stack on R of length 2. We say t is a (P,%, X)-authenticated if the following
conditions hold.

1. Suppose S is a cutpoint of U, m=st exists and some initial segment of Uss is

based on Sb. Then (8°,K) is (P, X, X )-authenticated iteration, where K is the
longest component of Uss that is based on S°.

2. Suppose S is a cutpoint of U such that T<s?® exists and some initial segment

of Uss 1s above 555_1. Let KC be the longest such initial segment. Then the
following conditions hold.

(a) Suppose KC doesn’t have any fatal drops. Then for any limit o < Ih(K), if
b is the branch of K | a then Q(b, K | «) exists and is (P, X, X )-authentic.

(b) Suppose K has a fatal drop at (o, n). Let Q = (97/7\4§. Then (Q,Kso) is a
(P, 3%, X)-authenticated iteration.

3. (R, W) is a (P, S, X)-authenticated iteration.
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When X = P we simply omit it from terminology.

It is of course desirable that (P, ¥)-authenticated stacks are according to ¥. We
will show this in Section 5.5. In the next section, we will use our authentication idea
to define certified stacks.

3.8 Short tree strategy mice

We now have developed enough terminology and tools to define sts premice. We use
the following notation below. Suppose M is a transitive model of some fragment of
set theory and A is a limit of Woodin cardinals. Let g C Coll(w, < \) be M-generic.
Then we let D(M, ), g) stand for the derived model of M at A computed using g.
More precisely, letting R* = |, RMINCel@.<al D(M, A, g) is defined in M (R*) by
first letting I' = {A C R* : L(A,R*) £ AD"} and then letting D(M, ), g) = L(I", R*).
Woodin’s derived model theorem says that D(M, ), g) E AD* (see [27]).

Before we introduce the notion of short tree strategy premouse, we take a moment
to describe the intuition behind the definition. Suppose P is a hod-like Isa type Isp
and 7 is a normal ambiguous tree on P. We would like to find the correct Q-
structure for 7. We first attempt to find this Q-structure among sp that have a
trivial indexing scheme 1)y, i.e., no ambiguous tree has an indexed branch. However,
there may never be such an sp that can be used as Q-structure. Assume then that
this is the case. We then immediately encounter two problems.

The first problem is to know exactly when to stop looking for a OQ-structure
among trivial sp’s. We will do this as soon as we reach a sufficiently closed Q. To
know that we have reached such a level, we need to address the second problem.

The second problem is to describe the next type of gadgets that can be used
as Q-structures. A mnatural choice is the collection of sp’s over M(T) in which
all ambiguous trees have Q-structures with the trivial indexing scheme. This is our
second indexing scheme. Let us call it ¢);. One wrinkle is that we need a certification
method for the Q-structures that are used in a 1;-sts premouse. This is done by
using the ideas from Definition 3.7.3.

The way we put the two ideas together is as follows. We first search for a Q-
structure among sp’s with trival indexing scheme . If we reach a level Qy that
has a ¥1-sts Q1 € Qp that can be used as O-structure then we stop and see if Q
certifies Q; (see Definition 3.8.2). If yes, then we declare success. If no, then we
continue with trivial indexing. This naturally leads to an induction, in which we
define more and more complex indexing schemes. To show that we indeed reach the
desired Q-structure we have to use an appropriate notion of fullness preservation.
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Before we begin, we make the following useful definition.

Definition 3.8.1 (Terminal tree) Suppose X is a self-well-ordered set, P € X is
a hod-like lsa type lsp, ¢(x,y) is a formula in the language of sp and N is an sts
¢-premouse over X based on P. Given T € N on P, we say T is N-terminal if T
is according to XN and N'E “T is ambiguous”.

We now by induction define a sequence of indexing schemes (5 : 5 € Ord). To
start we let 1)y be the trivial indexing scheme, i.e., ¥ is just “0=1". Thus, if M is
an sts Yy-premouse then M does not have branches for ambiguous trees.

Definition 3.8.2 (Sts indexing scheme) Suppose (1p : < ) have been defined.
We let 1, be the following formula in the language of sp. Suppose X is a self-well-
ordered set, P € X is a hod-like lsa type Isp and M is an unambiguous sp over X
based on P. Then M E [T, b] if and only if (T ,b) is the M-lexzicographically least®
pair such that T is an M-terminal tree on P, Ih(T) is not of measurable cofinality,
and b is a cofinal branch through T such that for some pair (B,7) such that v < «
and B < o(M),

1. M|B is unambiguous (see Definition 3.6.1) and M|S E ZFC + “there are in-
finitely many Woodin cardinals > 6(T)”,

2. be M|B and M|B E “b is well-founded branch”,
3. M|BE “Q(b,T) exists and is an sts . -premouse over M(T)” and

4. letting (8; : i < w) be the first w Woodin cardinals > §(T) of M|B, M|5 E
“Q(b,T) is < Ord-iterable above 6(T) via a strategy ¥ such that letting A\ =
SUp; ., 0i, for every generic g C Coll(w,< M), ¥ has an extension Lt €
D(M|B, A, g) such that D(M, )\, g) E “ST is an wy-iteration strategy” and
whenever R € D(M|B, X, g) is a X" -iterate of Q(b,T) (above §(T)) andt € R
is a stack on M*(T) of length 2 then t is (P, SMP)-quthenticated”.

The lexicographically least pair (B,~) satisfying the above conditions is called the least
(M, y)-witness for (T,b). We also say that (8,7,b) is an M-minimal shortness
witness for T. We also say that T has an M-shortness witness.

6This is just the order defined by: first order the first coordinate by <, the canonical well-order
of M, then order the second coordinate by <.
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Notice that M has at most one M-shortness witnesses for 7. We set Yorq =aes
gs and refer to 14 as the sts indexing scheme. Notice that in Definition 3.8.2 we
tacitly assumed the following absoluteness lemma that can be proved by an easy
induction.

Lemma 3.8.3 Suppose M is a transitive model of ZFC, X € M is a sellf-well-
ordered set, P € X is a hod-like lsa type lsp, M € M s an sp over X based on P
and v < o(M). Then M E “M is an sts .,-premouse” if and only if M is an sts
). -premouse.

The next few definitions introduce sts premice.

Definition 3.8.4 (a-sts premouse) Suppose a € Ord or o = Ord. Suppose X is
a sellf-well-ordered set and P € X s a hod-like lsa type lsp. We say M is an a-sts
premouse over X based on P if M s a 1,-sts premouse over X based on P. When
a = Ord we just say that M is an sts premouse over X based on P.

Definition 3.8.5 (Sts mouse) Suppose X is a self-well-ordered set and P € X is
a hod-like lsa type lsp. We say M is an sts mouse over X based on P if M 1is an
sts premouse over X based on P which is wy + 1-iterable.”

Definition 3.8.6 (A-sts premouse) Suppose X is a self-well-ordered set, P € X
1s a hod-like lsa type Isp, A is an short tree strateqy for P and M is an sts premouse
over P. Then we say M is a A-sts premouse over P if ¥ C A | M.

Definition 3.8.7 (A-sts mouse) Suppose X is a self-well-ordered set, P € X is a
hod-like lsa type lsp, A is an short tree strategy for P and M is a A-sts premouse
over P. Then we say M is a A-sts mouse over P if M has an wy, + 1-iteration
strateqy ¥ such that whenever N is a Y-iterate of M via X, N is a A-sts premouse
over P.

3.9 Hod mice

The main goal of this section is to introduce Ilsa small hod premice. We start by
isolating the types of points in Y where P is hod-like Isp.

Notation 3.9.1 (Meek and lsa points) Suppose P is a hod-like Isp.

"Here implicit in this is the demand that iterates of P according to the strategy are sts premice.
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1. meek(P) ={Q € Y" : Q is of meek type}.

2. lsa(P) ={Q e Y” : Q is of Isa type}.

3.

Qo7 =y?”.

Definition 3.9.2 Suppose P is a hod-like Isp and Q <R are either layers of P or
Q = M*(P|67) and R = P.

1.

2.

3.

We say R is the P-successor of Q if there is no S € Y such that Q1S <aR.

We say Q is a cutpoint of P if Q< P|67 and if S € YT is the P-successor of
Q then S is of successor type.

Suppose Q is of lsa type. We say R witnesses that Q is not of lsa type if R is
least such layer of P such that R £ “0< is a Woodin cardinal” but Jy(R) F “6<

1s not a Woodin cardinal”.

Definition 3.9.3 (Hod premouse) Suppose P = JBE’f is a hod-like lsp. We say
P is an lsa small hod premouse if the following holds:

1.

2.

7.

Suppose P is meek. Then P = (9(7;;“’5,3.

Suppose P is of Isa type 1. Then P = O?{"((Wﬁ)p. Moreover, for every n €
[1,w), P|((67) )P is an sts premouse over P|((67)*™)F based on P|((67)T)7.

(Lsa smallness) For every a such that o+ 1 < AP, P(a + 1) isn’t of lsa type.

For all Q € Y —Isa(P), P E “S§ is an (Ord, Ord, Ord)-strategy with hull
condensation and strong branch condensation” and if @ has a successor R then
PE“R isa Zg—premouse over Q7.

For all Q € lsa(P), letting R € Y7 be the successor of Q°, R E “SF is a
partial short tree strategy with hull condensation that acts on stacks of length
27 and R is a Eg—sts premouse over Q.

For all Q € lsa(P), if R € YT witnesses that Q is not of lsa type, then letting
A be the id-pullback of X5, £7 = A*.

Suppose n is a cutpoint of P. Then the following hold.

8Which exists because of close 3 above.
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) «myP .
(a) If P is meek or Isa type I then P F “Op, has an Ord-strategy acting on
trees that are above n”.

(b) If P is non-meek but not of lsa type I and n < 67 then P E “Of, has a
0% -strategy acting on trees that are above n”.

8. If NP is a successor ordinal and P is either of successor type or of lsa type I
then for any P-cardinal n € (0%»_,,07), P E “P|(n*) is (Ord, Ord)-iterable

for stacks that are above 8, |7

Definition 3.9.3 implicitly introduces an indexing scheme ¢ such that whenever
P is a ¢-indexed Isp then P is a hod premouse. Next we define hod pairs.

Definition 3.9.4 (Hod pairs) We say (P, %) is a hod pair if P is a hod premouse
and 3 is an (wy, wy,ws )-strategy for P with hull condensation and such that whenever
Q is a X-iterate of P via T and S € Y2, either

1. R € 1sa(Q) and ¥% C Yyl Qor
2. R € lsa(Q) and 3 C Egci_ Q.

Next we introduce the collection of sets generated by hod pairs.

Definition 3.9.5 (I'(P,X) and B(P, X)) Suppose (P,X) is a hod pair of limit type.
We then let

B(P,£) ={(T,Q) : 3R((T,R) € I(P,£) A Q %oa R")}
and
I(P,2) ={ACR:3(T,Q) € B(P,%)(A <, Code(S47)}-

Definition 3.9.6 (Pre-sts hod pairs) We say (P, X) is a pre-sts hod pair if (P, %)
is lsa type pair (see Definition 3.4.3), P is an lsa type hod premouse and 3 is a short

tree (w1, wr,wr)-strategy for P with hull condensation such that whenever ('f, Q) €
I(P,Y), Q is an Isa type hod premouse and for all R € Y2, Z% =Ygz Q.

To define sts hod pairs, we will make use of the notation introduced in Defini-
tion 3.3.6. Recall that in Definition 3.3.6, we introduced I'’(P,¥) but not I'(P,X).
We will define I'(P, X) for sts hod pairs in Section 8.1.

Suppose now that X is a self-well-ordered set, (P, Y) is a pre-sts pair such that
P € X and Q is a Y-sts mouse over X based on P. Let A be the strategy of Q. We
then let I'(Q, A) be the collection of all sets of reals A such that for some A-iterate
R of Q, there is (T,8) € B(P,XR) such that A <, Y57
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Definition 3.9.7 (Sts hod pairs) We say (P,X) is an sts hod pair if (P,%) is a
pre-sts pair such that whenever

1. (T,R) € I(P,Y),

2. n€ (0% |, 0%] is such that Jy(M™(R|n)) E “n is a Woodin cardinal™,
3. v >mnis a P-cardinal, and

4. QAR is a By gy, #-sts mouse over R|v based on R|n

then Q has an iteration strategy ® € T°(P, %) witnessing that Q is a EM_;,_(RM)J*--StS
mouse over Rlv based on R|n and such that T'(Q, ®) <, T*(P, ).

Definition 3.9.7 imposes conditions on sts hod pairs that may seem unnatural.
However, these conditions are needed to prove that sts hod pairs behave nicely. For
instance, we will use these clauses in the proof of Lemma 5.5.1, which is an important
lemma showing that our indexing scheme doesn’t index incorrect branches. Our sts
indexing scheme is such that when indexing a branch of an ambiguous tree we do
not consult the strategy but instead look at the sts mouse itself. Lemma 5.5.1 shows
that indexed branches are according to the strategy.

We finish this section by introducing the minimal component of a short tree
strategy. Suppose (P, X)) is an sts hod pair and suppose T = (7%-,73 ci < w)isa
stack on P according to . We then let 7™ be the same as T except that whenever
S is a cutpoint of 7 such that (T=s,S) € I(P,%) and if W is the largest normal
component of 7 that is based on S and is above 5 then, letting W~ be W without
its last model if it exists and otherwise just W, W~ is of limit length, 71<TSW e m(X)
and in 7™" IT plays MT(W™). Thus, in 7™ when I plays a model she always
plays M*(W™).

Definition 3.9.8 Suppose (P,X) is an sts hod pair. We say V is the minimal
component of X if W is a short tree strategy for P such that

1. T € dom(X) if and only if T™" € dom(¥),

~\

2. T € b(X) if and only if T™" € b(W), and

—

3. if T e m(U) then U(T) = MT(W) where W is the last normal component of

=

9Recall Notation 2.2.1.
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Comparison theory of hod mice

4.1 Background triples and Suslin capturing

The goal of this section is to introduce background triples and Suslin, co-Suslin
capturing. We will use these notions to build hod pairs with desired properties, such
as fullness preservation and branch condensation.

Definition 4.1.1 (Background triple, Definition 2.24 of [10]) We say
M = (M, 35,%)

is a weak background triple if M E ZFC + “§ is a Woodin cardinal” and ¥ € M is a
(8,0 + 1)-iteration strategy for VM with hull condensation acting on stacks that are
in J,(VM). We say (M,0,%) is a background triple if ¥ is an (wy,w;)-strategy for
M and (M, 8, %y, | (VM) is a weak background triple.

Suppose M = (M, 4,Y) is a a background triple and A C R. We review the
standard capturing notions. We say M Suslin captures A at 7 if there is a tree
T € M such that whenever N is a X iterate of M and i : M — N and whenever g is
< i(n)-generic over N, (p[i(T)]))N9 = AN N[g]. We say M Suslin, co-Suslin captures
A at n if it Suslin captures both A and A°.

Suppose I is a good pointclass.! For z € R, we let Cr(x) be the largest countable
I'(z)-set of reals. For transitive a € HC and surjection g : w — a, we let a, be the
real coding (a, €) via g. More precisely, letting mE,n if and only if g(m) € g(n),
ag = {(m,n) : g(m) € g(n)}. Let 7, : (w, E;) — (a, €) be the transitive collapse of

1See [26, Definition 9.12].

61
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(w, Ey). If also b C a, the we let b, = {m : my(m) € b}. We then let Cr(a) = {bC a:
for comeager many g : w — a, b, € Cr(ay)}.
Continuing with I', we say P is a I'-Woodin if

1. P is countable,

2. for some P-cardinal §, P = Cr(Cr(V{)),

3. P FE %) is the only Woodin cardinal” and

4. for every n < 6, Cr(V;) F “n is not a Woodin cardinal”.
We say (P, V) is a I'-Woodin pair if

1. ¥ is an wy-iteration strategy for P and

2. for every W-iterate ) of P, Q is a I'-Woodin.

Woodin showed under AD™ that for any good, scaled pointclass I' not closed under
VR, there are I-Woodin pairs (see [26, Theorem 10.3]). Given a '-Woodin pair
(P, W), we let M#¥ be the minimal active ¥-mouse with n Woodin cardinals and
U,, be the unique wi-iteration strategy of M#:¥ 2

Definition 4.1.2 Suppose I' is any pointclass and I'* is the least good, scaled point-
class such that I' C Ar-. We say a background triple M Suslin, co-Suslin cap-
tures T if for some I'*-Woodin pair (P, V), M Suslin, co-Suslin captures the sequence
(Code(¥,,) : n <w). We also say that M captures I' via the pair (P, V).

The following is an important yet straightforward lemma that we will use through-
out this book. See [19, Section 1.5] for a proof.

Lemma 4.1.3 (Correctness of background triples) Suppose M = (M, 6,%) is
a background triple that captures a good, scaled pointclass I' via the pair (P, V) and
suppose x € RN M. Then M Suslin, co-Suslin captures any set of reals that is
lightface definable over (HC, Code(WV), z, €).

Suppose ' is a pointclass and (P, %) is a hod pair or an sts hod pair such that
Code(X) € T. Recall the definition of Lp"*(X). In the case X is an iteration
strategy, Lp"¥(X) is the stack of all sound Y-mice M over X? such that p(M) = X

2Under AD™, this is equivalent to ¥,, being the unique w; + l-iteration strategy of M# ¥
3In case X isn’t transitive or P € X, “over X” means “over T'c({X,P})”.
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and M has a strategy in . In the case ¥ is a short tree strategy Lp"*(X) is the
stack of all sound X-sts mice M over X based on P such that p(M) = X and M
has a strategy in I'.* Below if ¥ is an iteration strategy or short tree strategy then
we let Mg be the structure that it iterates.

Notation 4.1.4 Suppose I' is some pointclass. Following Section 2.5 of [10] we let

HPY = {(P,%): (P,X) is a hod pair or an sts hod pair such that Code(X) € '}
Micet = {(a, 3, M) :a€ HC Na is a swo\ (Ms,¥) € HPP AMs eaAM <
Lp"*(a) A p(M) = a}

and given (P,X) € HPY,
Micel, = {(a, M) :a € HC Na is a swoAP € a AN M < Lp"*(a) A p(M) = a}

When T' = p(R), we omit it from our notation.

Given a set A C R with w(I') < w(A), we let Ar be the set of triples of continuous
functions (00,01, 09) such that o5 '[A] is a code for some (P,¥) € HP', o7 '[A] is a
code for a triple (a,%, M) € Mice' and o5 '[A] is a code for the unique w,-strategy
of M.

The following is an easy consequence of Lemma 4.1.3.

Corollary 4.1.5 Suppose M = (M,0,%) is a background triple that captures a
pointclass T' via the pair (P,WV). Then M Suslin, co-Suslin captures Code(V)r,
Code(HP") and Code(Mice").

We finish by recalling the notion of self-capturing background triple (Definition
2.24 of [10]). Suppose M = (M, ,%) is a background triple. We say M is self-
capturing if for every M-inaccessible cardinal A < § there is a set X € M such that
for any M-generic g C Coll(w, \) and for every M|g]-cardinal n which is countable
in V, (M[g],X) Suslin, co-Suslin captures Code(Xy) at 1 as witnessed by a pair

(T,S) € OD)]\?[Q]. Self-capturing background triples are very useful for building hod
pairs and proving comparison. The following theorem of Woodin shows that under
AD™, self-capturing background triples are abundant.

Theorem 4.1.6 (Woodin, Theorem 10.3 of [26]) Assume AD". Suppose I' is a
good, scaled pointclass and there is a good, scaled pointclass I'* such that I' C Aps.
Suppose (N, W) Suslin, co-Suslin capture I'. There is then a function F defined on
R such that for a Turing cone of x, F(x) = (N}, My, 0., 3,) such that

4From here on, “Lp” means “g-organized Lp” as defined in [20] unless explicitly stated otherwise.
We will occasionally remind the reader of this convention. The reason we need to use g-organization
is so that S-constructions go through.
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1. N € Ll[ZL‘L
2. N¥ o, = M0,

3. M, is a U-mouse: in fact, My = M} (z)|k, where k, is the least inaccessible
cardinal of M}'*,

4. N¥E 6, is the only Woodin cardinal”,
5. X, 18 the unique iteration strategy of M.,

6. N* = L(M,, \) where A is the restriction of $, to stacks T € M, that have
finite length and are based on M, | 6,

7. (N, 3,) Suslin, co-Suslin captures Code(¥) and hence, (N}, X,) Suslin, co-
Suslin captures I,

8. (N, 6., %) is a self-capturing background triple.

Suppose next that I' is a pointclass and M = (M, 4, Y) is a self-capturing back-
ground triple capturing I' via a pair (P, ¥). In Section 4.3.9, we will describe the
I'-hod pair construction of M that produces a hod pair in HP'. When describing
this construction, we will use the following simple observations.

Remark 4.1.7 [t follows from Corollary 4.1.5 that the statement (P,A) € HPT is
absolute between V' and M. Indeed, given a hod pair (P, A) such that for some < J-
generic g, P € HCM and A | HCMU € M(g], we write M[g] F (P,A) € HP" if
there is a continuous function o € RM9 such that Code(A) = o~'Code(¥). Notice
that because of Lemma 4.1.3 if o1, 09 € RM) are two continuous functions then

Mlg] E “o7 [Code(V)] = o5 [Code(WV)]” if and only if
o7 [Code(V)] = o5 H{Code(T)].

Remark 4.1.8 Similarly mouse operators are definable over background triples. In-
deed, suppose (P, \) € HP" is such that for some g, M|[g] & (P,A) € HP'. Suppose
further that F : HC — HC is given by F(a) = Lp“*(a). Then for any M]|g]-
generic h, the function F' | Mlg]lh] is uniformly definable from h, Code(V) and
any continuous functions oy, o1 € RM such that o5 '[Code(¥)] = Code(A) and
Code(F) = o7 ' [Code()].
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4.2 Fully backgrounded constructions relative to
short tree strategy

Suppose (M,6,Y) is a weak background triple and P € VM is an lIsa type hod
like Isp. Suppose A € M is a short tree (4,0, 0)-strategy for P and X € ViV is
a transitive self-well-ordered set such that P € X. We can then define the model
JEA(X) exactly like in the case A is an iteration strategy. The construction will
ensure that the model J E’A(X ) is an sts premouse over X based on P. Here is the
precise definition.

Recall that if (M, : o <€) is a sequence of J-structures and ¢ is a limit ordinal
then M = limq_,¢ M, is the J-structure with the property that for each 3 such that
jﬁM is defined, there is v < £ such that for all a € (v,§), J3"* = jBM.

Suppose (M, §,Y) is a weak background triple and E € V* is an extender. Then
we say F coheres A if v(F) is an inaccessible cardinal of M, VVJ‘{E) C Ult(M, E) and
AN VVJ‘(”E) =mg(A)N V%z)- Recall that an lhp M is reliable if for all k, (M) exists
and is k-iterable, where C(M) is the kth core of M (see [8, Chapter 11]).

Definition 4.2.1 Suppose (M, 4§, is a weak background triple and P € VM is an
Isa type hod like lsp. Suppose A € M is a short tree (0,9,0)-strategy for P and
X € VM is a transitive self-well-ordered set such that P € X. Suppose further that
A has hull condensation. Then for n < §, (My, N, : v <n),(F, : v <n)) is the
nth initial segment of the output of the fully backgrounded construction relative to A
if the following is true.

1. My = J1(X), and for all § <n, Mg and N¢ are A-sts premice.

2. Suppose (M, N, v < &), (F, : v <§)) has been defined for & <n. Then we
define Mgi1, Nep1 and Fe as follows.

(a) Suppose Mg = (jf’f, €, E, f) is a passive hp, i.e., with no last predicate,
and there is an extender F* such that F* coheres A and reflects (M., N :
v <E),(F,:v<E)), an extender F' over M, and an ordinal v < « such
that V,,v, CUIt(V, F*) and

Flv=Fn(yxJEH.
Then
-/V‘f—‘rl = (jf7fa€aﬁafvﬁ)
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and v = vNert where F is the amenable code of F°. Also, if Neyq is
reliable then Mgy = C(Ngi1)® and Fy = F. If Neyy is not reliable then
we stop the construction.

(b) Suppose M, = (jf’f,e,ﬁ, f) is a passive hp, the hypothesis of item
2.a above doesn’t hold, M¢ F ZFC-Replacement, and M is ambiguous.
Let t = (Po, T, P, U) € TE N dom(A) on P be the Me-least stack of
length 2 witnessing that Mg is ambiguous and such that Ih(T) is not of

-

measurable cofinality in Mg and IhWU) is not of measurable cofinality in

Me. Set b= A(t), f =supb and N = Tz(Me). If p(N') > « then
Ne= (5" €. B.f)

where fT = fU(J,(t),b) where b C a+ 3 is defined by a+v € b > v € b.
If p(N) < « then let v € (o, B] be least such that p(T,(Me)) < o and let
Ney1 = C(T,(Me)). Also, if Neya is reliable then Mgy = C(Ney1) and
Fe = 0. If Neya is not reliable then we stop the construction.

(¢) Suppose Mg = (jf’f, e, E, f) is a passive hp, the hypothesis of item 2.a
and 2.b above don’t hold, M¢ F ZFC, M; is unambiguous and there is
a normal terminal T € jf’f N dom(A) such that Mg E “T is ambigu-
ous and IN(T) is not of measurable cofinality”, fMe(T) isn't defined and
there is an Me-minimal shortness witness for T. Let U be the Mc-least
such tree, (¢,(,e) be a shortness witness for U, b = A(U), 5 = supb and
N - jﬁ(Mg)

Important Anomaly: If e # b then stop the construction.
Assume then that e = b. If p(N) > « then
Ne= (5" € B, 1)
where f+ = fU{(J,(U),b)} where b C a+f is defined by a+v € b <> v €
b. If p(N) < « then let v € (o, B] be least such that p(J,(M¢)) < a and

let Nepw = C(T,(Mg)). Also, if Negy is reliable then Mgy = C(Negr)
and Fg = 0. If Neiy is not reliable then we stop the construction.

°For the definition of the “amenable code” see the last paragraph on page 14 of [23].
®Recall that C(M) is the core of M.
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3. Suppose & < n is a limit ordinal and (M, N, : v < &), (Fy : v < §)) has been
defined. Then we define Mg and N¢ as follows”. Let v = limsupy_¢(pT)Me.
Then we let N¢ be the passive lhp P = JF, where for all 8 < v we set jg) be

the eventual value of jBM* as A — & Also if N¢ is reliable then Mg = C(Ng).

If N¢ is not reliable then we stop the construction.

The important comment in clause 2.c is a non-trivial matter. Recall that accord-
ing to our sts indexing scheme (see Definition 3.8.2), the branch we have to index
at stage £ in clause 2.c is e not b. However, if e # b then the resulting structure
cannot be a A-sts mouse. Thus, if e # b then we have to halt the construction.
When A has nice properties such strong branch condensation (see Definition 4.7.3)
then such anomaly will never arise, as shown in Corollary 5.5.2. See Remark 5.5.3
for an in-depth discussion of this issue.

4.3 Hod pair constructions

Next we define I'-hod pair constructions. Unlike in [10], here we view these construc-
tions in a somewhat different yet equivalent way. For us a hod pair construction is
a procedure that builds four types of operations E, B, J and Lim. We call them
respectively the extender operator, the branch operator, the constructibility operator
and the limit operator. We also refer to these operators as the hpc-operators. We
start by describing three auxiliary sets.

Suppose I' is a pointclass and M = (M, 6, ) is a background triple Suslin, co-
Suslin capturing I'. We will work with M and I, but we will omit both from our
notations. For instance, E below should really be EM. Also, all the fully backgrounded
constructions that we will use are fully backgrounded constructions in the sense of
VM and if M is equipped with a distinguished extender sequence then we tacitly
assume that all the backgounded constructions use extenders from this particular
extender sequence.

Definition 4.3.1 (E°, B® and J°) Below we define three sets E°, B® and J°.

1. Q € dom(E®) if Q@ € VM is a passive lhp and there is an extender F* € M,
an extender F € M over Q and an ordinal v such that M E “v(F*) is an
inaccessible cardinal”, F' = F* N [V]<“ x Q, and (Q, F) is a reliable lhp where
F is the amenable code of F and (%F) = v,

"F¢ will be defined at the next stage of the induction as in clause 2.
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2. Q € dom(B°) if Q = joﬂf; € VM is a passive lhp such that for some R € Y
such that R is a hod premouse and there is a stack T € Q — dom(X3) based on
R such that T is according to E%, INT) is not of measurable cofinality in Q,

and there is some cofinal well-founded branch b € M ofT such that B =supb
and if b is such that o +ve b if and only if v € b then (Q, €, E 1) is an lhp

where f+ = fU{(J(T),b)}.
3. Qe dom(J°) if Q is an lhp and Q € VM — (dom(E®) U dom(B?)).

The next definition introduces the bad [hps.

(Bad) Suppose M is an lhp such that every R € Y™ is a hod premouse. We
say Bad(,M) holds if one of the following conditions hold.

1. M is unreliable (i.e, for some k < w, Cx(M) doesn’t exist).
2. There is R € YM such that R is of successor type and p(M) < o%.

3. There is R € YM of limit type such that p(M) < (v1)® where v = 6%’

We will have that dom(E) C dom(E°) and dom(B) C dom(B®). All four functions
E, B, J and Lim will be defined by induction.

Definition 4.3.2 (Stage 0) We set.
1. J(0) = 0.
2. E(0) = B(0) = Lim(0) = 0.
When defining J, E, B and Lim, we will maintain the following requirements.

Requirements
1. dom(J), dom(E), dom(B) and dom(Lim) are subsets of 4.

2. If ™ =4.p sup{€ + 1 : £ € dom(J) U dom(E) U dom(B) U dom(Lim))} then the
four sets dom(J), dom(E), dom(B) and dom(Lim) form a partition of o™ and
oM < 6.

3. {B < aM: B is a successor ordinal} C dom(J).
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4. For all 8 < o™, the value of the hpc-operators at f3 is either undefined or is an
Ihp Q such that for every R € Y2, R is a hod premouse.

5. Given any Q and R as in clause 4, ¥ induces, via the construction described
in [, Chapter 12], a strategy Ag for R.

6. If 8 € dom(E) U dom(B) then 5 is a successor ordinal and 5 — 1 € dom(Lim).

We start by describing how the operator E works.

Definition 4.3.3 (The extender operator) Suppose J | 3, E | 8, B [ 8 and
Lim [ 8 have been defined and =~ + 1. Let Q = Lim(7).

1. Suppose Q & E°. Then let E(B) be undefined.
2. Suppose then that Q € E°.

(a) Suppose there is no triple (F*, F,v) witnessing that Q@ € E® with the ad-
ditional property that F* coheres (J | B,E [ ,B | B,Lim | 8). Then we
let E() be undefined.

(b) Otherwise let (F*, F,v) witness that Q € E® with the additional property
that F* coheres (J | B,E | B,B | B,Lim | ). Letting F' be the amenable

code of F' and M = (Q, F), set

E(5) = undefined : Bad(M) holds
lem) : otherwise.

We split the branch operator into three pieces Bpiss, Buasa and Basa. These
respectively stand for non lsa, unambiguous lsa and ambiguous lsa. We then let
B = Bhisa U Buatsa U Baisa. Suppose J | 5, E [ 5, B | 8 and Lim | $ have been defined
and f = y+1. Let @ = Lim(y). The folowing condition is part of the definition of B.

(B1) Suppose Q ¢ B°. Then let B(3) be undefined.

Suppose then that Q = «7511{ € B and let R € Y© be the least member of Y9
witnessing that @ € B®. Let A be the strategy of R induced by X. We say R is
layerable if one of the following conditions holds:

A
1. R is of successor type and R = Lp, " (R|0R).

F’®a<)\7€b A’R(a)

2. R is of limit type but not of Isa type and R’ = Lp., (Rb|6Rb).
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r, AR(a
3. R is of Isa type and R® = Lp., Pacart AR "(RY6R") and J3(Q) E “6% is not a
Woodin cardinal”.

The next three definitions will use the notation introduced above. In all three
definitions, we will isolate a stack 7 based on R and a branch b of 7. Then letting
bC Eé+vbegivenby E+Ceb Ceb,set ft=fU{({tre(T),b)}. If one of the
following conditions is satisfied then we will let B(/3) be undefined.

(B2) M E “for some k € [|R|.6) lFcouws (R,A) € HP"® sup(b) # v or
Bad(Q, /).

Definition 4.3.4 (The non Isa branch operator) Suppose R is layerable and let
T € Q — dom(22) be the Q-least stack that is according to 22, I(T) is not of
measurable cofinality in Q,° and E%(T’) is not defined. Set b= A(T). If B2 holds of
(b, Q, fT) then let Busa(B) be undefined. Otherwise set By () = C(Q, f1).

The following condition is also part of the definition of B.

(B3) Suppose R is of Isa type and J1(Q) E “6% is a Woodin cardinal”. If Q is
not an sts premouse over R based on M™(R|6%) or it is but it is not closed under

sharps then let B(/3) be undefined.

Suppose then Q is an sts premouse over R based on MT(R|6%) and Q is closed
under sharps.

Definition 4.3.5 (The ambiguous branch operator) Suppose Q is ambiguous
and let t € Q be the Q-least stack of length 2 witnessing this. Again since Q € BO,
we can require [h(t) is not of measurable cofinality in Q. Let A**(t) = b. If B2 holds
of (b, Q, fT) then let Busa(B) be undefined. Otherwise set Bysa(8) = C(Q, 7).

Definition 4.3.6 (The unambiguous branch operator) Suppose Q is unambigu-
ous. Suppose there is no Q-terminal T that has a Q-shortness witness. Then let B([3)
be undefined. Suppose then that there is a Q-terminal T that has a Q-shortness
witness and T is chosen as in the definition of @ € B®. Let (T,b) € Q be the lexico-
graphically Q-least pair such that for some (§,v), T is Q-terminal and (&,v,b) is a
minimal Q-shortness witness. If B2 holds of (b, Q, fT) then let Byasa(3) be undefined.
Otherwise set Buasa(8) = C(Q, f1).

8See the discussion after Definition 4.3.9
97T exists because Q € BO.
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Finally set B(3) = Bpisa(8)UBuaisa(8)UBaisa(5). Next we define the constructibility
operator.

Definition 4.3.7 (The constructibility operator) Suppose J [ 5, E [ 5, B[
and Lim [ 8 have been defined and f =~y + 1. Let

J() .y € dom(J)
Q=<{B(7v) : v € dom(B)
Lim(v) : v € dom(Lim)

Then

undefined : € dom(E)U dom(B)
J(B) = < undefined : 5 & dom(E) U dom(B) and Bad(Q) holds
Ji(9Q) . otherwise

Finally we define the limit operator.

Definition 4.3.8 (The limit operator) Suppose J | 5, E [ B, B [ B and Lim | 8
have been defined and 3 is a limit ordinal. For v < (3, let

J(v) ;v € dom(J)
Q,=4B(y) :v € dom(B)
Lim(y) :v € dom(Lim)

Given an ordinal &, we let Q% be the eventual value of Q,||¢ as v approaches f3
provided this eventual value exists. Then

undefined : for some &, QF is undefined
Lim(8) = < undefined : Bad(Ugcoa Q) holds
ugeonQf . otherwise.

We say Q appears at stage [ if Q is the value of one of the construction oper-
ators at 3. We let Qg be this model and X3 be the strategy of Qg induced by X.
We then say that (Qp, Y5 : 8 < oM) are the models and strategies of the hod pair
constructions of M. When I' = p(R) we omit it from our terminology. The following
is the final condition signaling the halt of the construction.

(LSA) If for some limit 3, Qs is of lsa type such that Qg = Lp"=5" (M+(Q4[699))
then stop the construction.
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Definition 4.3.9 (Hod pair constructions) The T'-hod pair construction of M
below & is the quadruple (EM,BM, JM Lim™). We say that the hod pair construction
is successful if ™M = 6. We say Q is a model appearing in the hod pair construction
of M if for some 8 < o™,

EM(B) : B € dom(EM)
o-— B™(3) : B € dom(BM)

M) : B € dom(JM)

Lim"(3) : B € dom(Lim")

Our statement of B2 is somewhat ambiguous. We now explain the notation
M E “for some k € [|R|,0) IFcouqr (R,A) € HP”. Provided R is countable, the
meaning of M E “(R,A) € HP'"” was explained in Remark 4.1.7. The following
discussion and lemma makes the notation meaningful.

We assume that M Suslin, co-Suslin captures I' via the pair (P, V). Because M
is self-capturing, we have that whenever ¢ is Coll(w, R)-generic and 7 is an M|g]-
cardinal, A | V%M[g} has a uniform definition in 7 and parameters from M (recall that
A is the induced strategy of R, it is build according to the procedure described in [,
Chapter 12]). The following lemma is an easy consequence of genericity iterations.

Lemma 4.3.10 Suppose g C Coll(w, r) is M-generic and o € RMl! is a continuous
function such that M E o '[Code(¥)] = Code(A | HCM). Then Code(N) =
o [Code(V)]. In particular, if M[g] E “(R,A | HCM9) ¢ HP" then (R,A) €
HP.

4.4 Iterability of backgrounded constructions

Our first definition is a game that we will use to show that hod pair constructions
inherit an (wy,wy,w;)-iteration strategies. As is customary, unless it is specifically
mentioned that a transitive set M is fine structural, all iteration trees on M are
coarse, meaning that extenders used to build the tree are all total (there are no
drops in such iterations).

Definition 4.4.1 (G(M, k, \,v)) Suppose M is a transitive model of some fragment
of ZFC. Then G(M, k, \,v) is an iteration game on M with following rules.

1. G(M, Kk, \,v) has at most k main rounds.



4.4. ITERABILITY OF BACKGROUNDED CONSTRUCTIONS 73

2. If M, s the model at the beginning of the ath main round then the ath main
round is a run of G(My, \,v).

3. Suppose p is a run of G(M, Kk, \,v) with o main rounds and (M, : v < «) are
the models at the beginning of the main rounds of p. Then if B < v < a and
v+ 1 <« then the iteration embedding ™ : Mg — M., exists.

4. 1 is the player starting the main rounds. She does it as follows. Suppose p is
a run of G(M, K, \,v) with o main rounds. Let (M, : v < a) be the models at
the beginning of the main rounds of p and let wg~ : Mg — M, be the iteration
embeddings. Then there are two cases.

(a) Suppose o is limit. Letting M, be the direct limit of (M., : v < «) under
the iteration maps mg., I can start the ath main round on M,.

(b) Suppose o« =+ 1. Let T be the stack of iteration trees produced during
the Bth main round. I can start a new main round only Zf'f has a last
model. Suppose then this is the case and let () be the last model of T.
Suppose § < o(Q). For vy < 8 let & € M, be such that 77T o my8(&,) > &
and let E., be the (&,,&)-extender derived from 77T o 3. Then I may

choose any v < B, set M, = Ult(M,, E,) and start the main new round
on M,.1°

5. 11 wins the game if all the models produced in the iteration game are well-
founded.

We say M is (k, A\, v)-iterable if II has a winning strategy in G(M,k,\,v).
We also say ¥ is a (K, \,v)-strateqy for M if ¥ is a winning strategy for 11 in
G(M, K, \,v). As is usual, when M has a distinguished extender sequence then player
I can only play extenders from the images of the distinguished extender sequence of

M.

As we show below a winning strategy in G(M, k, \) induces a winning strategy
in G(M, Kk, \,v). We will use the following notation. Given an iteration strategy >

let dom™ () = {T : T is according to ©}.

Definition 4.4.2 (Certified strategy) Suppose M and N are two transitive mod-
els of ZFC — Powerset. Suppose > and A are iteration strategies for M and N re-
spectively (in one of the iteration games that we have defined, not necessarily the

0As in clause 5 of Definition 2.7.3, player I can choose v < 3 only once in a run of the game.
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same). We say X is certified by A if there is a set X and a function F : dom™ (%) —
dom™(A) x X such that the following holds:

1. For allU € dom™ (%), U has a last model iff (F(U))o has a last model.

2. For alld € dom* (), if U has a last model then letting Q and R be the last
models of U and (F(U))o, (F(U))1 = o such that 0 : Q —s, R.

3. For allU € dom™ (%) if a < Ih(U) then letting T = (F(U))o and T* = (F(U |
a))o then T* is an initial segment of T .

4. [f7i is a stack on M according to X with last model Q) and U is a normal tree on

— —

Q then letting R be the last model (F(T))o and W be such that (F'(T))gW =
F(T~U)o then W is a normal tree such that Ih(U) = Ih(W), and for every
ag, o1 < Lh(U), letting Bo, b1 < Lh(W) be such that for i = 0,1, F('fAL{ |
@i +1)o = (F(T))gW 1 Bi+1,

(a) ap <y ay < Bo <w B

(b) lettingufori =0,1,0, = (F(T"U | as+1)1, if g <p o1 then Th 5,000 =
o107 o

Clearly pullback constructions produce certified strategies.

Theorem 4.4.3 Suppose M is a transitive model of some fragment of ZFC and
k < X. Then if II has a winning strategy A in G(M,\,v) then II has a winning
strategy in G(M, Kk, \,v) certified by A.

Proof. Suppose we have defined F' as in Definition 4.4.2 on T € dom(X) which
have < a-many main rounds. We want to define F' on T with exactly a-many main
rounds. We assume that a is a successor and leave the rest to the reader. Let
a = [+ 1. Thus, we need to extend X to act on § + 1st round of G(M, k, A, v). Let
then 7 € dom(X) be such that 1h(7) = 5+ 1 and 7 has a last model Q. Let R be
the last model U = (F(T))o and let o = (F(T));.

Suppose that I wants to start a new main round. Suppose then (M, : v < )
are the models at beginning of the main rounds of 7. Suppose & < o(Q). For v < f3
let &, € M., be such that 7T o 7,,8(&,) > & and let E., be the (&, &)-extender derived
from 7T7107T%5. Suppose then [ sets M, = Ult(M,, E,) where v < 3. Let k : M, — Q
be the factor embedding. Thus
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7l = komg,.

Let m = ocokomp, . We then let F(T~{Mgs1}) = (U, ) which clearly has the desired
properties. Next we require that /1 plays the 8 + 1st round on Mg, according to
m-pullback of A, 7. O

4.5 Fullness preservation

Throughout this section we assume AD'. Suppose that I' C p(R) is a pointclass,
X € HC' is a self-well-ordered set (swo),"! (P,X) is a hod pair or an sts hod pair
such that P € HC and Code(X) € T'.'? Below, we use R* to denote the *-translation
of R (cf. [18]).

Definition 4.5.1 (I'-Fullness preservation) Suppose (P,X) is a hod pair or an
sts hod pair such that P € HC and I' is a pointclass. We say X is I'-fullness
preserving if the following holds for all (Q,T) € I(P,%).

re Se
1. For all limit type R € Y2, RY = Lp,, <™ *T(R|sR).

2. For all successor type R € Y <,
R = Lpz’EBsebe ES,?(RMR)'

F,EStC . .
3. If Q is of lsa type then Q = Lp,, M+(Q"SQ)’T(Q|5Q)15,

4. If n is a cardinal cutpoint of Q such that for some Ri,Ro € Y2 such that
Ry is the Q-successor of Ry (see Definition 3.9.2), Ry is a cutpoint of Q and
n € (671, 672) then

(Ql(n*)2)" = Lp' =7 (Qln).

The next lemma follows from clause 4 above. Below S*(R) is the *-transform of
S into a mouse over R, it is defined when R is a cutpoint of S (cf. [18]).

HRecall that X is a self-well-ordered set if J,,(X) F “X is well-orderable”.
12Recall that Code(X) is the set of reals coding .
13Here, if ¥ is a short tree strategy then X5 = 3.
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Lemma 4.5.2 Let (T,7T) be a countable tree via S, consisting of a stack T followed
by a normal tree T, such that T has successor length and b" drops. Let @ = M
and X\ = \2. Suppose Q(N\) is a cutpoint of Q.1 Let ~y be least such that o(Q(N\)) <
IW(ET) and let U = T(T | (y+1)). (Note M does not drop.) Let R,S be such that
QN IR<IS<CLQ and R is a cutpoint of S and S projects < o(R) and is o(R)-sound
(so either S < Q or all generators of T are < o(R)). Then letting A = Xg¢,, ,, if
Q(A) is of lsa-type and A = Yoy u otherwise,

S*(R) < LpPA(R).

Theorem 4.5.3 (Fullness preservation of induced strategies) Assume AD™.
Suppose for some « such that 0, < O, T = {A CR:w(A) <0,} and M = (M, 4, )
is a self-capturing background triple that Suslin, co-Suslin captures T via (P, V). Let
(Qs,%5 : B < ™) be the models and strategies of the I'-hod pair construction of M.
Suppose 3 is such that (Qg,X5) € HP" and that for some < §-generic g, there is a
continuous function o € M|[g]NR such that o~ [Code(¥)] = Code(3g). Then X5 is
['-fullness preserving.

Proof. Let P = Qg and A = X3. Towards a contradiction, assume A is not I'-fullness
preserving. It follows by absoluteness (see Lemma 4.1.3 and Corollary 4.1.5) that
there is a counterexample in M[g] where g is < d-generic. Fix a < d-generic g such
that there (7, Q) € I(P,A) N M|g] witnessing that A isn’t [-fulness preserving. All
the clauses of I'-fullness preservation are very similar and follow from the universality
of background constructions. Below we derive a contradiction from the failure of
clause 1 of Definition 4.5.1 and leave the rest to the reader.

Fix R* € Y witnessing the failure of clause 1 of Definition 4.5.1. Let R = (R*)"
and k = 6. We need to see that

R = Lpgv@seyRAs,f ('R‘K,)
We only show that
R|(H)R = Lp" Cserris 7 (R]r).

and leave the rest to the reader.

Suppose first that M < R|(kT)® is a DscyrA g #-mouse over R[r such that
p(M) < k. Because P is constructed via backgrounded construction, it follows that
M is wy-iterable as a @SEyRASf—mouse and therefore,

S0 Qisa X, 7 5 (or E‘S",T_AT)—mouse over Q(A) and Q()) is the largest hod premouse R <1 Q.
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M Lprv@seYRAsi (R| ,{/) )

Fix now M < Lp"®sev®As.7(R|k) and let ® be its wi-strategy. We let 7 = T
Let N = (L[®g.,»As][P?])"" and notice that if £ = E, | «(67) then M F
“Ult(N, E) is é-iterable”'®. Let then 77 = 7 and let

N* = (jﬁ’@SGYRAS,f)W+(N).

It then follows that N* too is d-iterable and so we can compare N* with M. By
universality of backgrounded constructions, M has to lose the comparison implying
that M < N*. Therefore, M € n7(N). Since M is w;-iterable, it follows that
MAR. OJ

The proof actually gives more.

Definition 4.5.4 (Strongly I'-fullness preserving) Suppose (P,3) is a hod pair
or an sts hod pair and I' is a pointclass. We say 3 is strongly I'-fullness preserving
if ¥ is I'-fullness preserving and whenever

1. 712’3 a tree according to 3 with last model S such that if P is of limit type then
7Tt exists and otherwise w7 exists, and

2. R is such that there are (o, T) with the property that
(a) if P is of limit type then o : P* =R, 7: R = S and 77 =700, and
(b) if P is of successor type then o : P —- R, 7: R — S and T =r100,

then the T-pullback strategy of g 7 if 2(a) holds and of Xg 7 if 2(b) holds is I'-

fullness preserving.

The following is then a corollary to the proof of Theorem 4.5.3 and we leave it to
the reader.

Theorem 4.5.5 (Strong fullness preservation of induced strategies) Assume
AD*.  Suppose for some « such that 0, < ©, T = {A C R : w(A) < 0,}

5The proof of the iterability of A’ shows that Ult(N, E) is well-founded. To see this let W be
the tree on M, according to X obtained by lifting 7 to M. We then have o : Q — 7 (P) such

that 7V [ P = o o 7. It is now not hard to see that o extends to o : Ult(N,E) — WW(N). The
same argument shows that Ult(N, E) is d-iterable in M.
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and Ml = (M, ,Y) is a self-capturing background triple that Suslin, co-Suslin cap-
tures T wvia (P,W). Let (Qg,X5 : B < o) be the models and strategies of the
hod pair construction of M. Suppose 3 is such that (Qg,X5) € HPY and that
for some < d-generic g, there is a continuous function o € M[g] N R such that
o Code(W)] = Code(X3). Then X5 is strongly T'-fullness preserving.

The following is an easy yet useful consequence of strong fullness preservation.

Lemma 4.5.6 Assume AD" and suppose T' is a pointclass. Suppose further that
(P,X) is a hod pair or an sts hod pair such that ¥ is strongly I'-fullness preserving.
Let T be a stack on P according to ¥ with last model S such that if P is of limit
type then w70 exists and otherwise 7 emists. Suppose (R,o,T) is such that

1. if P is of limit type then o : P* 5 R, 7: R = S and 77 = r o0, and

2. if P is of successor type then o : P — R, 7: R — S and T =100,
Let E be such that

1. if P is of limit type then E is the (07", 0%)-extender derived from o, and

2. if P is of successor type then E is the (67, 0%)-extender derived from o

Then R = UIt(P, E). In particular, R = {rg(f)(a): f € P and a € (§%)<*}.

Proof. Let k : Ult(P,E) — R be the factor map, i.e., k(7(f)(a)) = o(f)(a). Then
if P is of limit type then Tt = roko mp and if P is of successor type then
77 = 70k omg. Notice that crit(k) > 6. It now follows from strong I'-fullness
preservation of ¥ that Z;O;i is I-fullness preserving. But because k | 6% = id, we

have that for every o + 1 < A%,

(2;;3)72(%1) = (55 Rt

It then follows that R = Ult(P, E). O
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4.6 The normal-tree comparison theory

As in Theorem 2.2.2 of [10], under AD" and in several other contexts, we can prove a
comparison theorem where comparison is achieved via normal trees. In this section
we state a comparison theorem for hod pairs that can be applied inside models of
AD" and also, inside models satisfying sufficiently rich extensions of ZFC, like hod
mice themselves. Such comparison arguments, among other things, are useful in core
model induction arguments and in the analysis of HOD of models of AD™.

We start with some general definitions and facts. One warning is that our exposi-
tion differs from the one in [10] mainly because we would like to set up our arguments
here in a more general setting than the ones stated in [10].

Definition 4.6.1 (Comparison) Suppose (P,%) and (Q,A) are two hod pairs.
Then we say comparison holds for (P,X) and (Q,A) if there is (T,R) € I(P,X)
and (U,S) € 1(Q, A) such that one of the following holds:

1. R ﬂhod S and A’R,I] = ER,?"

2. S S]hod R and ES,’?’ = AS,Z]'

We say normal comparison for (P,%) and (Q,A) holds if we can take T and U to
be normal.

As in [10], we can prove comparison for pairs whose corresponding strategies are
fullness preserving.

4.6.1 Tracking disagreements

Here we introduce terminology that we will use to track the disagreements between
strategies. Given a stack 7 on a hod premouse P, we let §(7) be the sup of the
generators of T (see Definition 1.15 of [10]).

Definition 4.6.2 (Low level disagreement between strategies) Suppose (P, X)
and (P,A) are two hod pairs. Suppose there is (T,Q) € B(P,X) and (U, Q) €
B(P,\) such that Xg 7 # Mg 5. Then we say that there is a low level disagreement

between Y and A. We say (71, Q) constitutes a minimal low level disagreement if
1. Q is of successor type and (T,Q) € B(P,%) N B(P,A),

2. for every a < \¢ — 1, o) F = AQ(Q)j’:
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3. if P is meek (see Definition 2.4.8) then 6(T),8(U) C QA2 — 1),

4. if P is non-meek then letting E be the un-dropping extender 0f71 then
§¢ = sup{me(f)(a): f € P*Aa€ QA2 —1)}

Next we show that the existence of a disagreement translates into the existence
of a minimal low level disagreement.

Lemma 4.6.3 (Disagreement implies low level disagreement) Supposel isa
pointclass closed under Wadge reducibility, and (P, %) and (P, A) are two hod pairs
such that both ¥ and A are U'-fullness preserving. Suppose that one of the following
conditions holds:

1. P is of limit type and not of lsa type, and 3 # A.
2. P is of lsa type and 3¢ #£ Aste,

Then there is a minimal low level disagreement between > and A.

Proof. We give the proof from clause 2 and leave the proof from clause 1, which is
easier, to the reader (also, see Proposition 2.41 of [10]). Assume there is no low level
disagreement between > and A. We can also assume without loss of generality that

(1) for any (T,U, Q) such that (i) (7, Q) € I"(P,%), (i) (U, Q) € I’(P, A) and (iii)
. b

there is @ < A< such that for every 8 < a, Yo T = AQ(B)ﬂ but o) T #* Ag(a),z]v

there is a minimal low level disagreement between X, # and Ay 7.

Let now 7 = (/\/la,ﬁ, Qu, Eo : @ < 1) be any disagreement between Y5¢ and
A®*. We must have that 7 is a successor ordinal, F, is undefined, and the last normal
component of ﬁ is of limit length. Notice that if 7 has main drops then, because
we are assuming (1) above, the claim of the lemma follows. We then assume that T
has no main drops.

Notice that there cannot be a club C' C ntn(T) as otherwise 2(7) = A(T) = be.
Let then § = Sz. Thus, 7125 is a normal tree on S. Notice that, because 7 has no
main drops, we must have that rTss exists.

Let now 7 = T=s. It then follows that 7 must be above 0(S?) as otherwise it will
generate a low level disagreement, which then can be easily turned into a minimal
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low level disagreement!®. Without loss of generality, we can further assume that
g Tes = Ast as otherwise we get a low level disagreement using (1) and the
argument given in the above footnote.

Claim. T € b(25¢) N b(A*), i.e., 25%(T) and A*(T) are branches rather than
models. . . .
Proof. To see this suppose that 7 € m(X%%). Let b= X(T), ¢ = A(T) and

Q = M (T)(=des (M(T))¥).
We now define two hybrid mice Mg and M; and an ordinal v. Suppose first
that 7 € b(A*¢). We then have that M7 E “6M: isn’t a Woodin cardinal”. Let

M; & /\/lf be the largest such that M; E “«sM] i a Woodin cardinal”. Next
suppose that M] € M;. Then we let My = M]. Suppose now that M] < M;.

stc

It follows from I-fullness preservation that for any n, My 4 Lp, <7(Q). Let then

stc stc

n be the least such that Lpn;rlg‘%(Q) A4 M and let M, = Lpn;rlg’%(Q). Finally let

stc

v =o(Ipy 97(Q)). )

Suppose next that 7 € m(A*¢). Because A**5(T) # ES“(T) we have that MT #
MT . Set ¢ = 6(T) and let n be least such that MT](§+")MI>T = MT|(§+")M but
MT’(£+n+1)MT - MT|(€+n+1)MT Let v = (£+n)Mb and let M, < MT,(g-i—n—i—l)MT
and M; < MT|(¢ +"+1)MT be least such that p(My) = p(M;) = v and My # M;.

Notice that in both cases we have that

(2) My & My, My 4 Mgy, Molv = My|v, and My and M, are either v-sound
and project to v or are limit of levels that are v-sound and project to v, and v is a
strong cutpoint of both M, and M;.

(3) My is a ESth -mouse and M, is a AStcf mouse.

(4) The comparlson of My and M, cannot halt.

(4) holds as otherwise its failure implies that either My < M; or M; < Mo,
both of which are impossible (because of (2)).

It follows that the comparison of M, and M; encounters disagreements involving
strategies, as otherwise the usual comparison argument would imply that the com-
parison halts. Let ® and ¥ be the canonical strategies of M, and M respectively.

16To see this suppose 7T is based on S®(a + 1) for some a+ 1 < 25", Let R be <7 -least cutpoint
of T such that for some 8 +1, F%—)S (B+1) = a+1. Then (T<r,R) constitutes a low level minimal
disagreement.
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Thus, ® witnesses that M, is a E‘Z‘}—mouse, and ¥ witnesses that M, is a A“)’Qt‘;i—sts
mouse.

We can then find ®-iterate K of M and W-iterate N' of M, such that K and N
are produced via the usual extender comparison procedure (this implies that both
iterations are above v) and for some «,

(2) Kl = Na, K| £ N|ev, a & dom(EX) and o & dom(EV).

Notice that it follows from our indexing scheme (see Definition 3.6.2) that there must
be a branch indexed at « in both K and N. Let then ¢ = (M*(T), W, S, U) € K||a
be such that its branch is indexed at « in both K and N.

We now have to analyze exactly what kind of stack ¢ is. Recall that our indexing
scheme is so that we add branches for two kinds of stacks that we now list.

Case 1. VWV is an unambiguous normal tree and U is undefined.
Case 2. U is defined and is a stack on (S;)°.

We can immediately rule out case 1 above: K|la = MN|a and the branch of W
just depends on K|S (see Lemma 3.8.2). Case 2 immediately leads to a low level
disagreement.

l

—

Let b = X(7) and ¢ = A(T). Recall that just before the statement of the claim
we set T = T>s. It follows from the claim that both Q(b,T) and Q(c,7T) exist.
Because b # ¢, we have that Q(b,7) # Q(c, T). It follows that

MH(T) <(Q, T)N Q(e, T)).

Let Py = M™*(T). Notice that it follows from our smallness assumption on hod
mice, namely that hod mice do not have lsa hod initial segments, that 6(7) is not
overlapped in both Q(b,7) and Q(c, 7). We then have that Q(b,7) is a ngf’
mouse over Py, Q(c, T) is a A‘;'flc z-mouse over Py and the comparison of Q(b, T) and

Q(c,T) does not halt. Applying the proof of the claim to My =4y Q(b,7) and
My =4er Qc, T), we get a minimal low level disagreement.
[

Next we introduce several definitions that will be useful in the sequel.

Definition 4.6.4 (Comparison stack) Suppose (P,¥) and (Q,A) are two hod
pairs or sts hod pairs. Then we say
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(T, R, U,S) are comparison stacks for (P,%),(Q,A)) with last models (R,S)
if (T, R) € I(P,%), U,S) € I(Q, A), and cither
1. Se YR and 2317*— = AS,Z]‘

2. R e YyS and ER,?’ = AR,Z]'

Definition 4.6.5 (Agreement up to the top) Suppose P and Q are two hod pre-
mice of limit type. Then we say P and Q agree up to the top if \F = A2 and P’ = Q°.
Suppose further that ¥ and A are such that (P,%) and (Q,A) are two hod pairs or
sts hod pairs. Then we say (P,%) and (Q,A) agree up to the top if P and Q agree
up to the top and Xps = Age.

Definition 4.6.6 (Extender and strategy disagreement) Given two hod pre-
mice P and Q such that P # Q, we let B(P,Q) be the least ordinal vy such that
Ply = Qly but Plly # Q|ly. We say P and Q have an estender disagreement if
B(P,Q) € dom(ER)Adom(EQ). We say P and Q have a strategy disagreement
if B(P,Q) ¢ dom(ER) U dom(E®). In this case, we let Rpg € YP MY be the
P|B(P, Q)-least such that if T €Pn Q s the stack for which P and Q have a

branch indexed at G(P, Q) then T is a stack on Rpo. We say Rp,o ts the disagree-
ment layer of P and Q.

Definition 4.6.7 (Extender comparison) Suppose that (P,%) and (Q,A) are two
hod pairs which agree up to the top. Then we say (T,R,U,S) are the trees of the

extender comparison of (P,%) and (Q,A) if
1. T is according to X and R is its last model,
2. U is according to A and S 1is its last model, and
3. T and U are obtained by using the usual extender comparison process (i.e., by

removing the least extender disagreements) for comparing the top windows of
P and Q until a strategy disagreement appears.

It follows that if in Definition 4.6.7, R # S then R and S have a strategy
disagreement.
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4.6.2 Universality of backgrounded constructions

Here we show that the fully backgrounded constructions are universal in a sense that
they win the comparison with hod pairs. Suppose M = (M, §, %) is a weak back-
ground triple and A € (p(VM)M. We say (EM, B JM Lim™) are the construction
functions of A-coherent hod pair construction of M if the extenders used during the
construction cohere A.'7

Our next theorem establishes that backgrounded constructions are universal. To
establish it, we will use the strategy absorption argument. The strategy absorption
argument was first presented in [10] (see the proof of Theorem 2.28 of [10]) and
it is based on unpublished arguments of Steel. Because we will use the strategy
absorption argument several times in this paper and in the next proof, it is important
to understand how it works. The general form of the argument is as follows. We
have a hod pair (P, A) captured by some background triple (M,d,3). There is also
an iteration tree 7 on P according to A with last model Q and R <j,q Q such that
R is constructed via some fully backgrounded construction of M. It is additionally
required that the certificates used to build R cohere A. The goal of the argument
is to show that the strategy R inherits from the background universe is the same as
Az 7. In many cases, this can be done by appealing to branch condensation and the
existence of minimal disagreements. Here is how a typical argument works.

Let ® be the iteration strategy of R. Fix U on R that is according to both
Ar and ® but Ag(U) # ®(U). Let U* be the stack on M obtained from U by

lifting & to M. Let b = ®(U*). We then have that Wg*(T) is according to A (this
is where we use coherence). Then branch condensation is applied to the equality
(D =go 74 o 7T where o : MY — 7" (R) is the canonical factor map that the
lifting process gives (in particular, w?* [R=0o0 77157)

Now we state our result on universality of background constructions.

Theorem 4.6.8 (Universality of backgrounded construction) Assume AD™.
Suppose Ml = (M, 0,3) is a self-capturing background triple, (P, ) is a hod pair or
an sts hod pair and for some « such that 0, < ©, ' = {A C R : w(A4) < 0,}.
Suppose further that A is U'-fullness preserving and M Suslin, co-Suslin captures T’
and \. Let (Qp, %5 : B < ™) be the models and strategies of T'-hod pair construction
of M. Then there is a 8 such that (Qg, Xz) is a normal tail of (P, A).

Proof. As in the proof of Lemma 2.10 of [10], in the comparison of P with the hod
pair construction no extender disagreement appears on Q side. It is then enough to

"Where we say E coheres A if 7(A) = ANUIt(V,E). See Section 4.3.9 for the definition of
(EM,BM, M Lim™).
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show that

(1) for every B < oM if T is a tree on P according to A with last model R and
for any S € Y® such that S <jeq Qj,

Towards a contradiction, we assume that (1) fails. Let 8 < o™ and (S, T,R)
witness the failure of (1). We assume that S € Y'9¢ is the least layer for which (1)
fails. Let ® = Y5 and Q = Qg.

Suppose first that S is of successor type. Then we get a contradiction using
branch condensatlon of A. Let U be a stack on S such that it is according to both
® and As7 but dU 1) # Asr(U). Let b = ®U) and ¢ = A7 (U). Let U* be the
result of lifting U to the background umverse M. Then because extenders used to
construct Q cohere A, we have that 7" (T) is according to A. Let N be the last
model of Uf*.

Notice now that it follows from I'-fullness preservation and the fact that ®gys_1) =
Ag(rs—1y7 that W? exists. To see this, assume not. Suppose ¢ drops. Then because &
is of successor type, we can assume U is above S (A®—1). It is then not hard to see that
neither Q(b,U) nor Q(c,U) has an extender E such that crt(E) < 6(U) <lh(E); but
this implies Q(b,U) = e, U).*8 Hence b = ¢. Contradiction. So ¢ does not drop.
We assume —(Q(, b)<IMY) (otherwise, b = ¢). Let 7 : QU b) — Q'<x¥% (R) be the
lifting map and let &' = 7(8(U)), Y = 7sz’7*(7'). If &' is a cutpoint of MY, = 7% (R),
then since ) is according to A and A is I'-fullness preserving, § (Zj ) is a cutpoint of
Q(U, b) and Q(U, b) has iteration strategy in I'. This implies Q(, b) <1./\/l” (because
¢ does not drop and A is I'-fullness preserving). Contradiction. So ¢’ is not a cutpoint
of MY. Let E be the least extender on the extender sequence of M2 such that

crt(E) < & < 1h(E). So o(Q') <lh(E). Consider the tree Z on M2 using E. So
Q' A M? and ¢ is a cutpoint of Z. This again implies Q' <1 ./\/lﬁ7 Contradiciton. So
7TZI;7 exists.

Let then R* = Ult(R, E) where E is the (§°, Wg(ds))—extender derived from 7r§7.

We then have o : R* — 77,?* (R) such that

' T =gomgonT.

18crt(E) in fact must be < §(f). And if such an E exists then letting F' be the least such and
k =crt(F), there is some model W oftf such that Z/_izw is a normal tree above k and is on a strict
initial segment W <1 W, where & is a cutpoint of WW’. This easily implies that U~b and U ¢ are
both according to As 7.
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Notice, however, that mg is just an iteration embedding obtained by applying U to
R. It then follows from branch condensation of A that Z/IA{M“ } is according to A
implying that b = ¢, contradiction! Thus, § cannot be of successor type.

Suppose next that S is of limit type. Then by appealing to Lemma 4.6.3, we can
fix some (U4, S;) that constitutes a low level minimal disagreement between ® and
A577’. Let

(2) W be a stack on & which is according to both ®g ;7 and Ag ;7 but let-
ting b= ®(T~W) and ¢ = A(T"U"W), b+ c.

Notice that agam it follows from I'-fullness preservation and the mlmmahty of (Z/{ S)
that 7rb and 7V exists. Let then R* be the result of applying U~W and b to R.
Let U* be the result of resurrecting U™W to M, and let N = ./\/l“ There is then
o:R*— 7Tb "(R) such that

™ (T =go WZI;’AW on’.
It then again follows from the branch condensation of A that A(T"U~W) = b,
contradiction! O

As a corollary to Theorem 4.6.8 we get that the comparison holds.

Corollary 4.6.9 Assume AD" and suppose I is a pointclass such that for some good
pointclass T'y, T' C Ar,. Suppose further that (P,%) and (Q,A) are two hod pairs
such that both ¥ and A are I'-fullness preserving and have branch condensation.
Suppose further that both Code(X) and Code(A) are Suslin, co-Suslin. Then the
normal comparison holds for (P,%) and (Q,A).

Proof. Fix a good pointclass I'y such that I'y U{Code(X), Code(A)} C Ar,. Let F' be
as in Theorem 4.1.6 for I'y and let € dom(F’) be such that Ml = (N}, d,, ¥,) Suslin,
co-Suslin captures I', Code(X) and Code(A). Let (Qg, %5 : 8 < a™) be the models
and strategies of the hod pair construction of M. It follows from Theorem 4.6.8 that
there are 3,7 < o™ and normal trees 7 and U such

1. (T, Qﬁ) € [(P,Z) and 25 = EQg,T and
2. (L{, Q7> S ](R,A) and 27 = AQ T

Yo

If 5 = 7 then clearly the normal comparison for (P,3) and (R, A) holds. Suppose
B < . Let Ry be the A-iterate of R via a normal tree U such that Qg € YR Tt
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then follows from Theorem 4.6.8 that X3 = Ag, 1. Therefore, normal comparison
for (P,%) and (R, A) holds. The case v <  is symmetrical. O

Using reflection, we can eliminate the extra assumptions on I" and the two strate-
gies.

Corollary 4.6.10 (Comparison) Assume AD" and suppose T is a pointclass. Sup-
pose further that (P,%) and (Q,A) are two hod pairs such that both ¥ and A are
['-fullness preserving and have branch condensation. Then the normal comparison

hold for (P,X) and (Q, A).

Proof. Suppose not. Applying Y2-reflection, we can fine I'* and two hod pair (Py, X))
and (Qy, A1) such that T*U{Code(2;), Code(A;)} C A% and the claim of the corollary
fails for (I'*, (P, 1), (91, A1)). We then apply Corollary 4.6.9. O

4.7 Branch condensation

In this subsection we prove that the hod pair constructions produce strategies with
branch condensation and in fact more. In order, however, to prove that hod pair
constructions converge, we will need to establish the solidity and universality of the
standard parameter of the models appearing in such constructions. Establishing such
fine structural facts wasn’t an issue in [10] as the fine structure for hod mice consid-
ered in that paper was a routine generalization of the fine structure theory developed
in [¢]. Here the matters are somewhat more complicated as the fine structure of non-
meek hod mice cannot be viewed as a routine generalization of the fine structure
of [8]. Nevertheless, the matter isn’t too complicated as a simple generalization of
branch condensation, strong branch condensation, allows us to reduce our case to the
one in [4].

In this subsection, we will establish that hod pair constructions produce strategies
with strong branch condensation. The reader is encouraged to concentrate on clause
1 of Definition 4.7.1. Clause 2 is a technical addition that will be used in the proof
of Corollary 5.5.1.

Definition 4.7.1 (Strong branch condensation) Suppose (P,X) is a hod pair.
We say X has strong branch condensation if ¥ has branch condensation and

1. whenever (71, Q,mR,«a,0) is such that
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(a) (T,Q) € I(P,%) and R is a hod premouse,
(b) m:P—>R,0:R—Q andwf:Jom
(¢) a+1< AR is such that for some U, (U, R(o+ 1)) € B(P, L) UI(P,Y)

then letting A = o-pullback of ¥4 7, whenever W is such that (W, R(a+1)) €
B(P,X)UI(P,X), if there is no low level disagreement between Agiay1) and

ER(a+1),W then Ar(at1) = Zn(aﬂ)w'
2. whenever (71, Q,mR,a,B3,&,k,0) is such that

(a) (T,Q) € I(P,%) and R is a hod premouse of limit type,
(b) B < AP and £ < A\ are limit ordinals such that Wf-(ﬁ) > ¢ and

(Q(6)" = Hull2(xT[(P(B))"] U 82),

(c) k: P(B)” — (Q(€)) is ko o ki, where ki = ©7 | P(B)® and ko is the
inverse of the collapse of Hull2(x" [(P(B))"] U 559),

(d) ©: (P(B)’ =R oc:R"—= (Q) and k=0 o,
(e) a+1< AR is such that for some U, (U, R(a+1)) € B(P, L) UI(P,X)

then letting A = o-pullback of ¥ g ¢y 7+ whenever W is such that W, R(a +
1)) € B(P,X)UI(P,), if there is no low level disagreement between Ag(a+1)
and LR (a41) then Ag(a+1) = LR (a4 1))

Theorem 4.7.2 Assume AD". Suppose for some o such that 6, < ©, T = {A C
R:w(A) < 0.} and M = (M,§,X) is a self-capturing background triple that Suslin,
co-Suslin captures T via (P, V). Let (Qp,Y5 : 8 < M) be the models and strategies
of the hod pair construction of M. Suppose & is such that (Qg¢,X¢) € HPY is a hod
pair and that for some < §-generic g, there is a continuous function o € M|[g] N R
such that o~ [Code(V)] = Code(X¢). Then ¢ has strong branch condensation.

Proof. The proof of clause 2 of Definition 4.7.1 is only notationally more involved
than the proof of clause 1 of Definition 4.7.1. Because of this we only present the
proof of clause 1.

Towards a contradiction, suppose that for some & < oM, Qg is a hod premouse
and X¢ doesn’t have strong branch condensation. Just like in the proof of fullness
preservation (see Theorem 4.5.3), if ¥¢ does not have strong branch condensation
then the witness can be found in M|[g] where g is < J-generic over M.
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Let @ = P¢ and A = X,. We start working in M]g]. What we need to show is
that whenever (71, S,m, R, 3,0) is such that

1. (T,S) € I(Q,A) and R is a hod premouse,
2. WZQ%R,UZR—)S&DCI?T%:UOTF,
3. 841 < AR is such that for some U, (U, R(8+ 1)) € B(Q,A) UI(Q,A),

then letting ¢ = Ag 7 Whenever U is such that (U*, R(6+1)) € B(Q,A)UI(Q, ),
if there is no low level disagreement between ®rg.1) and A, R(B

A

+1), w then Pr(gir) =

R(B+1),W°

Fix then such a sequence (7,8, 7, R, (,0). Let (U*, W) € I(Q,A) be such that
R(B+1) =W(B+1). Let & = Ag .. It follows from strong fullness preservation of
A (see Theorem 4.5.5) that ®rs is fullness preserving.

We assume that there is no low level disagreement between ®r 541y and Ay R(B+1) 0
and want to show that ®rg41) = AR(B 1) Towards a contradiction assume that
Pr(g+1) # AR(ﬁH),zI*-

It follows from Lemma 4.6.3 that either R(/5 + 1) is of successor type or of lsa
type. We then have two cases. Suppose first that R = W = R(5 + 1). Letting

AF = {AQ()\Q_U : Q is of successor type

Aste : otherwise
and
o — {CDR([?) : @ is of successor type
®stc  : otherwise
set

O = (jE,A*)VéM and Ot = SA*(Q*)lQ

Let E be the (69, 6%)-extender derived from 7, F be the (62, d%)-extender derived
from 77 and H be the (§<,6")-extender derived from 7 We let

R* = Ult(Q+, E), St = UIt(Q*, F) and W+ = Ult(Q*, H).

We then have that (see Lemma 5.3 of [10])

198 here denotes the stack. See Section 5.1 of [10].
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R = ST (R*|5), St = §*s.7(ST[8) and W+ = S war (WH|§).
We also have o7 : RT — ST such that 7p = 0" o7 and ¢ | R = 0. More
precisely, o7 (z) = mp(f)(0(a)) where f € QF, a € (R)<¥ and x = 7g(f)(a).
Let now K be a stack on R such that ®(K) # Ay ;. (K). Suppose that b = &(K)

—

and ¢ = Ap . (K). Notice that because both ® and A are strongly fullness preserving,

we must have that both 7r,’,6 and Wf exist. Let now R, and W be the last models
of K when it is applied to RT and W respectively. Comparing R;” and W, we
get a common model M. Let ¢/ : R — M, j': WF — M be iteration maps and

i:z”OW{)C,j:j/ow;.
Let C' C (67)M be an w-club consisting of points 3 such that 8 € rng(i) Nrng(j).
Then we have that

(1) crt(i') > 6% and crt(5') > o®.

(2) 0% = sup(Hull®" (R(B),i~[C]) N %) = sup(Hull¥* (R(B), j~[C]) N 6%).
(8) m (97) = sup(HullM(wf (R(8)), C) N wf (67)).

(4) 7E(07) = sup(HullM (w5 (R(8)), C) N 7L (57)).

It follows from (1), (2) , (3), and (4) that rng(ﬂf)ﬂrng(wf) is cofinal in ﬂf(én) =
78 (6%) and hence (4) implies that b = c.

The case R(8+1) # R (implying that R(5+1)<R) is very similar but a bit more
technical. Notice that because of our minimality assumption, we have that R(8+ 1)
is not of Isa type. Let v be least such that 7(v) > 841 and set Q* = (JF em)%s"
Next let E be (65, 6%, ,)-extender derived from m, F be (69, 0(05,,))-extender derived
from 77 and H be (02,044 )-extender derived from 74 and set

R*=Ult(Q*, E), S* =Ult(Q*, F) and W* = Ult(Q, H).
Then let R** = (jEv@R(B))R*, S = (jE’AS<a<B)),f)S* and W* = (jE’AW(mJJ*)W*,
and finally set

Rt = ST (R™), St = §s0e)7(§*) and W = S wwas (W),

We now finish by noticing that we can get an embedding ot : Rt — S*. The rest
of the argument is as before. 0

A variant of strong branch condensation holds for short tree strategy. The short
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tree strategies induced from background constructions have this form of branch con-
densation, but we will omit the proof of this fact because it is very similar to the
proof of Theorem 4.7.2.

Definition 4.7.3 Suppose (P,%) is an sts hod pair. We say ¥ has strong branch
condensation if ¥ has branch condensation and

1. whenever (71, Q,m,R,a,0) is such that
(a) (’7', Q) € I*(P,Y) and R is a hod premouse,

(b) m:P" =R, 0: R — Q° andﬂi—’bzoom
(¢) o < A® is such that for some U, (U, R(a+ 1)) € B(P,%)
then letting A = o-pullback of ¥4 7, whenever W is such that (W, R(a+1)) €

B(P,X), if there is no low level disagreement between Agqy1) and YR (0 1)
then AR(a+1) = ER(a-s-l),W'

2. whenever (71, Q,mR,a, B3,&,k,0) is such that

(a) (T,Q) € I"(P,%) and R is a hod premouse of limit type,
(b) B<A? and £ < \2 are limit ordinals such that

(Q(6))" = Hull2(xT[(P(8))"] U 62),

(c) k: P(B) — (Q(€)) is ko o ky, where ky = 7 | P(B)® and ko is the
inverse of the collapse of Hull2(77 [(P(83))"] U 5?),

(d) ©: (P(B)’ =R oc:R"—= (QE) and k=0 o,
(¢) o+ 1< AR is such that for some U, (U, R(o+ 1)) € B(P, L) UI(P,Y)

then letting A = o-pullback of E o)y 7 whenever W is such that (W,R(Oz +
1)) € B(P,X)UI(P,X), if there is no low level disagreement between Ag(a41)
and g 1)y then Aratn) = Braqn) -

Theorem 4.7.4 Assume AD". Suppose for some o such that 0, < ©, T = {A C
R:w(A) < 0.} and M = (M, 0,%) is a self-capturing background triple that Suslin,
co-Suslin captures T via (P, V). Let (Qp, Y5 : 8 < M) be the models and strategies
of the hod pair construction of M. Suppose £ is such that (Q¢,X¢) € HPY, (Qg, ¥ge)
is an sts hod pair and that for some < d-generic g, there is a continuous function

o € Mlg] "R such that o~ [Code(V)] = Code(X¢). Then L has strong branch
condensation.
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The following is an easily provable lemma, which shows that the requirement that
there is no low level disagreement between Ag 1) and E’R(a RIS is not necessary.

Lemma 4.7.5 Suppose (P,) is a hod pair or an sts hod pair and I is a pointclass.
Suppose that ¥ has strong branch condensation and is I'-strongly fullness preserving.
Then the requirement that there is no low level disagreement between Ag(a41) and
ER(aH),W in clause 1 and 2 of Definition 4.7.1 and Definition 4.7.3 is not necessary.

Proof. Since all cases are very similar, we only concentrate on clause 1 of Defi-
nition 4.7.1. Suppose then (7,9, 7, R,«a,0) is as in clause 1 of Definition 4.7.1.
Let W be as in the hypothesis of Definition 4.7.1. Towards a contradiction assume
that Agat1) # ER(a )b It follows tilat there is a low level disagreement be-
tween Ag(a+1) and X 14y 4p- Let then (71, 8) € B(R(a+1), B 41y %) N B(R(a+
1), AR(a+1)) be a low level disagreement between Xy 1,3 and Ag(a+1).

Let S* be the last model of 7; when it is applied to R, and let ﬂ* be the stack
on Q constructed via the copying construction using 7. Let &1 be the last model of

71“711* and let k : ST — S; be the map constructed via the copying construction.
Let £ be such that ST(§) = S. Then it is not hard to see that

(71“711,81,7r711 om,S*,& k)

is as in the hypothesis of clause 1 of Definition 4.7.1. Let ¥ be the k-pullback of

Yg 7~ . Notice that ¥ = Ag, =. It then follows that there is no low level disagree-
1 1 s /1

ment between Wg+ ) and Mg, (©W—T- Strong branch condensation of ¥ then implies

that We+ () = Zs+(§) yw~7,» contradicting the fact that As+(§),ﬂ #* ESJF(OWAﬂ. O

We finish by proving branch condensation for I'-hod pair constructions. Our
proof assumes I'-fullness preservation, which we will establish this later on in the
text (see Theorem 8.3.1).

Theorem 4.7.6 Suppose I' is a pointclass such that for some «,
Lo(T',R) E “ZF—Replacement” and ' = L,(I',R) N p(R).

Suppose Ml = (M, 0,%) is a self-capturing background triple that Suslin, co-Suslin
captures T'. Let (Qg, X5 : f < ™) be the models and strategies of the T'-hod pair
construction of M. Suppose B < o™ such that (Qz,%5) € HP" and Y4 is strongly
I'-fullness preserving. Then ¥z has strong branch condensation.
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Proof. The proof is very similar to the proof of Theorem 4.7.2. Because of this, we
will only outline it. Notice that if X3 does not have strong branch condensation then
the witness can be found in M|[g] where g is < J-generic over M.

Let Q@ = Qg and A = X3. We start working in M|g] and just show clause (1) in
the definition of strong branch condensation. What we need to show is that whenever
(T,S,7,R,[3,0) is such that

1. (T,S) € I(Q,A) and R is a hod premouse,
2. W:Q%R,U:R—)Sandﬂfzaow,
3. B+ 1< AR is such that for some U, (U, R(3+1)) € B(Q,A) UI(Q,A),

then letting & = Agj_, whenever U* is such that (U*, R(3+1)) € B(Q,A)UI(Q,A),

if there is no low level disagreement between ®zs41) and AR( BH1) W then ®rgy1) =

ARy i

Fix then such a sequence (71,8, T, R,[,0). Let (1/7*, W) € 1(Q, A) be such that
R(B+1) =W(B+1). Let & = A7 .. It follows from strong fullness preservation of
A that &g is fullness preserving. 7

We assume that there is no low level disagreement between ®x 541y and AR( B+1) 1"
and want to show that ®rgi1) = AR(ﬁ 1) Towards a contradiction assume that
Pr(p1) 7 AR(5+1),L7*~

It follows from Lemma 4.6.3 that either R(/5 + 1) is of successor type or of lsa
type. We then have two cases. Suppose first that R =W = R(5 + 1). Letting

AF = {AR(B) : Q is of successor type

Aste: otherwise
and
> — {@R(@ : @ is of successor type
Pste  : otherwise
set

O = (jE,A*)véM and O+ = SA*(Q*)QO

208 here denotes the stack. See Section 5.1 of [10].
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We have two cases. If @ E “02 is a Woodin cardinal” then we can finish as in
Theorem 4.7.2. Otherwise let M be the least level of Q* such that M E “69 is a
Woodin cardinal” and J;[M] E “6€ is not a Woodin cardinal”. Notice then M is a
O-structure for 6< implying that A* is determined by moving it correctly. This then
implies that ®r(s11) = Ag541) 77+

The case R(5 + 1) # R (implying that R(8 + 1) <R) is very similar but a bit
more technical. Notice that because of our minimality assumption, we have that
R(B + 1) is not of Isa type. Let v be least such that w(rv) > f + 1. It again follows
that v +1 < \<.

Let then ) < d be the least M-cardinal above o(Q) such that Lp">ew+2 (VM) E
is a Woodin cardinal”. We now repeat the proof of Theorem 4.7.2 by using VnM
instead of V3V. O

4.8 Positional and commuting

In this section, our goal is to show that strong branch condensation implies com-
muting. Recall [10, Definition 2.35]: if M is a transitive model of a fragment of ZFC
and Y is an iteration strategy for M then we say Y is positional if whenever () is a
S-iterate of M via W and (T, R), (U, R) € I(Q, Yow) Zrw~7 = Zpyp-g- Recall
that commuting means that in the above scenario, 7T = If @ = M, then we say
that ¥ is weakly positional (and weakly commuting respectively). Using the usual
proof of the Dodd-Jensen lemma, we get that (weakly) positional implies (weakly)
commuting.

Proposition 4.8.1 Suppose (P, %) is a hod pair or an sts hod pair, I is a pointclass
and X2 has strong branch condensation and is strongly I'-fullness preserving. Then X
1s positional. Moreover, if X2 is an iteration strategy then it is also commuting.

Proof. We just prove weak positionality and hence weak commuting. The proof of
the general case is similar.

Suppose (7, Q), (U, Q) € I(P,%). We want to see that g 7 = ¥y 7. Towards
a contradiction, suppose not. Suppose first that either P is not of Isa type or if it

is then E“”Q’f’cf +# ngtcg Let then (W, R) € B(Q,%,7) N B(Q,¥4;;) be a minimal

lower level disagreement. Let R be the last model when we apply W to Q and
let « be such that R = R*(« + 1). We can then apply strong branch condensation
to (T-W, R, 7T W, R, a,id) and (U~W,R*(a)). It follows that YRFw =

YR~ W
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Finally suppose P is of lsa type, ¥ is an iteration strategy and Esgtci, = ZSQ“’L? Now
we can simply apply strong branch condensation (in fact, just branch condensation)
to (’f, 9,77, 9, id) and (ZJ, Q) and get that Xy =¥, 7. O

Given a hod pair (P,X) and Q € pI(P,X) such that ¥ has strong branch con-
densation and is strongly ['-fullness preserving for some I', we let Yo be the strategy
of Q induced by X. It follows from Lemma 4.8.1 that ¥o is independent of the
particular iteration producing Q.

We need commuting not only for iteration strategies but also for short tree strate-
gies.

Definition 4.8.2 Suppose (P, %) is an sts hod pair. We say X is strongly commuting
if whenever (T, Q) € I(P,%) and (U, R) € I’(P, %) are such that for some or < A2,
RY = (Q(a)) and R® = Hull®(xT*[P) U 67"), then letting k : P* — R® be the
inverse of the collapse of Hull2(xT*[P?) U §”") 2 k = ztht.

We say ¥ is commuting if keeping the above notation, the conclusion holds with
a = A2 (in this case, k =7T*).

If (P,X) is a hod pair. We say % is strongly commuting if ¥ is commuting.*?

To show strong commuting for short tree strategy, we will use AD™ reflection.
But first we need a lemma.

Lemma 4.8.3 Suppose (P, X) is an sts hod pair, I is a pointclass and ¥ has strong
branch condensation and is strongly I'-fullness preserving. Then X is strongly com-
muting.

Proof. Fix (T,Q),(U,R) € I"(P,¥) and a as in Definition 4.8.2. Let k be the
inverse of the collapse of Hull2(z [P U R").
Using the fact that 77°% and 7 exist, we can find a Q; and R, such that

1. Q; is a cutpoint of T and R, is a cutpoint of L?,

2. T>g, is a normal tree on Q; above Q) and Usx, is a normal tree on Ry above
b
R,

3. w7<21 exists and 77<®: exists, and

4. Qb = Q¥ and R® = R’

21From here on, we mean k = koor ¥ where ky is the transitive collapse of HullQ(ﬂT—*b[Pb} Us®").
22This terminology is so that subsequent statements of lemmas and definitions are uniform.
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Let then &% be the inverse of the collapse of H ullQl(Wi—SQl [Pl U6RY). We will show
that £+ | Pb = 77<rib. The claim then follows because k* I P° =k and rTsrib =
b,

Without loss of generality we can assume that Q; = Q and Ry = R. We now
compare (Q,Yg) with (R,Xg). Let (T, M) € I(Q,%g) and (U, M) € I(R,Xx) be
the trees coming from the comparison of the two hod pairs. Because ¥ is commuting
we have that

It follow from strong branch condensation that (¥g)gs = Ygs which in turns
implies that

(2) 7T 1 (RY™) = 7t 1 (RY[0™).
Notice that (1) implies that
(3) k I (P137") =70 | (P*I6™").

To finish the proof, we have to verify (3) for subsets of 67", Let then A € p((SPb) NnPo.
We then have that, using (1),

(6) k(A) = 7T(A) N 67" and 7Hb(A) = {&€ < 6R" : 74 (&) e 77 TH(A)}.

(3) and (6) imply that 744(A) = k(A). O

Proposition 4.8.4 Suppose (P,X) is a hod pair or an sts hod pair, I is a pointclass
and ¥ has strong branch condensation and is strongly I'-fullness preserving. Then
for some (T, Q) € I(P,X), Yo7 is strongly commuting.

Proof. If ¥ is an iteration strategy then we can take 7 = () and use Proposition 4.8.1.
We assume that X is a short tree strategy and P is of Isa type. Towards contradiction
assume that there is no (7,Q) € I(P,X) such that g7 is strongly commuting.
Let ¢ be the sentence asserting the existence of (P, %, I") as in the hypothesis of
Proposition 4.8.4 with the property that for any (7,Q) € I(P,%), ¥go 7 is not
strongly commuting.

Let then I'* C p(R) be least such that for some a, L, (I'*, R) F ZF—Replacement+
¢ and I'* = p(R) N L,(I'*,R). Fix least a witnessing the above statement. Let now
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® be a good pointclass such that I'* C Ag. Fix a triple (S, A, T™*) € L,(I'*,R) such
that L,(I'",R) F ¢[S, A, I"**]. Applying Theorem 4.1.6 to ®, fix F' as in that theo-
rem. Fix x € R such that if F(z) = (N}, My, 65, %;) then (N}, ;) Suslin, co-Suslin
captures I'** and Code(A).

Applying Theorem 4.7.6 and Corollary 4.6.10 to (S, A), we get that the I'*-hod
pair construction of N* reaches a normal iterate R of S such that if U is the strategy
of R inherited from the background construction then Ar = W*¢ and ¥ has strong
branch condensation and is strongly ['**-fullness preserving. Applying Lemma 4.8.3
we get that Ag is strongly commuting. O

The next lemma will be used in the proof of Theorem 6.1.5.

Lemma 4.8.5 Suppose (P, ) is an sts hod pair or is a hod pair and P is non-meek.
Suppose further that I is a pointclass and 3 has strong branch condensation and is
strongly T-fullness preserving. Suppose (T, Q) € I°(P,%) and (U, R) € B(P,%) U
I°(P,X) are such that

1. if R* is such that U, RY) € I"(P,%) then (RT)" = R" and

2. there is some o < \¢ — 1 and a normal tree W on R such that (W, Q(a)) €
[(R, ).

Then (Q(a))? = Hull®' (xTH[P" U 5(2)").

Proof. We first present the proof under an assumptions that makes the matter some-
what simpler.

(1) Suppose that (7, Q), (U, R*) € I(P,X).

Apply now W to R" and let its last model be S. The idea now is to compare (Q, ¥.g)
with (S,%s). We have that Q(a) < S. Suppose first the rest of the comparison be-
tween (Q,Xo) and (S, Xs) uses no extenders with critical point 65", The claim then
follows from the simple facts that Q° = Hull2' (7 *[P*]U§") and o > sup w7 *[A<"].

Suppose then that the rest of the comparison between (Q,¥g) and (S, Xs) uses
an extender with critical point 6. It follows from strong branch condensation and
I-fullness preservation that Q(a) <S8 and letting E € ES be the extender with criti-
cal point 55" used in the aforementioned comparison, F is the least extender on the
sequence of S with critical point 0% such that Q(a)<S; where S; = Ult(S, E). The
rest of the comparison is a comparison between (Q, ¥g) with (&1, Xs,). It follows
from strong branch condensation of 3 (see Lemma 4.7.5) that
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(2) Xo(a) = Xsi(a)-

Let now (71,K) € 1(Q,%Xg) and (7T3,K) € I(S1,Xs,) be the normal trees that
achieve comparison between (Q,Yg) with (S1,Xs,). It follows from the fact that
> is commuting that

(3) 77t o 7T — 2T2b o (7S 1 8 o Wb o aUb

Because of (2) we have that

(4) 7" 1 Qa) =77 | Q(a).

Using standard facts about representations of ultrapowers, we also get that
(5) (Q(a))" = Hull'"" (mp[(Q(ar))] U 62,

Using the same standard facts, we also get that

(6) (S1)" = HullS)' (rgor™borttb[PYUsE)”) and Kb = HullK" (xTobor T [PYUSK").

It follows from (3)-(6) that (Q(a))’ = Hull® (Wf’b[Pb} U 6(2)"), finishing the proof
under our assumption that (1) holds.

Suppose next (1) fails. In this case there are a cutpoint Q; of 7 and a cutpoint
R of U such that

1. (T,9Q1) € I(P,%) and (Ry,U) € I(P,%),
2. 712@1 is a normal tree 7 on Q; that is above (Q;)” and has a drop, and

3. Usg, is a normal tree U on Ry that is above (R;)? and has a drop.

In this case, we let S = Ult(Ry, F) where F is (07", 6(2(@)")-extender derived from
7V The next step is to compare (Qi,Xg,) with (S,Xs) The rest of the proof
is word by word the same as the one from (1). Indeed, notice that 77 = id and
7Vt =7 | (R1)?. We leave the details to the readers. O
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4.9 Solidity and condensation

The main contribution of this section are Theorem 4.9.6 and Theorem 4.9.7 that
can be used to show that fully backgrounded hod pair constructions converge. We
start by the following version of Lemma 4.9.4 for phalanxes that is used in the
proof of solidity and universality. We omit the actual proofs of Theorem 4.9.6 and
Theorem 4.9.7 as, in the light of Lemma 4.9.5, the proofs of solidity and universality
are trivial generalizations of the usual proofs of these facts (see Chapter 5 of [28]).

Definition 4.9.1 (Certified phalanxes) Suppose (P,X) is a hod pair such that
P is non-meek and R is a hod premouse. We say (P,R,() is a (w, P,X)-certified
phalanz if ¢ > o(PP) and there is an embedding 7 : R — P such that ¢ < crit(n).

Continuing with the set up of Definition 4.9.1, we let 7+ : (P, R,() — (P,P,() be
given by (id, ), and also, we let ¥™" be the 7+-pullback of ¥.

Lemma 4.9.2 (No strategy disagreement) Suppose (P,%) is a hod pair such
that P is non-meek, ¥ has strong branch condensation and X is strongly fullness
preserving. Suppose (P, R,() is a (P,X) certified phalanz as witnessed by m : R —
P. Let A = ™" . Then no strategy disagreement appears in the comparison of P and

(P, R, () where ¥ is used on P side and A is used on (P,R,().

Proof. Towards a contradiction suppose not. It follows from the proof of Lemma 4.6.3
that we can find a minimal low level disagreement (’7', Q) between ¥ and A. Let
then I/ = EZ, the un-dropping extender of T restricted to Q. We have that Q < hod
Ult(P, E).

Our intention now is to find a ¥-iterate S of P and an embedding o : Ult(P, E) —
S such that Ay 7 = Zgw where W is a stack on P with last model S. Let first

W =7tT and let S = U It(P, EW*), where again EY" is the un-dropping extender
of W. Clearly W = W*A{EW*} works. The claim now follows from strong branch
condensation of ¥ applied to (W, S, g, Ult(P, E), a, o), where o is such that Q =
UIt(P, E)(a) and o : UIL(P, E) — Ult(P, E") is the embedding given by the copying

construction. O

Definition 4.9.3 (Certified pairs) Suppose (P,Y) is a hod pair and R is a hod
premouse such that both P and R are of limit type. Suppose that there is w such that
7 PY — Rb. We say the pair (7, R) is (P, X)-certified by (o, T, Q, a) if
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1. (T,Q) € I(P,%), a <A and 0 : R — Q(a),
2. (Q())t = Hull2(x7 [P) U §(2)") | and

3. lettmg k@ PP — (Q(a))® be the inverse of the collapse of Hull®(x” [PY] U
5(Q(a) ), k=(o rer> o

We say (R, A) is a (P, X)-certified hod pair if for every (ZJ, S) € I(R, A) there is some
7, (0,7, Q, ) such that (m,S) is (P, X)-certified by (0,7, Q,a) and Agy = E‘éb -

Lemma 4.9.4 Suppose (P,3) is a hod pair such that P is non-lsa type non-meek
hod premouse, I is a pointclass and X2 has strong branch condensation and is strongly
-fullness preserving. Suppose (T,R) € I°(P, %)% is such that for some A, (R, A)
is (P, E) certified and there is a 7 : P — R such that (m | P°R) is (P, X)-certified
by (0,U,Q, ). Then n7 exists and 7T <.

Proof. Fix a (P,X)-certificate (o,U, Q, ) for (R,A). Thus, Q) = Q and A =
N . Since X has strong branch condensation, it follows that ¥ » = A(= DA )
Let q) E”OZ It follows from strong branch condensation that ® =>.. We can now

apply the usual Dodd-Jensen argument to conclude that 77 I exists and that 77 <.
OJ

Lemma 4.9.5 (Dodd-Jensen for certified phalanxes) Suppose (P,Y) is a hod
pair such that 3 has strong branch condensation and is strongly fullness preserving.
Suppose that (P,R,(C) is a (P,X)-certified phalanz as witnessed by m : R — P.
Suppose that (T, Q) € I((P,R,(), %™ ) and (U,S) € I(P,X) are such that the last
branch of T is on P and either

1. Q <poa S and w7 exists or
2.8 <poq Q and ™™ exists.

Then Q@ =S8 and 77 = 7.

Proof.
Let T* = 777 . Let Q* be the last model of 7* and let 0 : @ — OQ* come from
the copying construction. Suppose first that Q <,,,4 S and 77 exists. Applying (the

23Thus, 717 exists, see Definition 2.6.5.
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proof of) Lemma 4.9.4 to o noting that Q° = 8% we get that 7 exists, S = Q and
< 7T,

Suppose now S g Q and 7 exists. Let ® be 7 o rt-pullback of 5. We then
have that ® = 7. Applying Lemma 4.9.4 to (o | §) o7 and (T*,0(S)), we get
0(S) = Q" and 77" exists (again, we have here that (Q*)" = ¢(S)?). It follows that
Y%+ 7+ = Ys. Therefore, the usual Dodd-Jensen argument can be used to get that
S = Q and 77 < 7M. Putting the two arguments together we see that 7/ = 77. [

It is clear that it follows from Lemma 4.9.5 and from Lemma 4.9.2 that the usual
proofs of condensation, universality and solidity go through for hod mice. We state
the results without proofs (see Chapter 5 of [253] for the usual proofs of these results.)

Theorem 4.9.6 (Solidity and universality) Suppose k < w and (P,X) is a hod
pair such that

1. P is k-sound non-meek hod premouse,
2. P is not of Isa type and p(P) > o(P®), and
3. X is strongly fullness preserving and has strong branch condensation.

Let v be the k + 1st standard parameter of (P,ur(P)); then r is k + 1-solid and
k 4+ 1-universal over (P, ux(P)).

Theorem 4.9.7 (Condensation) Suppose (P,X) is a hod pair such that
1. P is non-meek hod premouse,
2. P is not of lsa type and p(P) > o(P®), and
3. X is strongly fullness preserving and has strong branch condensation.

Suppose (P, R,() is a (P,X) certified phalanz as witnessed by m: R — P such that
¢ = crit(m) = p®. Then cither

1. R ﬁhod P or

2. there is an extender E on the sequence of P such that Ih(E) = p& and R <puq
Ult(P,E).
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4.10 Diamond comparison

Our goal here is to provide another comparison argument, diamond comparison,
that doesn’t rely on branch condensation as heavily as our other argument (see
Corollary 4.6.10). The new comparison argument follows the same line of thought
as the proof of a similar comparison argument from [10] (see Theorem 2.47 of [10]).

We have two applications in mind for such a comparison argument. First we
will use it to show that in some instances tails of strategies with hull condensa-
tion get branch condensation and strong branch condensation. This will appear as
Theorem 5.6.8.

Next, as in [10], the diamond comparison argument can be used to show that
ADT + LSA is consistent relative to a Woodin cardinal that is a limit of Woodin
cardinals. This will appear as Theorem 10.3.1. In [10], a similar argument gave the
consistency of ADg + “© is regular” relative to a Woodin cardinal that is a limit of
Woodin cardinals.

Following the proof of Theorem 2.47 of [10], we first define a bad block and a bad
sequence and show that there cannot be such a bad sequence of length w;. We then
show that the failure of comparison produces such bad sequences of length w.

4.10.1 Bad sequences

For the purposes of this subsection, we make a definition of a bad block and a bad
sequence. In later subsections, we will redefine these names for different objects.

Definition 4.10.1 (Bad block) Suppose (P,%) and (Q,A) are two hod pairs of
limat type. Then

B =(((Pi, Qi %0, Ai) 1 < 5), (Ti,Us : i < 4), (c,d))
is a bad block on ((P,X),(Q,A)) if the following holds:
1. (Po,%0) = (P,X) and (Qp, Ag) = (Q, A).
2. 7% 18 a stack according to g on P.

3. Zjo 18 a stack according to Ag on Q.

4. Let Ty = (Mﬁ,’fﬁ,Rg,Eﬁ : B <v) and Uy = (Nﬁ,ﬁ@,Sg,Fg : B <wv). Then 7T,
and U, are undefined, Py = M, and Q; = N,,.
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5. There is some f+1 < min(A\P, \91) such that P1(8+1) = Q1(8+1), Pi(B+1)
is of successor type, Lp 5.1y 7 7 Noysrnze W8 Xpy(5).7 = 201(8) 1y

6. T, and U, are stacks on (P1(B+1), s 7)) and (Qi(B+1), Mg 511y, Te
spectively with last models R and S such that both (ﬂ, R,Z/_ﬂ, S) are comparison
stacks for (P1(B+1),2p, 5,17) and (Q1(B+ 1), Mg, 511)7,)°"

7. Keeping the above notation, T and U, have a last normal component of suc-
cessor length whose predecessor is a limit ordinal®> and T = Ul )

8. Again kef{)z’ng the above iz_otatz’on, c=3p s +1)T(T ), d = A91(6+1),ﬁo(zzf)’
Py = Mfl and Qs = lerl where 7_? 15 applied to Py and Qq respectively.

9. Xy =Xp 7, Yo = EPz,foﬂ(ﬁ‘)ﬂ{Pg}’ Ay =Xg, 4, and Ay = 292,215(071‘%{92}’

10. ’7_; 1s a stack according to Yo on Py with last model Py and 3 = (22)P377é.
11. U, is a stack according to Ay on Qo with last model Q3 and A3 = (AQ)Q&HQ.
12. ’7_§ 1s a normal tree according to Y3 on Ps with last model Py and >4 = (23)7,477%.

13. ﬁg 18 a normal tree according to A3 on Qs with last model Q4 and Ay =
(A3)Q4,ﬁ3'

14. Py = Qf and (X3)py = (As) gy

15. 7?3 and ng are the trees produced via extender comparison between Pz and Qs.
We set T5 = 77)“711“712“7?, and UP = Zj()“l]fﬁ;ljg. We say T2 is the stack on the
top of B and UP is the stack in the bottom of B.

Next we show that there cannot be a bad sequence of length wy.

Lemma 4.10.2 (No bad sequences) Suppose (P,X) and (Q,A) are two hod pairs
of limit type such that P and Q are countable, and both ¥ and A are (wy,w;,w:)-
strategies. There is then no bad sequence, i.e., a sequence (Bg : f < wy) satisfying
the following holds:

24In particular, the two strategies agree on the last models of 71 and U;. Because of Theo-
rem 4.6.10 we can take ﬁ and Z]l to be normal trees. We will always use the diamond comparison
argument in situations where Theorem 4.6.10 applies to low level strategies.

25Recall that in Definition 4.6.4, we required that comparison stacks have a last model.
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1. Forall 8 < w, Bs = ((Ps, Qs s, Mgi) 10 < 5), (Tou,Uss i < 4), (cs, dg)).
For all f < wy, Bg is a bad block on ((Pso,250), (9.0, Asp))-

For all 8 < w1, Pgy10 = Psa and Qpr10 = Qpa.

For B < a <w, let mg4 : Pgo — Payo be the composition of the embeddings
on the “top” and 0s,4 : Qo — Qa0 be the composition of the embeddings on
the “bottom”. Then for all limit X < wy, P is the direct limit of (Pg: B < A)
under the maps g o. Stmilarly, for all limit X < wy, Qxp 15 the direct limit of
(Qp : B < X) under the maps og.q.

5. For a limit ordinal A < wy, 77;0 = Qlj\ﬁo.

6. For all B <wy, ¥go=2 T and Agog =X

Ps,0,B~ Q5,0,By< U

Proof. Towards a contradiction, suppose B = (Bs : B < wyq) is a bad sequence. Let
P.,, be the direct limit of (Pg : 8 < w;) under the embeddings 75, and Q,, be the
direct limit of (Qpo : f < wq) under the embeddings os,. Let X be a countable
submodel of H,, such that letting 7 : M — H,,, be the uncollapse map, Be rng(o).
Let k = wi and notice that for every 3 < &,

5 =der (Psi, Qp) 11 <5), (Taulsi i <4),(csdg)) € M

and Bj is countable in M. It then follows that 7Y (P,,) = Pro and 771 Q) = Q.. 0.
Let

7 Pgo — Pu, and 05 : Qo — Do,

be the direct limit embeddings.
Standard arguments show that for all z € P, o N Q... ,

Te(r) = 7(2) = 04().

Notice that we have that AP0 = \9<0_ Letting A = A\P=°, notice that 5ff’lo = 5?_"’10.

Let then § = 64, Let ¢ = w70 and ¢ = a¥~9. It then follows that

(1) ()P0 = p(6) =0

Let 3 be such that _;;,_1 = U, is based on P (8 + 1) = Q.1(8 + 1). Notice
that
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(2) §Pra(B+1) — sup{o(f)(a): f € PoNf:od—=0Nac€ ('P,.;,l(ﬁ))<w}
(3) 692D = sup{y(f)(a): f € Quo A f:6 = dAa€ (Qui(B))<“}

7. T, . . .
Let now p = 7", ¢ = "', j : Pea — Pu, and i : Qo — Q, be the itera-

K

tion embeddings along the top and bottom of B. Notice that because
(2P 28)41) = (An2) 0 n(os) 1)

we have that

(4) J [ Pra(p(B) +1) =i [ Qua(q(B) +1).

Let then

s={y <oy 3f € ()P0Ta € (Pur(B)<“(v = 6(f)(a))}
t={y<dgr:3f € (8°)%03a € (Qur(B) (v = ¥(f)(a))}.

(1) then implies that
(5) jopls] =ioq[t].

(4) then implies that

It follows from (2) and (3) that
(7) s and t are cofinal in §%=0(3+1),

It then follows from (6) and (7) that ¢, = d,, contradiction. O

4.10.2 The comparison argument

In this subsection we prove the following comparison theorem under the hypothesis
that the lower level comparison holds. Suppose (P, ) and (Q, A) are two hod pairs
of limit type such that I'(P,X) = I'(Q,A) =4 I', both ¥ and A are I'-fullness

preserving.
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Definition 4.10.3 (Lower Level Comparison) We say low level comparison holds

for (P,X) and (Q,A) if

1. for every (T,P1) € B(P,X) and (U, Q) € B(Q,N), comparison holds for
(P1, 35, 7) and (Q1,Ag, ;7), and

2. whenever (T,Py) € I(P,X), U, Q1) € I(Q,A) and B are such that §+ 1 <
min(A71, A9, Py (B8+1) = Q1(B+1), P1(B+1) is meek and Epe)7 = Moy
there is a normal tree S of limit length according to both Xp 7 and Ag 7 that
is based on P1(B + 1) and is such that letting b = X, #(S) and ¢ = Ay 74(S),

(a) 7 and 7$ emist,
(b) My (i (B+1)) = M2(x2(B+1)), and
(¢) Vs s (a0 75015y = Mg (s (41 -5~ (M5

The following is then the comparison theorem we will prove in this subsection.

Theorem 4.10.4 (Diamond comparison) Suppose (P,Y) and (Q, A) are two hod
pairs such that T(P,X) = I'(Q,A) =4er I', both ¥ and A are I'-fullness preserving
(w1, w1, wy)-strategies, P and Q are countable and are of limit type, and lower level
comparison holds between (P,X) and (Q,A). Then there are (T,R) € I(P,%) and
(U, R) € I(Q,\) such that either

stc  __ Aste
1. P and Q are of lsa type and ZR,T’ = ARH or

2. P and Q are not of lsa type and Xy 7 = Ap ;7.

We prove the theorem by showing that the failure of its conclusion produces a
bad sequence of length w;. Towards showing this, we prove two useful lemmas.

We say that weak comparison holds between (P, ) and (Q, A) if thereis (T,U, R, S)
such that

1. (T,R) € I(P,%),
3. Rb - Sb and ERb,'f — ASbJ]'

Our first lemma says that lower level comparison implies that weak comparison holds.
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Lemma 4.10.5 Suppose (P,%) and (Q,A) are two hod pairs such that I'(P,%) =
I'(Q,A) =4er I', both ¥ and A are I'-fullness preserving, P and Q are of limit type,
and that lower level comparison holds between (P,%) and (Q,A). Then weak com-
parison holds between (P, %) and (Q, ).

Proof. We inductively construct (P;,7; : i < w) and (Q;,U; : i < w) such that the
following conditions hold.

1. Po =P and 9y = Q.
2. Suppose ¢ = 2n. Then the following holds.

a ’ﬁ is a stack on P? according to X, . = with last model P;;; (when we

? P; 7®k<z7—k
apply 7; to P;).
(b) U; is a stack on Q; according to Ao, o,z With last model Q; 1.
. T b
<C> Letting v = sup i [)\73‘1-]7 Pi1 (7) Jhod Q?Jrl and APfH(W),@kgi?]k - pr+1(7)7@k§iﬁ.

3. Suppose i = 2n + 1. Then the following holds.

—

(a) 7T is a stack on P; according to EPmEBk«ﬁ with last model P;.
(b) U; is a stack on Q! according to AQ?@«M with last model Q;1 (when
we apply U, to Pi).

. 71y Ob
(C) Letting v = sup it [/\QZ] Q?—l—l(’y) hod ,sz—&-l and AQ?+1(7)a@k§in - ZQZZH(’Y),EBkgﬂ_Z'

We show how to carry out the inductive step. Suppose we have constructed
(Pi, Qi i < 2n) and (7;,U; : i < 2n). We now consider two cases.

Case 1. cf”"(§P) is not a measurable cardinal in Py,

Notice that in this case, we have that P; = Q7 and Yp 3 = AQL%. Thus, weak
comparison holds for (P, %) and (Q, A).

Let (a; : i < w) be such that sup(ay : k < w) = §72». By induction we construct
a sequence (7:*, Wi, Sk, Ri, 5,’;, r, Pk : k < w) such that the following hold.

1‘ (Sé" RS) E I(an’ AQQn,@m<2n1/?m) and

F<P2n(a0)’ ZPQn(a0)7EBm<2n’ﬁn) = F<R3(ﬁ0)’ AR6(50)7(@m<2nﬁm)A§(§)
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Moreover, (:)*’ Wo) € 1(Pan, Ep2m@m<2n7-m), (S_Z),Ro) € ](RS’ARS,(@manﬁm)“gg)

and for some &, (T, Wo(€), So, Ro(€)) are comparison stacks?® for
<7D2n<a0>, ZPQTL (a0)7®m<2nﬁn) and (Rg(ﬁo)’ ARS (50)7(®m<2n2/7m)A§6>

POVE(QG41)s B0z ) @i T~ BumesTs) =
PRE 1 (Brt1)s Ay (81 (@mcillon)~ (@ (S S

where af,; = 7%<*T¢ (ay41). Moreover,

(T Wher1) € I, By, a0y~ T )
7(@m<igm)ﬁ(€9mgk(gv*nf\gm))ﬁslal )

=

(§k+1> Ris1) € [(RZ+17 ARZH
and for some &, (7:*“, W1 (€), Spat, Ris1(€)) are comparison stacks for

(Wk(a2)7 Ewk(az+l)7(@m<2nfm)ﬁ@m§klfr}r§) and
(R (Brrr), AR;H(ﬁk+1),(®m<znﬁm)“(@mgk(g;*n“gm))“giéﬂ)

We then let 712,1 = @;Kwﬁ* and ngn = @m<w§;“§. Also, we let Py, be the last

model of T}nﬂ and Qg1 be the last model of ngn.

Case 2. cf”"(§7%) is a measurable cardinal in P.

The difference between this case and the previous case is that here we cannot
i < w) as above. Here is the outline of the construction of

start by fixing (a; :
(En; Z/{Qna P2n+17 Q2n+1>-
Because I'(Pay, Xp, o 7) =1'(Qan, A

(‘907 RO) € [(Q2n7 Aan,®i<2nZ/7i>

Qo 1-nid; ) WE can find

and 8 < AR such that letting E € E™ be the extender of Mitchel order 0 with

crit(E) = cf7 (§P2),
26Tn particular, Wo(€) = Ro(€).
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F(Ult(,P%“ E)()\PQTL)7ZPZn7(@i<2nﬁ)A{Ult(P2n7E)}) - F(RO(/B) Aan (@i<onlli)™ {30})

Appealing to low level comparison, we can find

(Tss Pansr) € I(UL(Pay, E), S Pans(@1<on )~ {Ul(Pan,E)}) B0
(Sla Rl) € [(RO’ AR07(@i<2nui)A§0)

such that
I ;";L is based on Ult(Pa,, E)(N\72),

2. S, is based on Ro(B),
3. 7.‘.7?;1()\73271) = 7781 (ﬁ) —def éu and

A X (O (@iconT)~{UL(Pon E )}’“712n+1 = AR (€)@ icantl)~ 58,

Let then To, = {Ult(Pon, E)} " T, Uow = S5 Sy and Qo1 = Ry
The two cases above finish the construction of (’En, Z/lgn, Pani1, Qons1). The con-
struction of (Tan,UQnH, Ponia, Q2n+2) is very ¢ similar and we leave it to the reader.
Notice now that if T = GBKM'E, U= EBKUJU“ R is the last model of 7 and S is
the last model of I/ then (7, R) and (Z/{ ,S) witness that weak comparison holds for
(P,X) and (Q,A). d

Lemma 4.10.6 Suppose (P,%) and (Q,A) are two hod pairs such that I'(P,%) =

I'(Q,A) =4y I', both 3 and A are I'-fullness preserving, both P and Q are of limit
type and low level comparison holds. Suppose further that P® = Q¥ and for all B <
AP —1, Yp+1) = Nogr1)- Let (T,R,U,S) be the trees of the extender comparison
of P and Q*". Suppose that either

1. R#S or

2. R=S8 and ZRJ' 7& A&u.
Then there is a bad block on ((P,%), (Q,A)).

Proof. Tt follows from Lemma 4.6.3 that we can find minimal low level disagreement

(T*,U*, W) between (R, Sr7) and (S, Asy). We then let P and Q; be the last
models of 7* and * when we regard them as stacks on R and S respectively.

Let 77 be a normal tree as in clause 2 of Definition 4.10.3 . Let b = Z(T“f*ATl),

= A(U“ﬁ*“ﬂ), Py = MZ—I and Qy = M1 (here we apply the stacks to P; and
Q, respectively). We thus have that /" and 7)1 exist, 7, (W) = 771 (W) and

27Thus, T is on P with last model R and U is on Q with last model S.
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Ew? LW), T~ T~ T (P2} An W)U~ T {Q2}

Next (appealing to Lemma 4.10.5) let (75, Ps) and (U, Q) witness that the weak
comparison holds for

(P2, B, 7o (py)» a0(Q2 Ag, 1y -7 (02

Finally, let (73,P4) and (Us, Q4) be the result of extender comparison between P
and Qs.

Nextlet Po =P, Qo =0, % =%, Ao = A, To =T T*, and Uy = U U*. Also,
for i € {1,2,3,4} let ; = X and A; = A It is then easy to see

P @r<iTh Qi ®r<illy’
that
(((Pza Qi7 zlvAl) t1 < 5)7 (7_?72/_{; t1 < 4)7 (bv C))
is a bad block on ((P, %), (Q,A)). O

We now start proving Theorem 4.10.4. Suppose that the conclusion of Theo-
rem 4.10.4 fails. This means that

(1) whenever (T,R) € I(P,%) and (U, R) € 1(Q, ),
1. if P and Q are of Isa type then Z;;Ci, + A%cg or

2. if P and Q are not of Isa type then ER,? #* AR,z]'

It follows from Lemma 4.10.5 that, without loss of generality, we can assume that
PP = QF and for all B+1 < N7, Ypa+1) = No(s+1)- We now by induction construct
a bad sequence (B, : a < wi) on ((P,%),(Q,A)).

It follows from Lemma 4.10.6 that there is a bad block on ((P, %), (Q,A)). Let
By be any bad block on ((P,X%),(Q,A)). Suppose next that we have constructed
(Bg : B < A) for X a limit. Let Py and Q) be the direct limit of respectively
(Ps: B < A)and (Qs : B < A) under the corresponding iteration embeddings. Then
letting ¥, and Ay be the corresponding tails of ¥ and A, we have that (Py, X))
and (Q,, A,) satisfy the hypothesis of Lemma 4.10.6. Let then B, be a bad block
on ((Px, Xx), (2x, Ay))-

Next suppose that we have constructed (Bz : f < A+ 1). Let Pyy1 = P,
Qi1 = Qx4 and let T and U be the stacks respectively on the top of (Bg : f < A+1)
and in the bottom of (Bg : f < A+1). We then again can find, using Lemma 4.10.6,
a bad block Byi1 on ((Pav1, Xp | 7), (Qas1, Mg, 7). It then follows that the
resulting sequence (Bs : f < wy) is a bad sequence on ((P,X),(Q,A)). This is a
contradiction to Lemma 4.10.2.



Chapter 5

Hod mice revisited

In this section we generalize the result of [10, Chapter 3] to our current context. As
in [10], these results lead towards showing that given a hod pair (P,X), I'(P, %) is
an OD-full pointclass (see Definition 3.16 of [10]).

Recall the effect of Proposition 4.8.1; if (P, ) is a hod pair such that ¥ has
strong branch condensation and if Q@ € pI(P,3), then the strategy of Q induced
by ¥ is independent of the particular iteration producing Q. In Section 4.8, this
strategy was denoted by >o. In this chapter, whenever the strategy of a hod mouse
has a strong branch condensation, we will make use of the aforementioned notation
without giving any further explanation.

5.1 The uniqueness of the internal strategy

The first theorem, Theorem 5.1.2, is just a direct generalization of [10, Theorem 3.3].
It says that the internal strategies are unique. First we prove a useful lemma.

Lemma 5.1.1 Suppose P is a hod premouse and Q € Y. Suppose UePisa
stack on Q and suppose R is its last model. Then for all v < \* such that R E “6%
is a Woodin cardinal”, cf” (6%) > w.

Proof. Towards a contradiction, assume not. Notice that it cannot be the case that
6% has a pre-image in P. Therefore, by minimizing Q, we can assume that Q is of
limit type. We give the proof assuming that Q is of limit type. Let (./\/'a,ija, On, Ey -
a < n) be the components of 2. Without loss of generality we can assume that for
every cutpoint S of U , ﬁgs is not a counterexample to our claim.

111
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Let S be the least model in ¢ such that ﬂgﬁ exists and 6% € rng(ﬁg’n). It

follows that there is M in U such that for some extender F' in ﬂ , F is applied to M
and S = Ult(M, F). Let p be such that 7% (1) = v. Since 7¥  is cofinal at 65, we

have that Cfp(éf) = w.
Let F = Ejb\{j(/l‘f) (see Definition 2.7.2) and let M™* = Ult(Q, E). We have that

(1) Ult(M™, F) E “65 is a Woodin cardinal and hence is a regular cardinal”, and
(2) there is a sequence (h; : i < w) € Q such that for some (q; : i <w) € (V5*),

sup; ., ™ (rp(hi))(a;) = 55
Notice that
(3) G =gy (MM (mp(hy)) i < w) € Ut (M™, F).
Hence,
(4) UM, F) £ 65 = sup,c, 2, G(i)(a).

(4) implies that Ult(M™, F) E cf(07) < vp. Clearly this contradicts (1) and the
fact that 55 > V. O

Theorem 5.1.2 (Uniqueness of internal strategies) Suppose P is a hod pre-
mouse and W € YP. Then P & “W has a unique iteration strategy”.

Proof. Working in P, suppose A # X}, is another iteration strategy for W. Let
¥ = ¥J.,. Since W is not of lsa type, it follows from Lemma 4.6.3 that we can
find (7, Q) that constitutes a minimal low-level disagreement between (W,X) and
(W, A). Let b=%(T) and ¢ = A(T). Let S € P be a stack on Q according to both
Yo7 and Ag 7 and such that ¥, #(S) # Ag #(S). Let R be a strong cutpoint of S

such that 5273 is a normal tree on R that is above 6% _,. We now have that

(1) ER()\R—I),'fﬁS‘SR = AR(}\R—I),%AS’SR and

—

(2) ER(AR_U,%A%R(SER) # AR(AR—l),’T‘As“SR(SZR)-

It then follows that
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(3) cfP(5(S5r)) = w.

Let now e = Xpr_1) 75 (S>r) and d = AR(/\R_I)fﬁggR(SZR).

Notice that it is a consequence of (1) that it cannot be the case that both
Q(e,S>r) and Q(d,S>r) exist as otherwise, since they are hybrid mice with re-
spect to the same strategy, we would get that Q(e, S;R) = 9(d, ng) which implies
that d = e.

Without loss of generality, we assume that Q(e, Ssz) does not exist and 7527 (6%) =
§(S>r). It then follows from (3) that cf”(6%) = w, contradicting Lemma 5.1.1. O

The proof of Theorem 5.1.2 can be used in the context of lsa hod premice as
well. We will state this result after proving the fullness preservation of the internal
strategies. Essentially the internal short tree strategy is the unique short tree strategy
which is internally fullness preserving. For now, we state the following corollary of
the proof of Theorem 5.1.2.

Corollary 5.1.3 Suppo_ge P is an Isa type hod premouse and A is its internal short
tree strategy. Suppose (T,Q) € I(P,A) and B+1 < \2. Then P E “No(si1),7 s the
unique strateqy of Q(B+1)”.

5.2 Generic interpretability

We now move to generic interpretability. We start by recalling and generalizing the
definition of a pre-hod pair (see [10, Definition 3.7]).

Definition 5.2.1 (Prehod pair) (P,X) is a prehod pair if
1. P is a countable hod premouse,
2. AP is a successor but P is not of lsa type,

3. ¥ is an (wy,wy,w:)-strategy for P acting on stacks based on P(A\F — 1) such
that (P(\F —1),%) is a hod pair and that whenever i : P — Q comes from an
iteration according to 33, Eg(/\gfl) =109,

4. for any P-cardinaln € (65 _,,0%), considering P|n as a S-mouse over P(AF —
1), there is an wq-strategy A for P|n.
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Notice that there must be a unique strategy A as in 5 of Definition 5.2.1.1 Also,
recall the definition of Generic Interpretability, [10, Definition 3.8]. In our current
context it takes the following form.

Definition 5.2.2 (Generic Interpretability) Suppose (P,X) is a pre-hod pair, a
hod pair such that AP is a limit ordinal or an sts hod pair. We say generic inter-
pretability holds for (P,X) if there is a function F such that

1. F is definable over P with no parameters,

2. dom(F) consists of pairs (Q, k) such that @ € YP, Q I P|6F and r € (§<,67)
1s a P-cardinal,

3. for (Q,k) € dom(F), F(Q,r) = (T, S) such that ,

(CL) T’ S c pColl(w,o(Q)))
(b) P E “IFcotw,o() T and S are k-complementing”,
(c) for any v € (0(Q), k) and any P-generic g C Coll(w,0(Q)),

Plg] E “p[T,] is an (wi,wq,ws)-iteration strategy for Q which extends
ZP 2
Q

and

(p[T,))Pl) = S | HCPU,

The proof that the generic interpretability holds is just like the proof of [10,
Theorem 3.10] using Theorem 4.6.8 and Theorem 5.1.2 instead of [10, Lemma 2.15]
and [10, Theorem 3.3]. First the proof of [10, Lemma 3.9] can be used with no
changes to establish the following useful lemma.

Lemma 5.2.3 Suppose (P,X) is a prehod pair and a+1 = \P. Let k < 67 be a P-
cardinal such that P has no extenders on its sequence with critical point 87 and index
greater than k. Let A* be the iteration strategy of P|k as in 5 of Definition 5.2.1. Let
A be the fragment of A* that acts on non-dropping stacks. Let g C Coll(w, k) be P-
generic. Then Plg| locally Suslin, co-Suslin captures Code(N*) and its complement
at any cardinal of P greater than k.2

LA is the Q-structure guided strategy.
2Recall that this means that for every P-cardinal v > k, there are v-complementing trees
U,V € Plg] such that for any < v-generic h, Code(A*) N P[g][h] = (p[U])P9lM.
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Fix now a prehod pair (P,¥) and let Q € Y. Let k < 6”7 be a P-cardinal
such that k > 0(Q) and P has no extenders with critical point §¢ and index greater
than k. Let (Rg, @5 : 67) be the models and strategies of the hod pair construction
of P|6” in which extenders used have critical point > x (notice that we can view
(P,67,%) as a self-capturing background triple). Here we abuse the notation and
write ®g both for the strategy of R4 that is internal to P and also for the external
strategy. It follows from Theorem 4.6.8 ; Lemma 5.1.2 and Lemma 5.2.3 that for
some 3, (Rg, @) is a tail of (Q,Xg). We then set

foQ = Rg and A,{7Q = Cbﬁ.

In what follows, we will omit superscript P, but ask the reader to keep in mind that
certain notions depend on P. Also let 7, o : @ — N, g be the iteration embedding
according to X g and let 7, ¢ be the tree on Q with last model Rg. The following is a
consequence of Lemma 5.2.3, hull condensation of ¥ and the proof of Theorem 4.6.8.

Corollary 5.2.4 Whenever 1) € (k,07) is such that n > o(N,. ) and n < w, there
are names (T, S) € PCU@ - sych that

1,8 € poatem,

2. PE “IFeou W) T and S are (6%) T -complementing”,
’ 38

3. for any A < (n,((67)™)7) and any P-generic g C Coll(w, \),

Plgl E “p[T,] is an (wy,ws,ws)-iteration strategy for Ny o”
and letting ® be the ] 5-pullback of the strategy given by (p[T,])P19) then
d =Yg | HOPU,

Our generic interpretability result can now be proved using the tree production
lemma ([0, Theorem 3.3.15 ]) and Corollary 5.2.4. We leave the details to the reader.

Theorem 5.2.5 (The generic interpretability) Suppose (P,3) is a prehod pair,
is a hod pair such that \¥ is limit or is an sts hod pair. Assume that for every
Q € Y7, X has branch condensation. Then generic interpretability holds for (P,Y).

Next, we present our result on internal fullness preservation. The proof follows
the same line of thought as the proof of [10, Theorem 3.12 ]. Below S*(R) is the
x-transform of § into a hybrid mouse over R, it is defined when R is a cutpoint of

S (cf. [15)).
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Definition 5.2.6 Suppose P is a hod premouse and Q € YT. We say A = Eg 18
internally fullness preserving if the following holds for (T,R) € 1(Q,A) such that
(|T1M)7 exists.

1. For all limit type S € YR, if M € P is a sound max(6” + 1, (|T|*)7)-iterable
Dceysv Mg -mouse over S|0%" then M < S.

2. Suppose W <oq S is of Isa type and is such that W = MT(W|8"). Suppose
M € P is a sound max(6” 41, (| T|7)7)-iterable A,,, 7-sts mouse over W. Then
MIS.

3. Suppose n is a cardinal cutpoint of R and suppose there are Ry, Ro € Y such
that Ry is the R-successor of Ry (see Definition 3.9.2), Ry is a cutpoint of R
andn € (0%, 0(Ry)). Suppose M € P is a sound max(6” +1, (| T|*)P)-iterable
Ay, 7-mouse over Ro|n. Then M < R3(Raln).

Theorem 5.2.7 (Internal fullness preservation) Suppose P is a hod premouse
and Q € YP. Then Eg 15 internally fullness preserving.

5.3 The derived models of hod mice

In this section, we state, without a proof, a version of [10, Theorem 3.19]. Suppose
(P,%) is a hod pair such that 3 has strong branch condensation and is fullness
preserving. Suppose a < ¥ is a limit ordinal such that cfp(a) isn’t a measurable
cardinal in P. We then let D*(P, %, ) be the set of all A C R such that for some
B < aand g C Coll(w,d}) generic over P(«a) there are §}-complementing trees
T,U € P(a)[g] such that

z € A if and only if there is (S, R) € I(P(«), Yp(a)) such that 75 is above 0% and
for some y < A%, 6%, | is a Woodin cardinal in R, x is generic for the extender

algebra of R[g] at %%, and R[g,z] F z € p[xS(T)).

Equivalently, A is Suslin, co-Suslin captured by (P(a)[g],Xp)). It follows from
Corollary 4.6.10 and Theorem 4.8.1 that for x € R, the right hand side of the above
equivalence is independent of the choice of (§ ,R).

We let D(P, 3, ) be the derived model of P(«) as computed by 3, i.e., for A C R,
A€ D(P,%,q) if there is (S, Q) € I(P(a),¥) such that A € D*(Q, So, 75()).
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Next recall [10, Definition 3.18]. Essentially a pointclass is completely mouse-full
if the next model of determinacy has the same mice relative to common iteration
strategies. We introduce this notion more carefully.

Given a set of reals A C R, we let Wy = {B C R : B <, A}. Next following
Definition 3.13 of [10], we say A C R is a new set if

1. L(A,R) E AD™,
2. p(R> N L(WA7R> - WA)
3. ©LWak) i5 3 Suslin cardinal of L(A4,R).

The following is [10, Definition 3.17].

Definition 5.3.1 Given a pointclass I', we say I' is completely mouse full if either
' = (R) or there is a new set A such that

1T =W,

2. if (P,%) is a hod pair such that Code(¥) € T' and L(A,R) E “3 has strong
branch condensation and is fullness preserving” then for every a € HC,

Lp"(a) = (Lp(a)) 442,

Given two pointclasses I'y and I'y, we write I'y <,0use 2 if I'y € I's and 'y
has the same mice as I'y relative to common iteration strategies. More precisely, if
(P,X) € I'y is a hod pair such that L(I';,R) F “¥ has strong branch condensation
and is fullness preserving” then for any a € HC,

Lp™*(a) = Lp">*(a).
Finally, following [10, Definition 3.18],

Definition 5.3.2 I' is mouse full if either it is completely mouse full or is a union of
completely mouse full pointclasses (I'y : o« < Q) such that for all o, T'y, <mouse Lat1
and for all limit o, 'y, = U5<a Is.

We can now state our generalization of [10, Theorem 3.19].

Theorem 5.3.3 Suppose (P,X) is a hod pair and T' is a pointclass. Suppose fur-
ther that P is of limit type and ¥ has strong branch condensation and is I'-fullness
preserving. Then
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1. F(P7 E) = UerI(’P7§))7ﬁ<)\Q D(Q7 ZQ? B)

2. For any Q € pl(P,Y), if B+w < A\ then D(Q,Xq,3) is completely mouse
full and if B+ w = AT then D(Q, %o, ) is mouse full.

3. For any Q € pI(P,X), if B < A¥ then letting T* = D(Q,%q, 8 + w), if £ is
such that Ggode(zg(ﬁ)) = QE then for every n,

r _ v r_
QCOde(zQ(ﬁ+n)) =0cy, and ¥ =¢ +w.

4. (P, %) is a mouse full pointclass.

We can also prove a version of Theorem 5.3.3, via exactly the same proof, for sts
hod pairs.

Theorem 5.3.4 Suppose (P,X) is an sts hod pair and T' is a pointclass. Suppose
further that % has strong branch condensation and is I'-fullness preserving. Then

1. Fb(P, E) - UQEpr('P,E),ﬂ<)\Q D(Q, EQ, B)
2. For any Q € pI®(P,Y), D(Q,Xq,8) is completely mouse full.

3. For any Q € pI®(P,X), if B < A¥ then letting I'* = D(Q, Yo, 3+ w), if € is

such that Hgode(zg(ﬁ)) = Qg then for every n,

r _ g0 r_
ecode(zg(ﬁ+n)) =0y, and 0 =§ +w.

4. T°(P,%) is a mouse full pointclass.

We finish with a theorem generalizing [10, Theorem 3.20]. It shows that I'(P, %)
satisfies mouse capturing for any ¥o where Q € pI(P,X). Recall from [10] (the
first page of the introduction of [10]) that MC stands for mouse capturing, i.e., for
the statement that for z,y € R, x € OD, if and only if there is an w;-iterable y-
mouse M such that x € M. Given a hod pair (P, ¥) such that ¥ has strong branch
condensation and is fullness preserving, we say MC holds for ¥ if for z,y € R,
x € OD, 5 if and only if there is an w;-iterable X-mouse M over y such that x € M.
Given a mouse full pointaclass I and a hod pair (P, %) € T" such that ¥ is I-fullness
preserving and has strong branch condensation, we write

I'E “MC for X7
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if one of the following holds:

1. T is completely mouse full and whenever A is a new set such that I' = Wy then

L(A,R) E “MC for &7,

2. I'is not completely mouse full and if (T, : @ < Q) are the completely mouse full
pointclasses witnessing that I' is mouse full then for some o < Q, L(I',,R) E
“MC for X7.

Theorem 5.3.5 Suppose (P,Y) is a hod pair such that N7 is limit and > has strong
branch condensation and is fullness preserving. Suppose further that there is a good
pointclass I' such that Code(X) € Ap. Then for every Q € pB(P, %),

I'(P,%) E “MC for £o”.

5.4 Anomalous hod premice

In this paper, we use anomalous hod premice the same way we used them in [10], to
generate pointclasses that are mouse full but not completely mouse full.

Definition 5.4.1 (Anomalous hod premouse of type I) P is an anomalous hod
premouse of type I if there is a hod premouse Q < P such that Q is of successor
type, P E “0< is Woodin”, P can be organized as J*/(Q) where f codes a fragment
of a strategy for Q and either p(P) < 62 or J1[P] E “6< is not a Woodin cardinal”.

Definition 5.4.2 (Anomalous hod premouse of type II) P is an anomalous hod
premouse of type Il if for some limit ordinal A\ and some 0 there is a sequence

(P : o < A) such that
1. P, is a hod premouse such that \F* = a,
2. for a < B <A, Po Jnoa Ps and Po = Ps(a),
3. Pld = Uy Pa
4. P is a @acnXp 4 -premouse over P|9,
5. p(P) < 67 but for every £ € (6,0(P)), p(P|€) > 4.

Definition 5.4.3 (Anomalous hod premouse of type III) P is an anomalous
hod premouse of type III if it is of limit type, it is not an anomalous hod premouse
of type II and p(P) < 57"
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We say P is an anomalous hod premouse if it is an anomalous hod premouse of
type i where ¢ € {I,II,III}. If P is an anomalous hod premouse then we let §7
and A” be as in the above definitions. We then let ¥ be the strategy that is on the
sequence of P.

Definition 5.4.4 (Anomalous hod pair) (P,X) is an anomalous hod pair if P is
an anomalous hod premouse, ¥ is an iteration strategy with hull condensation and
whenever Q is a X iterate of P, yeCy I Q.

The following lemma is due to Mitchell and Steel. It appears as Claim 5 in the
proof of Theorem 6.2 of [3]. In the current work, the lemma is used to show that
certain hod pair constructions converge, which leads to showing that generation of
pointclasses holds (see Theorem 10.1.1). It was used in [10] in a similar fashion (see
[10, Lemma 3.25]).

Lemma 5.4.5 Suppose (P,X) is a an anomalous hod pair, (71, Q)eI(P,X) andn
is least such that if P is anomalous of type I or II then p,(P) < 67 and otherwise
pu(P) < 67", Then p,(Q) < 6<.

The next theorem is the adaptation of [10, Theorem 3.27] to our current setting.
It generalizes our results from previous sections to anomalous hod pairs.

Theorem 5.4.6 Suppose (P,X) is an anomalous hod pair of type II or III. Sup-
pose that there is a pointclass I' such that for any (71, Q) € B(P,XY) there is a hod
pair (R, A) such that A has (strong) branch condensation and is I'-fullness fullness
preserving, and there is w: Q — R such that A™ = Yo7 Then

1. For every (T,Q) € B(P,%), Yo7 has (strong) branch condensation, is posi-
tional and is commuting.

2. ¥ is strongly T'(P, X)-fullness preserving and I'(P, X)) is a mouse full pointclass.

We omit the proof of Theorem 5.4.6 as it is only notationally more complicated
than the proof of [10, Theorem 3.10]. We remind the reader that the proof of [10,
Theorem 3.27] depended on generic interpretability result, which appeared as [10,
Theorem 3.10]. In our current context we need to use Theorem 5.2.5. The general
idea is that we can translate the properties of ¥ into the derived model of P as
computed via . This fact then just gets preserved under pull-back embeddings.

It is also possible to prove a version of Theorem 5.4.6 for sts hod pairs. To prove
it, we again need to use Theorem 5.2.5. We state it without a proof.
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Theorem 5.4.7 Suppose (P,X) is an sts hod pair and T is a pointclass. Suppose
that for any (T,Q) € B(P,X) there is a hod pair (R,A) such that A has strong
branch condensation and is (strongly) T-fullness fullness preserving, and there is
7 Q — R such that AT = ng. Then

1. For every (T,Q) € B(P,%), Yo7 has (strong) branch condensation, is posi-
tional and 1s commuting.

2. ¥ is strongly T°(P,X)-fullness preserving and T'*(P,X) is a mouse full point-
class.

The following is an easy corollary of Theorem 5.4.6.

Corollary 5.4.8 (Branch condensation pulls back) Suppose (P,X) is a hod pair
such that A7 is limit and ¥ has (strong) branch condensation. Suppose w: Q — P
is elementary. Then for every B < X2, (¥7)g(s) has (strong) branch condensation.

5.5 Strong branch condensation and correctness
of O-structures

Suppose (P, ) is an sts hod pair. There is one potential problem with our definition
of short tree strategy indexing scheme (see Definition 3.8.2). Suppose M is an
unambiguous Y-sts premouse and 7T is an ambiguous tree on P. Suppose there is
an M-shortness witness (3,v,b) for 7 and let @ = Q(b, 7). It is not immediately
clear that Q is a ¥+ (7)7-sts premouse. More precisely, it is not clear that ¥e C
Ym+m,r | Q. In this section, we show that if ¥ has strong branch condensation
then Q is indeed X+ (1) 7-sts premouse. The following lemma is the crux of our
argument.

Lemma 5.5.1 Suppose (P,%) is an sts hod pair and T is a pointclass. Suppose
further that 3 has a strong branch condensation and is strongly I'-fullness preserving.

-

Suppose t = (Po, Uy, P1,U1, Po,U) is a stack of length 3 on P such that Uy is ac-

cording to ¥ and (Py,Uy, Pe,U) is (P, X)-authentic. Then (P1,Ur, Pa,U) is according
to Zpl’uo.

Proof. The proof is a routine application of strong branch condensation. We first
prove that U is according to Xp, .



122 CHAPTER 5. HOD MICE REVISITED

Fix a cutpoint S of U; such that 7(1)<s? exists and (U, )<s is according to Xp, 14,
Let K be the longest initial segment of (U;)>s that is above 55", We claim that

Claim 1. K is according to Xs.

Proof. Suppose first that I doesn’t have fatal drops. Fix a limit ordinal v < [h(K)
such that IC | v is according to g and let b be the branch of I | v in K. We want
to see that b is according to Xs.

We have that Q(b, K | ) exists and is (P, X)-authentic. Let then 7 be a tree
on P according to ¥ that authenticates Q(b, K | 7). Let W = n7*(Pb). Also let
U be the T-authentication tree on Q(b,K [ v) and («,&) be the T-authentication
ordinals. Thus, £ < o(W(a)) and W||€ is the last model of U. Let k : P — (W(«))?
be the uncollapse map of Hull(xT[PY] U §OV(@)"). Tt follows from clause 3 of
Definition 3.7.1 and Lemma 4.8.3 that k = 7t o glo U)<sb,

We now want to show that Q(b, K [ ) is a Q-structure of a correct kind, a kind
that X5 chooses. Let e = Ss(K | 7), @ = MX|(6(K | 7)*)/\/‘5[7, and let A be the
7“-pullback of Xwiie. We now compare Q with Q(b, IC [ 7) using respectively ¥q
and A. Because X is strongly I'°(P, X)-fullness preserving (see Theorem 5.4.7) and
A € T°(P,¥) (see Definition 3.9.7), if the comparison halts then Q(b, K | ) must be
an initial segment of Q implying that b = e. Therefore, the comparison cannot halt.

Using the proof of Lemma 4.6.3, we can find a low level disagreement between A
and Xo. Let then (T, R) € B(Q,Yo) and (T1,R) € B(Q(b,K | 7),A) constitute a
low level disagreement between Yo and A. Let Ry and R be the last models of
7% and ﬂ when we regard them as stacks on Q and Q(b, K | 7). Notice that 7Tob
and 77* exists. Let T = 74T, be the stack on WI|¢ constructed via a copying
construction using 7 and let R* be its last model. There is then

o (R — (R

such that

- —

7T ok = g onTib o e Unzsd

and A 7 is o-pullback of X;(%). It follows from strong branch condensation that
Ap 7 =g

Suppose now that I has a fatal drop. The proof is very similar to the proof given
above. Without loss of generality we can assume that IC has a fatal drop at §. Fix
then 7 such that K is a normal tree on O;? above 1. We can then mimic the above
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proof using (9;? instead of Q(b,KC | 7). O

To finish proving that U is according to Xp,, it is enough to establish the follow-
ing claim.

Claim 2. Suppose S is a cutpoint of U such that 7¢)<s? exists and (U;)<s is
according to Xp, 34,- Let I be the longest initial segment of (U;)>s that is based on
S°. Then K is according to Xg.

Proof. We know that S is (P, ¥)-authentic. Fix then a normal iteration tree 7~
on P according to X that authenticates S*. Let W = x7*(P%), and let U be the
T -authentication tree on 8°. Let a be such that W(«a) is the last model of &. Then
K is according to m-pullback of Yw(a)-

Let k : P — W(a) be the inverse map of the collapse of Hull™(x7*[P?] U ).
We then have that k = 7% o 7o U)<s:b Tt now easily follows from strong branch
condensation that C is according to gs. U

Finally we want to see that U is according to >p,. The proof is very similar to the
proof given above. Fix 7 that authenticates P35, and let S be the T-authentication
tree on P5. Let W = 77 *(PP). Let a be such that W(a) is the last model of S.
Then U is according to 75-pullback of Yw(a)-

Let k : P°* — W(a) be the inverse map of the collapse of Hull™(x7*[P?] U ).
We then have that k& = 7 o 7% “:b. Tt now easily follows from strong branch
condensation that 2/ is according to Epg, as it is according to 7-pullback of YW(a)-

O

Corollary 5.5.2 Suppose (P,X) is an sts hod pair, I' is a pointclass and ¥ has a
strong branch condensation and is strongly U-fullness preserving. Suppose further

that M is an unambiguous 3-sts mouse, T € M is a normal M-ambiguous tree on
P according to Y™ and (3,7,b) is an M-shortness witness for T. Then b= X(T).

Proof. 1t is enough to show that Q(b,T) is a X+ (7)-sts mouse over M (7). Let
® be the iteration strategy of M| induced from the iteration strategy of M. Thus,
¢ witnesss that M|5 is a X-sts mouse. Let (J; : i < w) be a sequence of Woodin
cardinals of M|S witnessing that that clause 4 of Definition 3.8.2 holds. Also, let
A € M| be an iteration strategy for Q(b, 7T) as in clause 4 of Definition 3.8.2.
Notice that it follows from minimality of 8 that p(Jy(M]B)) < do, implying that
® is commuting. It then follows (using clause 4 of Definition 3.8.2) that A has an
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extension AT that acts on all trees in V. It is then enough to show that At witnesses
that Q(b,T) is a X+ (7)-sts mouse.

Let U be a tree on Q(b,T) above §(T) according to A*. Let R be the last
model of U. We need to see that R is a X+ (-premouse. Let Py = M™(T) and fix
(Py, T1, Pa, 71) € R a finite stack of length 2 on P, that is according to X%. It follows
from clause 4 of Definition 3.8.2 that for some ®-iterate A" of M|B, (Py, T1, P2, T ) is
(P, N)-authentic. It then follows that (P, T, Py, Ti, Pa, 71) satisfies the hypothesis

—

of Lemma 5.5.1. Hence, (P1, 71, P2, T) is according to Xp, 7. O

Remark 5.5.3 (On hod pair constructions) Suppose (P, A) is an sts hod pair.
Recall Definition 4.2.1, which introduces fully backgrounded constructions relative to
A. In particular, recall the Important Anomaly in clause 2.c of Definition 4.2.1.
The main point of Corollary 5.5.2 is to show that this anomaly cannot occur. What
follows is an explanation of how fully backgrounded constructions relative to A and
in general, hod pair constructions are carried out (the Important Anomaly appears
in such constructions as well, for instance, see clause 3.a of Definition 4.3.9).

Suppose (M, 0,%) is a background triple and we want to show that the hod pair
construction of M doesn’t break down because of Important Anomaly. Let (P, A) be
some pair that appears in the fully backgrounded hod pair construction of M. Suppose
further that P is of lsa type. It follows from Theorem 4.5.4 that A is strongly I'-
fullness preserving for some . It also follows from Theorem 4.7.4 that AS** has strong
branch condensation. It then follows from Corollary 5.5.2 that Important Anomaly
cannot happen in fully backgrounded constructions relative to A,

5.6 From condensation to strong condensation

In this section we show that strategies with branch condensation acquire strong
branch condensation on a tail. However, we don’t quite get strong branch conden-
sation for Isa type hod pairs. Nevertheless, in the case of Isa type hod pairs we get
low level strong branch condensation. In the case of limit type hod premice that are
not of Isa type, low level strong branch condensation and strong branch condensa-
tion coincide. The difference between Definition 4.7.1 and Definition 5.6.1 is just the
requirement in clause 3 that o +1 < A%,

Definition 5.6.1 (Low level strong branch condensation) Suppose (P,Y) isa
hod pair such that P is of limit type. We say 3 has low level strong branch conden-
sation if 3 has branch condensation and whenever (T, Q,m, R, «, ) is such that
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1. (T, Q) € I(P,%) and R is a hod premouse,
2. W:P—>R,U:R—>Qandﬂ%:007r,
3. a+1< AR is such that for some U, (U, R(a+1)) € B(P, L) UI(P,%)

then letting A = o-pullback of ¥, 7, whenever W is such that (W, R(a + 1)) €
B(P,X)UI(P,X), if there is no low level disagreement between Ag(a41y and R0

then Agay1) = ER(&+1),W'

at+1),W

Theorem 5.6.2 (From condensation to strong condensation) Suppose (P,X)
is a hod pair such that X has branch condensation and P is of limit type. Then there
is some (T, Q) € I(P,X) such that (Q,X4 ) has a low level strong branch conden-
sation.

We spend the rest of this section proving Theorem 5.6.2. The idea is just like
the idea behind the diamond comparison proof. If there is no tail with (low level)
strong branch condensation then we obtain a certain bad sequence of length w;. As
is expected, such sequences cannot exist. We start by describing the blocks of our
bad sequences.

Definition 5.6.3 (A bad diamond) Suppose (P,X) is a hod pair of limit type.

We say (P; :i<2),(T; 11 <3),( U :1<3),(Ri:1<2),(S:1<2),k,&) is a bad
diamond on (P,X) if it satisfies the following conditions:

1. Py =P, fori <2, P;,R; and S; are hod premice and k : Py — Ro.

2. (U, S0) € I(P, %), (U, 81) € I(80, 5, 13,) Ua, Pr) € 1(S1, 5, y7z,)» and Uy
15 a normal tree on Sy.

-

3. To=0, ﬁ 18 a normal tree on Ry with last model R, and 73 18 a stack on Ry
with last model Py,.

JoE4+1 < X0, Sy(€4+1) = Ro(E+ 1), Ty = U3 is a normal tree based on

S(€ + 1) such that it has a <" *-mazimal cutpoint N such that (T, )sn is
based on N'(v + 1) where v = w71 )=~ (¢).

5. (523)1 =sup{k(f)(a): f€PoNae (R(&))“}.

6. If b is the branch of T, in T; then b # S, (U ).

3Recall that this is just 71 without its last model.
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7. Letting v = Wﬁ(f) = 771’71(5), Ri(y+1) =Si(v+1). If W is the part of To

—

based on Ri(y + 1) then W is according to Xg, (y+1)-

Lemma 5.6.4 Suppose (P,X) is a hod pair such that ¥ has branch condensation
and P is of limit type. Suppose further that ¥ doesn’t have low level strong branch
condensation. Then there is a bad diamond on (P,Y).

Proof. Let (7_:, Q,m,R,a,0) be a witness to the failure of low level strong branch
condensation of (P,%). Let (Uy, S) € I(P, ) be such that R(a+1) = Sy(a+1). We
letm =k Ro=Rand { =a. Let A = E‘éf. Notice that clause 5 of Definition 5.6.3
is satisfied because 0%, ; is the least v > 6% such that Lp"' 7A@ (R|v) E “vis a
Woodin cardinal” (to see this, we use Theorem 5.4.6 and Corollary 5.4.8).

Let 7 be a normal tree on R(a+ 1) according to both ¥ 7 and A and such that

S, (T) # MT) but letting b = Xg 7 (T), ¢ = MT), S = M] and Ry = M]
then

U S (T (T T{S1} = DRu(xT (a41)).T-

Such a T can be found using the Theorem 4.6.10. Notice that Theorem 4.6.10 is
applicable because both X and A are I'(Sp(a + w), Xg, 7 )-fullness preserving (here
we need to use Corollary 5.4.8 to conclude that Ag s+ has branch condensation).

Let 71 = T {MTY, Uy = T{M]}, Ry = M7 and S; = M] .

Next we would like to compare (R1, Ay, 7) and (S, ESLHOATA{SI}). To do this,
we can use Corollary 5.4.8 and Theorem 4.10.4. Let then (75,P;) € I(R1, A, 7)
and (Us, Py) € [(Sl,ZslﬂoﬂTA{Sl}) be such that Xp 7 (s, = Ap, 77 It is
then not hard to see that

(Pi:i<2),(T; i <3),U; i< 3),(Ri i <2),(S; i <2), k&)
is a bad diamond on (P, Y). O

Now we want to show that there cannot be an w;-sequence of bad diamonds on

P.

Definition 5.6.5 (A bad diamond sequence of length ) Suppose (P,%) is a
hod pair such that X7 is limit. We say D = (D, : a < f8) is a bad diamond sequence

—

of length 8 if Dy = (P i < 2),(T* i <3),U* i < 3),(R¥:i <2),(S:i<

K3 3

2), k&%) and the following holds:
1. Dy is a bad diamond on (P,X) and P} = PY.
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2. For alla < B, P? € pI(P,Y), D, is a bad diamond on (P, EP&@KQ%) and
Pott =Py

3. Forv < a< B, letm,,: Py — Py be the embedding obtained by composing
the embeddings k7 o 7T forv < v < «, and let 0, : P; — Pg be
the iteration embedding obtained by composing the embeddings e Ul for
v <~ <a. Then for limit X\ < (3, P} is the direct limit of (Py : v < \) under
the embeddings 7,4, and (Py)° is the direct limit of ((P§)® : v < ) under the
embeddings T, .

We say that m embeddings are the top embeddings of D and o embeddings are the
bottom embeddings of D.

Lemma 5.6.6 (No bad diamond sequence of length w,) Suppose (P,%) is a
hod pair such that \¥ is limit and ¥ has a branch condensation. Then there is no
bad diamond sequence of length wy based on (P,Y).

Proof. Suppose not and let D= (Dg : f < wi) be a bad diamond sequence of length
wi. Let 7 : H — H,, be a countable submodel such that {D, (P, E)} € rng( ).
Let k = wi. Notice that x = crit(r). Let for £ < 8 < wy, ng PS5 — Py be the
composition of the top embedding of D and let O¢p PO — 790 be the composition
of the bottom embeddings of D. Let P = 7(P§). Standard arguments show that

(1) 71 (P’ = Tuor [ (P§)’ = 0r [ (P5)".

Let 7 : R} — Pt and m : S — P“' be the composition of respectively the top
and the bottom embeddings of D. Let v = 7T (£7). Because the top and bottom
embeddings of D move R% (v + 1) and SF(y + 1) correctly (this is a consequence of
our choice of T; and 1/71), we have that

(2) j I RY(y+1)=m [ ST(y+1).
Notice also that

(3) 01%, = sup{n ok (f)(a) : a € (Rf(7))““Af € Py} and 654, = sup{ah & (f)(a) :
0 € (SF))< A f € Py}
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The first equality in (3) follows from standard iteration facts and clause 5 of Defini-
tion 5.6.3. It follows from (1) and (2) that

(4) for all f € (Pg) and a € (SF()<*, 77" T (f)(a) = 764 (f)(a).

It then follows from (2) and (3) that

(5) (5&1 = sup(rng(ﬂﬁ) N rng(ﬂﬁl))

contradicting the fact that 711 isn’t according to X St (@ (Ul ~Ue ~TT5 )~ ]

The next lemma finishes the proof of Theorem 5.6.2. Its proof is straightforward,
and can be obtained by a consecutive application of Lemma 5.6.4.

Lemma 5.6.7 Suppose (P,Y) is a hod pair such that N is limit, ¥ has branch
condensation and for every (T, Q) € I(P,X), (Q,X4 7) doesn’t have low level strong
branch condensation. Then there is a bad diamond sequence on (P,X) of length w.

We end this section with a statement of a generalization of Theorem 3.28 of [10].
The theorem shows that we can get branch condensation on a tail by starting with a
pair that has only hull condensation. Just like in [10], this result will be used when
proving generation of pointclasses (Theorem 10.1.1). The proof is very much like the
proof of Theorem 5.6.2, and the proof of Theorem 3.28 of [10)].

Theorem 5.6.8 (Getting branch condensation) Suppose (P,X) is a hod pair
or an anomalous hod pair of type II or III with the property that CfP(AP) 1S mea-
surable in P. Suppose further that whenever (T, Q) € B(P,X), ¥g 4 has branch

condensation. Then there is (71, Q) € I(P,%) such that Yo7 has branch condensa-
tion.



Chapter 6

The internal theory of Isa hod mice

A major shortcoming of our treatment of short-tree-strategy mice is that we did not
add branches to all trees. Suppose (P, X)) is an sts hod pair, X is a self-well-ordered
set such that P € X and M is a Y-sts premouse over X based on P. Recall short
tree strategy indexing scheme Definition 3.8.2. Recall that our strategy for indexing
branches was to consider two kinds of iterations, unambiguous and ambiguous. We
outright index the branches of unambiguous iterations. However, we only consider
a subclass of ambiguous trees. If for some 8 < o(M), T € dom(XMP) is an M|3-
ambiguous tree then (i) 7 is a result of comparing P with a certain background
construction of M| and (ii) we index the branch of T after we find a certain cer-
tificate of shortness (recall Definition 3.8.2). It is then not clear from our definition
that X | M C M has branches of all trees. The main goal of this chapter is to show
that, provided M is sufficiently closed, ¥ | M C M. Below we make our goal more
precise.

Motivational Question. Suppose (P,X) is a hod pair or an sts hod pair, X is
a self-well-ordered set such that P € X and M is a ¥ or X-sts mouse over X (see
Definition 3.8.6). Is ¥ [ A/ definable over N7 Is ¥ | Ng] definable over N'g] where
g is N-generic?

In Section 5.2 we gave an answer to Motivational Question in the case M is P
itself (see Theorem 5.2.5). Another answer was given by [10, Lemma 3.35], where it
was shown that ¥ | Ng] is definable over N'g] provided P is doesn’t have non-meek
levels. Here, we are mainly concerned with proving a version of [10, Lemma 3.35]
in the case of a non-meek hod premice. Because of this we will state many of our
definitions and theorems for hod pairs or sts hod pairs (P, X) such that P is non-

129
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meek (see Definition 2.4.8; recall that non-meek means that A” is a successor ordinal
and 0}, is a measurable cardinal). To simplify our terminology, we will say (P,¥)
is a non-meek hod pair if P is a non-meek hod premouse and ¥ is either an iteration
strategy or a short-tree-strategy (this is only allowed in the case P is of lIsa type).

While a positive answer to the Motivational Questions is desirable, it is naive
to hope that one exists for all such A/. A positive answer depends on how closed
N is. If for instance the branch of 7T is given via a Q-structure that is beyond the
#-operator while our N is only closed under the #-operator then, in most cases,
identifying the correct branch of 7 inside N via a procedure that is uniform in 7
will be impossible. In this chapter, we give a positive answer to the Motivational
Question provided our N is sufficiently closed. We make this notion more precise.

Suppose (P,Y) is a non-meek hod pair and A is a Y-mouse such that N F
ZFC—Replacement. We say N is X-closed if ¥ | NV C N. We say N is generically
Y-closed if N is Y-closed and whenever ¢ is N -generic, ¥ | Ng] is definable over
(Mg, €) (in the language of X-premice) without parameters. It is worth remark-
ing that the structure (NMg], €) is a structure in the language of 3-premice and in
particular, there are names for EN and 3V,

Definition 6.0.9 We say N is uniformly generically Y-closed if N is generically
Y.-closed and there are formulas ¢ and ¢ (in the language of L-premice) such that

for any N -generic g, any stack T € N'g] on P and any b € Nlg|,

—

T EHdOm(E) < (Ngl,e) E ?[ﬂ
Z(T) =b<+ (N[g]v G) = ¢[7'7 ]

The main theorem of this chapter is Theorem 6.1.5. It gives a positive answer
to our Motivational Question in the case A is Y-closed and has fullness preserving
iteration strategy (see Definition 6.1.1 and Definition 6.1.3). The main idea behind
the proof of Theorem 6.1.5 is that the branch of an iteration tree 7 on P can be
identified by the authentication process introduced in Definition 3.7.2.

Recall that given a transitive set X, we let M™*(X) be the least sound active
mouse over X. Also recall that if X is any set and A C X? then p[A] is the
projection of A onto one of the coordinates of A. The specific coordinate onto which
we project will always be clear from the context. Also, if X is a transitive set then

o(X)=0rdn X.
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6.1 Internally >-closed mice

In this section we introduce a kind of closure property of hybrid mice for which we can
give a positive answer to our motivational question. The first such closure property
is internal closure, which postulates that our mouse has enough of the strategy.

Definition 6.1.1 (Internally Y-closed mouse) Suppose (P, ) is a non-meek hod
pair (possibly an sts hod pair) and N is a X-premouse.

1. We say N is an internally X-closed premouse if for every N -cardinal k there is
M <N such that M E ZFC, N||k < M and for every n € [k,0(M)), letting S
be the output of the (P, %M)-hod pair construction of M (cf. Definition 5.5.1)
in which extenders used have critical points > 1 reaches a M-iterate Q of P
via a normal tree T such that 77 exists, \* = 17 *(\P) and in the case X is
an iteration strateqy, 7' -exists.

2. If M,N and k are as above then we say M witnesses the internal Y-closure

of N at k.

3. We say N is an internally X-closed mouse if it an internally X-closed premouse
and has a (k,w;)-iteration strategy A witnessing that N is a S-mouse.

Two remarks are in order. First notice that internal Y-closure is a first order
property of A/, and in clause 3 above we do not need to require that A-iterates of N/
are internally Y-closed as this is just a consequence of elementarity.

Secondly, we cannot in general hope to prove that generic interpretability holds
for internally Y-closed mice. The reason is that there might be Q € B(P, %) such
that Yo is beyond the iteration strategy of N (in the sense that A <, ¥g), and
if such a Q is generic over N then it is not wise to hope that Yo | N would be
definable over N'[Q]. In order to prove generic interpretability result for internally
Y-closed premice we need to find a fullness condition that would let us take care of
examples as above. In particular, we seem to need to require that any o as above is
strictly below the strategy of N. The next couple of paragraphs make this intuitive
notion more precise.

Suppose N is an internally Y-closed mouse,  is an N-cardinal and M is as
in Definition 6.1.1. We then let S/]V’ be the Y M-iterate of P constructed via the
(P, ¥M)-coherent fully backgrounded construction where critical points of extenders
used are > 7. We let Z/{é"‘ be the normal tree on P with last model Sgw and

T, MM

M P s of Isa type
K i : otherwise.
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Notice that 7r,,/7\4 eN.

Keeping the notation and terminology of Definition 6.1.1, suppose A is an itera-
tion strategy for A (witnessing that A is an internally Y-closed mouse). We then
let (A, A) be the collection of all sets A C R such that for some (T, R) € I(N,A),
there are

1. an R-cardinal x,

2. M <R witnessing that R is internally Y-closed at x,
3. 1 € [k, 0(M)),

4. a < X" =1 and

M
5. S/]V’ = “53’7 is a Woodin cardinal”
such that
A Sw COd@(E‘g#(a)M/]\A)

Remark 6.1.2 For convenience, we will use the notation I'(P, %) for both sts pairs
and hod pairs. In the case of sts hod pairs, it is just T°(P,X).

Definition 6.1.3 We then say that A is a fullness preserving iteration strategy for
N if for every N -cardinal n, letting A" be the fragment of A that acts on stacks above
n, TIN,AT) =T (P, X).

The following is a useful lemma.

Lemma 6.1.4 Suppose (P,Y) is a non-meek hod pair and N is a Y-closed mouse
with a fullness preserving iteration strateqy A. Fiz an N -cardinal k and M < N
such that M witnesses the internal closure of N at k. Let n € [k,0(M)) and let
a < A5 — 1. Then there is an N -cardinal v > n, My I N witnessing the internal
Y-closure of N at v and an increasing sequence of Mi-cardinals (n; : i < w) such
that letting 1, = sup,.,1n; and Q = Sé‘/‘,

1. for every i < w, Lp"P=)Ee@ (My|n;) E “n; is a Woodin cardinal”,

2. Lpg(p’z)’zg(“)(/\/lﬂnw) € My, and

3. letting S = My|(n}*)Mt and ® be the fragment of As that acts on non-dropping
trees that are above v, whenever R € I(S,®) and & > v is a cardinal of R,
then Lpt PP ew@) (R|€) € R.
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Proof. Fix vy > n such that there is M; < N witnessing the internal Y-closure of
M
N at 1 and such that for some v € [1,0(M,)] and some § < X5 " — 1,

1) Code(Xo(nr2)) <o Code(X omy and SM1 E “55”Ml is a Woodin cardinal”.
( Q(a+2) s v 8

(5)>

Fix v satisfying (1). We claim that M is as desired. Clearly M; witnesses the
internal Y-closure of N at v. It is then enough to show that there is a sequence

M
(m; + 1 < w) satisfying clause 1-3 above. Let § = 55” "and R = SMi. Because § is
a Woodin cardinal inside R, it follows from standard S-construction arguments (see
[10, Proposition 3.39]) that
(2) Lpt P2 Ere) (M]6) E “6 is a Woodin cardinal” and Lp"P¥)Ere) (M]6) € M;.

Moreover, it follows from fullness preservation of A that

(3) the fragment of A acting on non-dropping stacks based on M;|(6+)™ that are
above v is (X3 (Code(Sg(g))))" 7 *)-fullness preserving.

Next, notice that it follows from (1) that
(4) for some v < 8, R(7) is a Lg(q-iterate of Q(a).

It follows from (2) and (4) that if K is the output of the ¥x(,)-fully backgrounded
construction of R|d in which all extenders used have critical point > 6/, then

(5) K E “the least < d-strong cardinal is a limit of Woodin cardinals”.

(5) is a standard fact. It can be proven as follows. First it follows from standard
genericity iteration arguments that

(6) R & cf(Lp" P> = (K)) < 5&2-

It follows from (1) that 6%, < 6F. Using (6), a Skolem hull argument and full-
ness preservation of Yg(y42), we get that

(7) there are unboundedly many ¢ < & such that LptP¥)2=re) (KC|€) E “¢ is a Woodin
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cardinal”.!

It can be shown using S-constructions (see [10), Proposition 3.39]) and (7) that

(8) there are unboundedly many ¢ < § such that LptP®Ere(M]€) B “¢ is a
Woodin cardinal”.

(5) easily follows from (8). Continuing with the proof, let (n; : i < w) be the first
w many cardinals of K such that for each i, Lp"P®)==re) (M|n;) E “n; is Woodin”.
Let n, = sup,.,, m;- We claim that (n; : ¢ < w) is as desired. It can be shown using
S-constructions that

(9) for every i < w, Lpt P =R (M|n;) E “n; is a Woodin cardinal”.
It also follows from (2) and (3) that

(10) the fragment of A acting on non-dropping stacks based on M;|(6})M that
are above v is (3%(Code(Sr(y)))) P2 -fullness preserving.

It follows from the fact that the iteration embedding 7 : Q(«) — R(7) is in M; and
(10) that

(11) the fragment of A acting on non-dropping stacks based on M;|(5} )M that
are above v is (¥2(Code(Zg(a))))" 7> -fullness preserving.

(11) finishes the proof of lemma.
U

We will state our generic interpretability result for internally Y-closed mice N
that have a fullness preserving iteration strategy.

Theorem 6.1.5 Suppose (P,X) is a non-meek hod pair , T is a pointclass and N
1s an internally Y-closed premouse. Suppose 33 is strongly I'-fullness preserving and
has strong branch condensation. Then the following hold.

1. If (P, %) is a hod pair then for any N -generic g, N'[g] is X-closed and 2 | N'g]
is uniformly in g definable over Ng|.

To prove (7), simply iterate R(y+1) (above 67¢) to make K generic. Then the Woodin cardinal

has to be mapped to o(Lp"(P*)== (K)). Then take Skolem hulls that are transitive below 62}
and contain the embedding coming from the aforementioned genericity iteration.
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2. If (P,X) is an sts hod pair and N has fullness preserving iteration strategy
then for any N -generic g, Ng] is X-closed and X | Nlg] is uniformly in g
definable over Ng|.

In the next few sections, we will develop the terminology we need to prove Theo-
rem 6.1.5. We will not give the proof of clause 1 of Theorem 6.1.5. It is much easier
than the proof of clause 2 of Theorem 6.1.5 and it is very much like the proof of [10,
Theorem 3.10]. Thus, we only concentrate on sts hod pairs.

6.2 Authentication procedure revisited

Suppose (P,X) is an sts hod pair, N is an internally X-closed premouse, g is N-
generic and T € dom(3%¢) N N[g] is an irreducible tree on P above P? such that T
doesn’t have fatal drops. Suppose first that 7 € b(X5€). In this case, we would like
to identify Q(b, 7) in M[g] via a procedure that is uniform in 7. Here b = X(T).
Clearly if Q(b,T) < M™(T) then we can easily identify Q(b, 7). Suppose then
MF(T)<Q(b,T). We now face two problems.

The first problem is showing that Q(b, 7) € M[g] and the second is showing that
Q(b, T) can be identified by N in a uniform manner. Both of these require more of
N than just internal Y-closure. To prove both of these facts, we will need that N
has a fullness preserving iteration strategy. Our strategy for finding Q(b, 7) in N is
that if NV is sufficiently rich then some backgrounded construction will reach Q(b, T').
To execute this plan, we first need to describe the sort of backgrounded construc-
tions that we will consider. In what follows, we borrow ideas from Section 3.7. In
particular, it will be helpful to recall Definition 3.7.3 and other definitions from that
section.

Definition 6.2.1 ((N, X)-authenticated iteration strategy) Suppose (P,X) is
an sts hod pair, X C P° and N is a X-sts premouse such that X € N. Suppose
that g C P is N-generic for some poset P € N and R € Nlg] is an lsa type hod
premouse. We define a partial short tree strategy @%’X’g without a model component
for R as follows. @%’X’g acts on finite stacks of length 2.

1. t=(Ro, T,R1,U) € dom(@%’x’g) NNTg| if and only ift is (P, SN, X) authen-
ticated.

2. Givent = (Ro, T,R1,T) € dOm(@%’X’g) NNy, @%’X’g(f) = b if and only if
t~{MEY ds (P, SN X)-authenticated, where MY is the direct limit of models
along b.
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When X = P we simply omit it from our terminology.

Continuing with the R, N of Definition 6.2.1, we next define an A -authenticated
backgrounded construction over R. This is essentially a fully backgrounded con-
struction relative to @%’g (see Definition 4.2.1).

Definition 6.2.2 ((N, X)-authenticated backgrounded constructions) Suppose
(P,X) is an sts hod pair, X € P°NN and N is a X-sts premouse such that X € N.
Suppose that g C P is N-generic for some poset P € N and Y, R € Nlg] are such
that Y is a self-well-ordered set and R € Y is an lsa type hod premouse. Suppose
further that k is an N -cardinals such that {P,R,Y} € N|kl[g].

We then say that (M, N, : v <), (F, : v <mn)) is the nth initial segment of the
output of the (N, X)-authenticated fully backgrounded construction over Y based on
R in which extenders used have critical points > k if (M, Ny v <n), (Fy : v <n))
is the nth initial segment of the output of the fully backgrounded construction of N
over Y relative to @%’X’g in which all extenders used have critical points > K.

Finally, we say Q is an (N, X)-authenticated sts mouse over Y based on R if
Q € N and for some v, {P,R,Y,Q} € N|v|g] and Q appears as a model in the
(N, X)-authenticated fully backgrounded construction over Y based on R in which
extenders used have critical points > v. When X = P° we simply omit it from our
terminology.

Suppose now that (P,X) is an sts hod pair, X C P’ and N is an internally
Y-closed mouse with a fullness preserving iteration strategy A such that X € N'. We
let

LpNXsts (Y, R) = (J{Q € Ng] : there is an N-cardinal « such that
{P,R,Y,Q} € N|k[g] and an M < N witnessing that A is fullness preserving at x
such that Q is an (M, X )-authenticated sound sts mouse over Y based on R such

that p(Q) = o(Y)}

Again, if X = P’ then we omit it from the notation.

Notice that we do not know that Lp**!(Y, R) is a meaningful object, since we
do not know that if Qg and Q; are authenticated by Mgy and M, respectively then
they are compatible. This, however, is true when R is an iterate of P and ¥ has
strong branch condemnation and is strongly I'-fullness preserving for some I' (see,
for instance, Corollary 5.5.2). This fact will also be verified in the next section.

We can then define (LpY****(Y,R) : a < o(N)) by induction as usual. More
precisely, the sequence is defined via the following recursion.
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L Lpy (v, R) = Ly XY, R).
2. LY (Y, R) = LpNXsts (Lph - Xst5(Y, R)).
3. Ly (Y, R) = Uger LY 55 (Y, R).

When ¥ = R or X = P’ we omit them from the above notation. We can now
describe the M -authenticated iterations of P.

Definition 6.2.3 (N-authenticated iteration) Suppose (P,X) is an sts pair, T’
is a pointclass and N is an internally Y-closed mouse with a fullness preserving
iteration strategy A. Suppose further that ¥ has strong branch condensation and
18 strongly T’ fullness preserving. Also suppose that g C P is N-generic for some
poset P e N and T = (8,7, : i < m) € Ng] is a stack on P. We say T is
N -authenticated if the following conditions hold.

1. For every 1 < m, S; is an lsa type hod premouse such that
Si = Lpﬁ[’Sts(M+(Si|58i)).

2. For every i < m, n7° exists.

3. For all cutpoints S OfT such that w7=s® exists, letting VW be the longest normal

initial segment of ’T>3 that is based on S and is above 55 , for all limit ordinal
v < Ih(W) such that W | v is N -ambiguous,

(a) if LY\ S (MTOW [ ) E “6(OW | 7) is a Woodin cardinal” then W doesn’t
have a branch for W | v and sz = §; for some i < m, and

(b) if LpN=ts(MYW T 9)) E “6(W | 7) is not a Woodin cardinal” then W
has a branch b for W | v such that Q(b,V | ) exists and Q(b,W | v) <
LV (ME(W 1 ).

4. For every cutpoint S of T such that w exists, letting U be the largest ini-
tial segment of T based on S°, (S°,U) is an N -authenticated iteration (see
Definition 3.7.2).

T<s:b

9. For every cutpoint S ofT such that w7=s exists, letting U be the longest normal

initial segment ofT that is based on S and is above 05° and is such that for
some 1 € (65,6%), U is based on O3, and is above 1, then (OF, [ U) is an
N -authenticated iteration (see Deﬁmtwn 3.7.2).
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6. For every cutpoint S 0f7_l such that 77=sY exists and ’7125 is a normal tree on S°
above 65", then (S°, Tss) is an N -authenticated iteration (see Definition 3.7.2).

7. If for some k < w, Ty, is a normal tree T on some @ < Sy, |((65m)Th+1)Sm
above ((65m)*k)Sm such that p(Q) = ((§57)**)5m then there is an N -cardinal
r such that {P, T} € Nlklg] and M <IN such that letting W = SM,

(a) M witnesses internal X-closure of N at &,

(b) for some B < N\ —1, Q appears as a model in M|5Z‘_}W—authenticated fully
backgrounded construction over Sp,|((65)**)Sm in which extenders used

have critical points > 0%,

(c) there is B as in clause 7.b such that letting I = M|((0,) "), KF “Q is
< Ord-iterable above ((§57)*%)5m via a strategy ® such that T is according

to ® and for every generic h C Coll(w, < 6%‘_@), ® has an extension

ot e D(K,0p%,,. h) such that D(K,0),,,h) £ “®F is an w;-iteration
strategy” and whenever R € D(K, 5}1’%, h) is a ®*-iterate of Q andt € R

is a stack on M*(8,,|05") of length 2 then t is (P, X)) -authenticated”.

6.3 (Generic interpretability in internally >-closed
premice

In this section, we prove our main theorem, Theorem 6.1.5. As we said before, we will
only prove clause 2. We start by fixing an sts hod pair (P, ¥) such that ¥ has strong
branch condensation, a pointclass I' such that X is strongly I'-fullness preserving and
an internally Y-closed premouse N such that A has a fullness preserving iteration
strategy A. We want to show that A is uniformly generically Y-closed.

Fix a poset P € N and an N-generic ¢ C P. We start by defining a short tree
iteration strategy ® for P. ® will be defined over AN[g] in a uniform manner. Its
domain consists of A -authenticated iterations (see Definition 6.2.3). Given an N-
authenticated iteration 7 = (S;,7; : i < m) € Ng] of limit length, we set ®(T) = z
if and only if the following conditions hold.

1. There is a cutpoint S of 7 such that 77<s? exists, 7125 is a normal tree on S
above S*, LpV 55 (Tss) F “6(Tss) is a Woodin cardinal” and z = Lp)\***(T>s).

2. There is no cutpoint S as in clause 1, x € N is a branch of 7_Lm such that N' E “z
is a cofinal well-founded branch of 7" and T~{M] } is N-authenticated.
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To complete the proof of Theorem 6.1.5 we need to show that
(1) whenever T € dom(®) N dom(), ®(T) is defined and is equal to (7).

Fix then 7 = (8,7, : i < m) € NJg] such that 7 € dom(®) N dom(X). Sup-
pose first that clause 1 in the definition of ® holds. Fix then a cutpoint & of T
such that 7= is a normal tree on S above 65" such that Lp*s(Tsg) E “6(T=s) is a
Woodin cardinal”. Let T = 7125. We need to show that

Fb(P12)12M+<T)

(2) Lp (MH(T)) = Ly *"*(M*(T))

We prove notationally less cumbersome version of (2) and leave the full proof of
(2), which is only notationally more complicated, to the reader. The following is
what we will prove.

(3) Lp"" PP Pt ) (MH(T)) = LpV st (M*(T)

Towards proving (3), let W < Lp" P==mt ) (M*(T)) be such that p(W) = 6(T).
We want to show that

Claim 1. W < LpN=ts(M*(T)).

Proof. Recall from Definition 3.9.7 that W has a strategy in ¥ € I'*(P,X) wit-
nessing that W is a X+ (7)-sts mouse over M*(T). Let £ be an N-cardinal such
that {P, 7} € NV|x[g]. Using fullness preservation of A, fix an iteration tree ¢ on A/
above x and according to A with last model N; such that 7% exists and there is an

M < Nj such that
1. M witnesses internal X-closure of Nj at x and
2. for some v < \S" T(W, W), Code(¥) <,, Code(Sspm(a))-

Fix a real  that witnesses that Code(V) <, Code(Xgm(y)). Let v, My and (n; :
i <w) be as in Lemma 6.1.4 applied to Ny, M, a and k (we take n = k). Let ® be
the fragment of Ay, ;s that acts on non-dropping trees that are above v. Recall from
Definition 6.1.3, ® is I'(P, ¥)-fullness preserving.

Let U, be an iteration tree on M;|(n})™ based on M;|ny according to ® and
above v that is constructed according to the rules of z-genericity iteration. Let
7 = and let M, be the last model of ;. Then we have that x is generic for the
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extender algebra of My at (). It follows that
(4) ¥ [ Ma|m(n.)[g][z] € Ma.

Finally, let S be the output of the Ms-authenticated fully backgrounded construction
over M™*(T) done inside Ms|m(n1)[g][z] using extenders with critical points above
7(no). Next we make the following assumption.

(5) Coiteration of W and the construction producing S halts.

We then compare W with S. It follows from (4) that S doesn’t move. We then
have two cases. Suppose first that W side loses. It follows that W < S. By elemen-
tarity of , it follows that W < 7~ 1(S), and further, using elementarty of 7%, we
conclude that W < Lp\>sts(M*(T)).

Suppose next that YV wins the coiteration with §. Let Us be a tree on VW such
that M(Uy) = S. Let e = U(Uy). Tt follows from (4) that e € Ma[g][x], contradicting
universality of S.

It follows that it is enough to show that (5) holds. Suppose then (5) fails. Let
(M, N, oy <), (Fy : v <)) be the models of the construction producing S.
Since (5) fails, we must have that there is an iteration tree IC on W according to ¥
with last model Ky such that for some § and v < n, K1|8 = NM,|5, Ki||8 # N, ||6
and 8 & dom(EX1).

It follows that there is a stack t = (M*(T), T, Q.U) € K1|8 of length 2 such
that either the Ky side or the N, side has a branch of ¢ indexed at 5. Notice that it
follows from sts indexing scheme that it is not the case that 2 = @ and 7g is K1|5-
ambiguous. Indeed, suppose that U =0 and Ty is KC1|B-ambiguous. But then the
branch indexed at f3, either in Iy or in N, depends only on K;|8 = N, |8. Hence,
these two branches have to be the same.

We thus have that I/ # (). Notice that, because Code(Xgr) <w Code(Esm(ay), We

have that (Q°, u ) is indeed Ma-authenticated iteration. It follows that N, side must
have a branch of ¢ indexed at 3. Because Ky is a X p¢+(7-sts mouse, it follows that K,
also has a branch of ¢ indexed at 3. Moreover, because (Qb,lj ) is My-authenticated
iteration, it follows that the branch on the N, side is X+ (7 (t), which is exactly
the same branch on K;-side. O

Claim 1 implies that Lp" 7=t (MH(T)) < LpV='s(M*(T)). Let now
W < LpNsts(M*(T)) be such that p(W) = §(T). We want to show that
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Claim 2. W < Lp* P=Eac-an (M (T)).

Proof. To prove the claim, we need to show that W is a ¥ ¢+ ()-mouse over M*(T).
Let (M4, N, : v <), (F, : v <n)) be the models of N-certified fully backgrounded
construction over M*(T). It is enough to show that for every v, N, is a X7
mouse.

Fix v < n and let ¥ be the strategy of N, inherited from A. Let U be a stack
according to ¥ on N, whose last normal component has a limit length and let ur
be the resurrection of 24 onto A. Let e = A(U*+). We then have o : MY — 74" (N).
It follows from hull condensation of ¥ +(7) that to show that M? is a X v+ (7)-Sts

mouse over M™*(T), it is enough to show that 7r1;7+ (N,) is a X+ (7)-sts mouse over
MF(T). In what follows we will show that N, is a ¥+ (7)-sts mouse over M*(T).

The same proof also would show that W?Jr (N,) is a X+ (7)-sts mouse over MT(T).

Suppose N, is not a X+ (7)-sts mouse over M*(T). This can happen in two
ways. Either we indexed a wrong branch or we skipped an iteration. We now
investigate both of these cases.

Suppose first that we indexed a wrong branch in N,. It follows from hull con-
densation of ¥ that there is £ < 7 such that we indexed branch b at M, and b is not
according to X. Suppose first that M, is ambiguous and let t = (M™*(T), 7o, Q,U) €
M be the least stack of length 2 witnessing this. Because of our minimality assump-

tion, we have that ¢ is according to Y+ (7). Let a < 22" be such that U is based

on Q(a) and let e be the branch indexed in M. Because (Q(a),ﬁ“{Mg}) is an
N-authenticated iteration, it follows from Lemma 5.5.2 that e = 3+ (7 (t), contra-
diction!

Next suppose that M¢ is unambiguous. It follows that the branch indexed at 3 is
a branch for an M¢-ambiguous tree Ty. It follows that there is a triple (v, ¢, d) that
is a Me-shortness witness for 7p. Let Q = Q(d, 7p). It follows from Lemma 5.5.2
that Q is a X+ (75)-sts mouse over M™(7y), and hence, d = X v+ (7o).

It remains to show that we never skip iterations. To show this, it is enough to
show that if M, is an ambiguous level of the construction and ¢ € M, is the least
finite stack of length 2 witnessing ambiguity of Mg, then @ﬁfﬂ ) (t) is defined. Let

t = (M*(T), T, Q,U). Tt is enough to show that Sos | Ng] € NMg]. To see this,
we claim that

(6) for every ¢ such that t € N|([g] there is an M < N witnessing the internal
Y-closure of A at ¢ and such that Q° is M-authenticated.
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Fix then a ¢ as in (6). Using fullness preservation of A, find a tree & on N ac-
cording to A with last model N; such that ¢/ is above ¢ and thﬁre is an M <N
witnessing internal Y-closure at ¢ and such that for some v < X5, Yo <y 2 SM(w)-

It then follows that Q° is M-authenticated. By elementarity, Q° is N-authenticated.
O

Claim 1 and claim 2 finish the proof of (1) provided clause 1 in the definition of
® holds. We now consider clause 2, which is done by considering all the clauses of
Definition 6.2.3. The rest of the proof is very similar to the proof given above, and

-

so we will only outline it. Let b = X(7). Suppose

(7) there is a cutpoint S of T such is n7<s® exists, W =g 7;;; is a normal tree on
S above S’ without fatal drops, and Q(b, W) exists.

We then claim that b € N[g] and T~ {M] } satisfies clause 3.b of Definition 6.2.3.
We have two cases, either Q(b,WW) I M*(W) or Q(b, W) is a X+ (w)-sts mouse
over MT(W). The first case is trivial. In the second case we can use the proof of
Claim 2 to show that Q(b, W) € Ng] and Q(b,W) < LpNsts(M*(W)).

Suppose next that

(8) there is a cutpoint S of 7 such that 77<s exists and 7123 is a stack on S°.

In this case, we can use fullness preservation to show that S° is N -authenticated.

The proof is like the last two paragraphs of the proof of Claim 1. There we showed

that QP is N-authenticated. To show that b € N[g] use Lemma 6.1.4 as it was used

in the proof of Claim 1 to show that W € A[g]. Then it follows that (S°, 71;5{./\/1?})

is an N-authenticated iteration. -
Suppose now that

(9) there is a cutpoint S of 7 such that m7=s® exists and for some S-cutpoint
ne (65,65, W =4ef T>s 1s a normal tree based on Oin,n'

Let E, € ES be the least extender with critical point 65" such that v(E) > o(OS, ).

,mn
Let Q = Ult(S, E)(AS" 42). Using the proof of (8) we can show that (Q, W™ {M¥})
is an N -authenticated iteration.
Suppose next that

(10) there is a cutpoint S of 7 such that 7T<s? exists and letting W = Tos, W
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. b
is a normal tree on S? above §° .

Again, applying the proof of (8), we can show that (S®, W™ {M}V}) is an N-
authenticated iteration.
Suppose finally that

(11) for some k < w, T =ger 7., is a normal tree on some Q < S| (95 ) FFH1)Sm
above ((§5m)TF)5m such that p(Q) = ((§5m)TF)Sm.

What we need to show now is that there is an triple (M, k, ) satisfying clause
7.a and 7.c of Definition 6.2.3.

Using the proof of Claim 1, we can find (M k) such that, letting ¥ be a strategy
witnessing that Q is a X v+ (s,,|55m)-Sts mouse,

1. k is an N-cardinal such that T € N|x]g],
2. M witnesses the internal X-closure of N at &,
3. QI LpMets(((05m) %), M*(S[057)),
4. for some B < A5, Code(V) <,, Code(SM(B)).

We claim (M, k, 3) are as desired. To see this we need to show that

(12) letting W = SM and K = M|((03},)7)", K E “Q is < Ord-iterable above
((65m)k)Sm via a strategy ® such that T is according to ® and for every generic h C
Coll(w, < d7%,,), ® has an extension ®* € D(K, )%, h) such that D(KC, 0%}, h) F
“Pt is an wi-iteration strategy” and whenever R € D(K, 6}3/‘_@, h) is a ®T-iterate of
Q and t € R is a stack on MT(S,,[05") of length 2 then ¢ is (P, X*)-authenticated”.

In what follows, we show how to obtain the strategy ® and its extension ®*. The
rest of the proof is like the proof of the previous cases, and so we will leave it to the
reader.

For i < w, let m; = &%¥

srive- 1t follows from the proof of Lemma 6.1.4 that

(13) if My = M|(nH)™ and A is the strategy of M; that acts on non-dropping
trees above (55&2 then whenever M, is a A-iterate of M; and 7 : M; — M, is an

iteration embedding then Lp" P>)2we) (My|r(n,,)) € M.

Using the proof of Claim 1 we can show that
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(14) for every i > 1, Q can be constructed via M;i|n;-authenticated background
construction over S,,|((6%™)**)5» based on MT(S,,|65") and using extenders with
critical point > n;_;.

(13) is needed to prove (14). In that proof, (13) is used instead of fullness preserva-
tion of A. It follows from (13) that Q has an iteration strategy ® € M;. To show
that ® has the desired properties it is enough to show that

(15) For every Mi-generic h C Coll(w, < n,), if 0 = U, RM[hNColi(w,<€)] then
for every i < w, Ywstire) [ (Milnu(o)) € Mi(o).

(15) follows from Theorem 5.2.5.

6.4 S-constructions

Our definition of sts mice makes heavy use of the fact that the set X is a self-well-
ordered set. In particular, our definition cannot be used to define sts mice over
R. Another shortcoming of our definition is that it does not explain how to do S-
constructions. In this short section, motivated by Section 3.38 of [10], we indicate
how to use Theorem 6.1.5 to redefine hod mice in a way that one can define sts mice
over R and perform S-constructions.

Recall the difficulty with defining hybrid mice over R. In our definition, we
always choose the least stack of some sort for which the branch has not been added
and index a branch. Since R may not be self-well-ordered, we do not have the luxury
of choosing the least such stack.

The problem with S-constructions is very similar. Suppose (P, X)) is a hod pair
or an sts hod pair and N and M are two transitive models of some fragment of set
theory such that J,(M) C J,(N) and for some poset P € J,(M) and some P/M-
generic G, J,(N) = J,(M)|G]. Suppose further that both M and N are ¥-closed
and P € NN M. For us, S-constructions are constructions that translate -mice
over N to X-mice over M. For more details consult Section 3.38 of [10].2

The difficulty in performing S-constructions is the following. Suppose N is a
Y-mouse over N, and we want to translate it onto a ¥-mouse over M. Suppose our
translation has produced a -mouse M over M, and our indexing scheme demands
that a branch of some stack 7 € A be indexed in the very next step in the translation

2In [18], this process is called P-constructions.
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procedure. The problem is that T may not be a stack in M nor may it be the stack
whose branch is indexed in M.

To solve this problem, we changed the definition of hybrid premouse in a way
that the iterations whose branches are indexed do not depend on generic extensions.
In particular, instead of indexing iterations according to X, we considered generic
genericity iterations on Mf’z. Such iteration make levels of the model generically
generic and do not depend on generic extensions. This move solves both problems.
In the first case what is important is that the indexed iterations do not depend on
the well-ordering of the model, and in the second case what is important is that the
indexed iterations do not depend on generic extensions. For more details consult
Definition 3.37 of [10] or [20] for a similar construction.

Here our solution is similar. Suppose (P,X) is an sts hod pair and M is an
Y-sts mouse over some set X such that P € X. Then the iterations of P that are
indexed in M are of the form ¢ = (P, T, Q,U), where ¢ is a stack on P of length
2. T is always the result of comparing P with a certain backgrounded construction.
Notice that this neither depends on the well-ordering of M nor on small generic
extensions. U is a stack on QY and, in Definition 3.8.2, we chose the least such stack.
Thus the choice of U depends on both the well-ordering of M and small generic
extensions (small in the sense that the generic is smaller than the critical point of
the first background extender used in the construction). To solve the issue, we will
start considering stacks s = (P, T, Q,U) where T is as before but now U is a generic
genericity iteration on Mjé’ng to make a level of the model generically generic. We
only consider such generic genericity iterations of MZE @ that are based on the first
Woodin of /\/lj’ng.

The reason we choose Mf
It is not hard to see that if dy < d; are the first two Woodin cardinals of M? o and
g € Coll(w, dy) then Mj’ng 01[g] is internally ¥ gs-closed. Clause 1 of Theorem 6.1.5
is a weaker result than [10, Lemma 3.35], which is what is used to reorganize hod
mice in [10]. We could prove an equivalent of [10, Lemma 3.35], but doing this is
much harder than proving clause 1 of Theorem 6.1.5.

To show that the resulting structure M is closed under X, we will first show that
we can find branches of stacks of length 2. Given such a stack t = (P, T, Q,U) let
W be an iteration of Mf’xgb such that (P, 7T, Q, W) is indexed in M and if S is
the last model of W then U is generic over S for B where 4 is the least Woodin
of S and B is the extender algebra of S at §. It then follows from Theorem 6.1.5
that Yoo [ S |77[L?] € S where 7 is the second Woodin cardinal of §. The rest of the
proof is just repeating the proof of Theorem 6.1.5. We start by redefining what an

72 .
2" is that we want to use clause 1 of Theorem 6.1.5.
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sts indexing scheme is.

Definition 6.4.1 (Revised unambiguous sp) Suppose M is an sp over some
self-well-ordered set X based on hod-like lsa type Isp P. We say M is revised un-
ambiguous if M is closed under sharps and whenever t = (Py, To, P1,U) € M s
according to M such that either

1. U =0 and M E “Ty is an unambiguous tree of limit length” or
2. U 1s a nonempty stack of limit length

thent € dom(XM). We say M is revised ambiguous if it is not revised unambiguous.

Definition 6.4.2 (¢-sts indexing scheme revisited) Suppose ¥ (x) and ¢(z,y)
are two formulas in the language of sp. We say ¥ is a ¢-sts indexing scheme for ¢
if whenever X is a self-well-ordered set, P € X is a hod-like lsa type Isp and N is
an sp over X based on P then N E ¢[c| if and only if

1. N is closed under sharps,
2. N E “SN s a partial faithful short tree strateqy without model component”,
3. for some finite sequence t = (P, T, P1,U) € N such that

(a) t is according to XN and XN (t) is undefined,

(b) there is (v,§) such that letting (M, Ny v < n),(F, : v < n), (T, :
v < 1)) be the output of the (P,XN)-coherent fully backgrounded con-
struction of N in which extenders used have critical points > v (see Def-
inition 3.5.1), Te =T,

(c) either w7 exists and Py is the last model of T or ©7*° exists, T is N-
ambiguous and Py = M™T(T),

#’(Zpll?)Pl

(d) for some v < o(N) such that N'|y E ZF, letting M < Py be M, ;
U is build according to the rules of the N'|y-generic genericity iteration of
M0 where 0 is the least Woodin cardinal of M,

(e) if N is revised unambiguous® then N' E “there is a unique cofinal well-

founded branch b € N of T such that ¢[T,b] holds”, and

(f) if N is revised ambiguous then t witnesses this,

3This implies that & = () and T is A-ambiguous.
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c= jw(t)y and

4. there ist = (P, T, Py,U) as in clause 3 above such that if (v,£,7y) are lezico-
graphically least witnessing that properties 3.a-3.f hold for t then there is no

t’f’iple (V(]? 607 70) <lex (V7 57 7) such that fO’F some § = (P7 WJ Q7 S); (V07 507 VO)
witnesses that s has properties 3.a-3.f above.

Definition 6.4.3 (Revised sts indexing scheme) Suppose (Y5 : f < «) have
been defined. We let 1, be the following formula in the language of sp. Suppose
X s a sellf-well-ordered set, P € X is a hod-like lsa type lsp and M is an un-
ambiguous sp over X based on P. Then M E 1,[T,b] if and only if (T,b) is the
M-lexicographically least pair such that T is an M-terminal tree on P and b is a co-
final branch through T such that for some pair (B,7) such that v < o and < o(M),

1. M|p is revised unambiguous (see Definition 6.4.1) and M|S E ZFC + “there
are infinitely many Woodin cardinals > 6(T)7,

2. be M|B and M|BE “b is well-founded branch”,
3. M|BE “Q(b,T) exists and is an sts ¢ -premouse over M(T)” and

4. letting (§; : i < w) be the first w Woodin cardinals > §(T) of M|B, M|5 E
“Q(b,T) is < Ord-iterable above 6(T) via a strategy ¥ such that letting A =
SUp; <, 0i, for every gemeric g C Coll(w,< M), ¥ has an estension Lt €
D(M|B, A, g) such that D(M, X, g) E “ST is an wy-iteration strategy” and
whenever R € D(M|B, A, g) is a Xt -iterate of Q(b, T) and t € R is a stack on
MT(T) of length 2 then t is (P, X™)-authenticated”.

The lezicographically least pair (3,7) satisfying the above conditions is called the least
(M, YY) -witness for (T,b). We also say that (8,v,b) is an M-minimal shortness
witness for T .

We leave the rest of the definitions unchanged. We say P is a revised hod pre-
mouse if it is indexed according to our revised indexing scheme. We say (P,Y) is
revised hod pair if P is revised hod premouse and ¥ is an iteration strategy for P.

Theorem 6.4.4 Suppose (P,X) is a revised hod premouse such that 3 is strongly
I'-fullness preserving for some pointclass I' and ¥ has strong branch condensation.
Then for any Q € YF and P-generic g,

1. if Q is not of lsa type then Yo | Plg| is uniformly in Q definable over Plgl,
and



148 CHAPTER 6. THE INTERNAL THEORY OF LSA HOD MICE

2. if Q s of lsa type then the fragment of Esgtc [ Plg] that acts on stacks of length
2 is uniformly in Q definable over Plg|.

We now just carry our lemmas on S-construction from Section 3.8 of [10] to
our current context. Let (P,X) be a hod pair or an sts pair such that ¥ has the
strong branch condensation and is strongly I'-fullness preserving for some pointclass
I'. Suppose M is a sound »-mouse and ¢ is a cutpoint cardinal of M. Suppose
further that N' € M|§ + 1 is such that 6 € N C HM, N models a sufficiently
strong fragment of ZF— Replacement, N is a ¥-mouse or a Y-sts mouse and there is
a partial ordering P € L, [N] such that M|J is P-generic over L, [N]. We would like
to define S-construction of M over N relative to X.

Definition 6.4.5 An S-construction of M over N relative to ¥ is a sequence (Sq, Sy :
a <n) of X-mice over N such that

1. S = L[NV,
2. if M|6 is generic over S, for a forcing in L[N then
(a) if M||(w-«a) is active and has a last branch b then S, is the expansion of
So by b and Savq = rud(S,).

(b) if M||(w- ) is active and has a last extender I then S, is the expansion
of So by E and Syqq = rud(S,),

(c) if M||(w x ) is passive then S, = So and Soy1 = rud(S.),
3. if X is limit then Sy = U, Sa-
The following is the restatement of Lemma 3.42 of [10].

Lemma 6.4.6 Suppose (P,%), M, N are as above and § is a strong cutpoint cardi-
nal of M. Suppose further that N € M|§+1 is such that 6 C N C Hg\’l and there is
a partial ordering P € Ly[N] such that whenever Q is a X-mouse over N such that
HZ = N then M|§ is P-generic over Q. Then there is a S-mouse S over N such
that M| is generic over S and S[M|d] = M.

The following is just the restatement of Lemma 3.43 of [10].

Lemma 6.4.7 Suppose (P,X), M and N are as above. Suppose further that M E
ZFC—Replacement is a X-mouse and 1 is a strong cutpoint non-Woodin cardinal of
M. Suppose vy > 1 is a cardinal of M and N = (FE=)M0. Suppose T,(N|n) E “n
is Woodin”. Let (S.,Sa : a < v) be the S-construction of M|(n™)M over Nn
relative to X. Then for some a < v, S, F “n isn’t Woodin”.



Chapter 7
Analysis of HOD

In this chapter we analyze VAOP of the minimal model of the Largest Suslin Ax-

iom. The analysis is very much like the analysis of VEIOP in the minimal model of

AD* + 0, = ©, which appeared in [10, Chapter 4]. Just like in [10, Chapter 4], we
need to introduce the notion of suitable pair, B-iterable pair and etc. The proof of
Theorem 7.2.2 is very much like the proof of [10, Theorem 4.24].

7.1 B-iterability

In this section, we import B-iterability technology to our current context. Most of
what we will need was laid out in [10, Section 4.1 and Section 4.2]. Here we will only
sketch the necessary arguments.

Definition 7.1.1 (Suitable pair) (P,3) is a suitable pair if

1. P is a hod premouse, \¥ is a successor ordinal and P E “6F is a Woodin
cardinal”,

2. if P is not of Isa type then (P(\F —1),X) is a hod pair such that ¥ has strong
branch condensation and is strongly fullness preserving,

3. if P is of lsa type then (P,X) is an sts hod pair such that ¥ has strong branch
condensation and is strongly fullness preserving,

4. if P 1s not of lsa type then P is a Xpyp_y)-mouse above P(AP —1),

5. if P is not of lsa type then for any P-cardinal n > 8% ,, if n is a strong cutpoint
then P|(n*)” = Lp*(Pn)

149
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Notation 7.1.2 We let

P _ P - P s of Isa type
P(AP —1) : otherwise.
Suppose (P, %) and (Q, A) are hod pairs or sts hod pairs such that ¥ and A have
strong branch condensation and are strongly fullness preserving. We then let

(P.2) <ps (A7)

if and only if (P, ) loses the coiteration with (Q,A). Notice that <p; is a well-
founded relation. We then let (P, %) = [(P,X)|.,, and we let [P, X] be the =p,;
equivalence class of (P, Y), i.e.,

(Q,A) € [P,X] iff (Q,A) is a hod pair such that A has branch condensation and is
super fullness preserving and «a(Q,A) = (P, X).

Notice that [P, X] is independent of (P, ). We let
B(P,X) = {BC[P,%] xR: B is OD}.

Note that B(P, ¥) is defined for hod pairs or sts hod pairs, but not for suitable pairs
that are not sts hod pairs.

The following standard lemma features prominently in our computations of HOD.
The proof is very much like the proof of Lemma 4.16 of [10]. Below SMC stands for
Strong Mouse Capturing. More precisely, SMC states that for any hod pair or sts
hod pair (P,X) such that X is strongly fullness preserving and has strong branch
condensation then for any z,y € R, z € OD, x if and only if z € Lp*(y).

Lemma 7.1.3 Assume SMC and suppose (P, X.) is a suitable pair and B € B(P~,Y).
Suppose k is a P-cardinal such that if P is of lsa type then k > ((67)F)" and oth-
erwise K > 5fp_1. Then there is T € PCUWr) such that (P, 1) locally term captures
Bep sy at k for a comeager set of g C Coll(w, k) such that g is P-generics.

If B is locally term captured for comeager many set generics over a suitable pair
(P,%) then we let Tgf be the invariant term in P locally term capturing B at «
for comeager many set generics. One way to get term capturing for all generics is to
show that a suitable pair can be extended to a structure that has one more Woodin.

Definition 7.1.4 (n-Suitable pair) (P,Y) is an n-suitable pair if there is 6 such
that
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1. (Pl(6T)P %) is suitable,

2. P E ZFC—Replacement + “there are n Woodin cardinals, ng < m < ... < Dp_1
above §7,

3. o(P) = sup;, (13")",

4. if Pl(6T)P is of Isa type then P is a X-sts premouse over MT(P|d) and oth-
erwise P is a X-premouse over P|(6T%)7,

5. for any P-cardinal n > 8, if n is a strong cutpoint then P|(n™)” = Lp*(P|n),

6. Letting T = ¥2(Code(X)), if £ > § is such that P E “¢ is not Woodin”, then
Cr(Pl§) C P and Cr(P|§) E “¢ is not Woodin”.

If (P, ) is n-suitable then we let 67 be the ¢ of Definition 7.1.4 and
P~ = ((PI((6"))7).

We let A\¥ = A\P” 4 1. Clearly O-suitable pair is just a suitable pair. The following
are easy consequences of Lemma 7.1.3.

Lemma 7.1.5 Assume SMC. Suppose (P, X) is an n-suitable pair and B € B(P~, ).
Suppose k is a P-cardinal such that if P~ is of Isa type then k > ((67)%)” and oth-
erwise k > 04p . Then there is T € PCAlwr) such that (P, 1) locally term captures
Bp sy at k for comeager set of g C Coll(w, k) such that g is P-generic.

Corollary 7.1.6 Assume SMC. Suppose (P,%) is an n-suitable pair and B €
B(P~,%). Let v = ((6")*)P. Suppose k is a P-cardinal such that if P~ is of
lsa type then & > ((67)*)7 and otherwise k € (05p_,,v). Then (Plv, 755 ) locally
term captures Bp sy at & for comeager set of g C Coll(w, k) such that g is P-generic.

Corollary 7.1.6 is our main method of showing that various B are term captured
over the hod mice that we will construct. Suppose now that (P,X) is a hod pair. It
is now a trivial matter to import the terminology of [10, Section 4.1] to our current
context. We will have that S(X) consists of those Q such that @~ € pI(P,X) and
(Q,%o-) is a suitable pair. Given Q € S(X), we let fp(Q) = @KO(Q)T;’EQ*. Then
the rest of the notions are defined for F' = {fp : B € B(P,%)}. Therefore, in the
sequel, we will freely use the terminology of [10, Section 4.1].
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7.2 The computation of HOD

Throughout this section we assume AD* 4+ SMC and let (6, : o < ) be the Solovay
sequence. Our goal is to compute V40P for a < Q. We will do it under some
additional hypothesis described below. In the next few chapters, we will prove that
our additional hypothesis essentially follows from AD" + “No initial segment of the
Solovay sequence satisfies LSA”.

Suppose (P, ) is a hod pair or an sts pair such that ¥ has strong branch con-
densation and is strongly fullness preserving. We will continue using the notation
a(P,%) and P~ from the previous section.

Suppose first that o + 1 = Q. We then let Z = {(Q,A,é = (Bo, ..., By)) :

1. (Q,A) is suitable, A is strongly fullness preserving and has strong branch con-
densation, and a(Q,A) = a,

2. for every i <n, B; € B(Q~,A), and
3. (Q,A) is strongly B-iterable }.

7 may be empty. But the results of Theorem 8.1.14 and Section 10.1 show that it is
not. Define < on Z by

(P,2,B) < (Q,A,C) ++ BC C and (Q,A, B) is a B-tail of (P,%, B).
When (R, U, E) =< (9,A, C_"), there is a canonical map
T Hg’qj — HB%A,
which is independent of B-iterable branches. We let T(R,w.B),(Q.A,B) be this map. We
then have that (Z, <) is a directed. Let
F={HZ":(Q.\B)eI}

and also let M, be the direct limit of F under the iteration maps T(R,w,5),(Q.A,B)"

Let 6o = 0M=. For (Q,A,B) € I, we let T(QA,B) 00 Hg’A — M. Standard
arguments show that M, is well-founded.

Following [10, Section 4.4], we let ¢ be the following sentence: for every a+1 < €,
letting I'y, = {A C R : w(A) < 0,}, there is a hod pair (P, %) such that

1. a(P7,%p-) = a,

2. Y is strongly fullness preserving and has strong branch condensation,
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3. for any Q € pI(P,X) UpB(P,Y), if A2 is a successor ordinal then

(a) there is a sequence (B; :i < w) C B(Q,Xo-) which guides Yo and

(b) for any B € B(Q~,¥Xg-) there is R € pI(Q,¥g) such that ¥x respects
B.

Our additional hypothesis, v, is a conjunction of ¢ with the following statement:
If Q = o+ 1 then there is a suitable (P, ¥) which is (-iterable, ¥ is a successor and
such that

1. (P~,Xp-) is either a hod pair or an sts pair such that a(P~,¥Xp-) = a and
Yp- is strongly fullness preserving and has strong branch condensation,

2. for any B € B(P~, Xp-) there is an (-iterate (Q, @) of (P, X) such that (Q, P)
is strongly B-iterable.

3. My, is well-founded and d,, = O = 0,4 1.

We will use the following lemma to establish 1. It can be proved exactly the
same way as [10, Lemma 4.23].

Lemma 7.2.1 Suppose I' C o(R) is such that L(I',R) E AD* + SMC+ Q =a +1
and T’ = p(R) N L(I',R). Suppose I'* C o(R) is such that T C T'*, L(I'*,R) F AD*
and there is a hod a pair (P,X) € I'* such that the following holds.

1. X has strong branch condensation and is strongly I'-fullness preserving.
2. A\? is a successor ordinal, Code(Xp-) € T,

(a) if P is not of lsa type then L(T',R) E “(P,Xp-) is a suitable pair such
that a(P~,Xp-) = a” and

(b) if P is of lsa type then L(I',R) E “(P,X3%) is a suitable pair such that
a(P™,Xp-)=a’.

3. There is a sequence (B; : i < w) C (B(P~,Xp-))XTR) guiding ¥.

4. For any B € (B(P~,%p- )X there is R € pI(P, %) such that S respects
B.

Then L(I',R) E ¢ and ME™™ = M% (P, %).!

1Recall that M (P,Y) is the direct limit of all X-iterates of P
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The next theorem is the adaptation of [10, Theorem 2.24] to our current context.
It can be proved via exactly the same proof. Because of this, we omit the proof.

Theorem 7.2.2 (Computation of HOD) Assume AD". Suppose T' C o(R) is
such that T' = p(R) N L(I',R). Then the following holds:

1. Suppose L(I',R) E ¢. Suppose B+ 1 < QY. Let (P,X) witness ¢ for 3. Then
letting M = MY (P,X), E = EM and A = XM, for every a <
M =08 and M|OE = (VEOP" E 1 65, A | VIOP" ¢),
2. If L(T',R) E 1 then letting M = METR B = EM gnd A = YM. for every
a<ObF
SM =08 and M|OL = (VIOP" E 1 0L, A | VIOP' €).

« (0]

3. Suppose I'* C p(R) is such that T C T*, L(I'*,R) = AD" and there is a hod a
pair (P, X) € I'* such that the following holds:

(a) ¥ has strong branch condensation and is strongly I'-fullness preserving,
(b) NP is a successor ordinal, Code(Xp-) € T,
i. if P is not of lsa type then L(I',R) E “(P,Xp-) is a suitable pair such
that a(P~,Xp-) = a” and
i. if P is of lsa type then L(I\R) E “(P,X5°) is a suitable pair such
that a(P~,Xp-) = a”.
(c) there is a sequence (B; :i < w) C (B(P~, Ap-)) TR guiding %2,
(d) for any B € (B(P~,Ap- )R there is R € pI(P,X) such that Y
respects B.

Then L(T,R) E ¢ and ME™® = M+ (P, A).

Thus, working in a model of AD", if & < Q then to compute HOD|f, we only
need to produce a hod pair (P, X)) satisfying clauses 3(a)-3(d). In the next chapter,
in particular in Theorem 8.1.14 and Section 10.1, we will show that this is indeed
true in the minimal model of the Largest Suslin Axiom.



Chapter 8
Models of LSA as derived models

In this chapter, we show that certain derived models satisfy the Largest Suslin Aziom.
We also prove results that are important elsewhere. The results of Section 10.1 and
Theorem 8.1.14 are needed to carry out the computation of HOD (see Theorem 7.2.2).
We start with introducing the pointclass I'(P, ) where (P, X) is an sts hod pair.

8.1 [(P,X¥) when )" is a successor

In this section, we translate the results of [10, Section 5.6] to our current context.
Suppose (P,Y) is a hod pair such that A7 is a successor and ¥ is strongly full-
ness preserving and has strong branch condensation. Recall the notation P~ (see
Notation 7.1.2).

Suppose first that P isn’t of Isa type. We now generalize the result of [10, Section
5.6]. Recall the notation Micey, (see Notation 4.1.4). Because P is not of Isa type,
it follows that Code(X) is Suslin, co-Suslin (this can be proved using the proof of
[10, Lemma 5.9]). It follows that there is a scaled pointclass closed under continuous
images and pre-images and under 3%, and also contains M ices,, . We then let I'y
be the least such pointclass. Also, let

Iy = (S3(Code(Xp-))) M-,

Notice that I'y is a lightface good pointclass. Also Mices  belongs to I's and is a
universal I's, set. We let

['(P,%) ={A: for cone of x € R, AN Cry(z) € Cry.(Cry(x))} = Env('y).
Notice that if (Q,A) is a tail of (P, %) then I'(Q,A) = I'(P, ¥). The next theorem

is essentialy the conjunction of [10, Lemma 5.13-5.16].

155
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Theorem 8.1.1 Suppose (P,Y) is a hod pair such that \¥ is a successor, P is not

of lsa type and ¥ is strongly fullness preserving and has strong branch condensation.
Then the following holds.

1. There is a tail (Q,A) of (P,%) such that 'y = [y.

2. Suppose I's, = I's. Then for any real x coding P~,
Cry.(z) = Lp"¥r=(z).

3. Suppose I't, = I's. Then Code(X) & I'(P, Y).

4. Suppose I's = I's.. Then there is a tail (Q,A) of (P,X) such that
[(Q,A) = p(R) N L(T(Q, A), R).

Because T'(Q, A) =T'(P,X), it follows that T'(P,%) = p(R) N L(T'(P, %), R).

We spend the rest of this section defining I'(P, ¥) in the case P is of lsa type.
The difficulty with generating LSA pointclasses as ['(P, %) is the following. Suppose
[ is an LSA pointclass, i.e., I' = p(R) N L(I',R) and L(I',R) & AD* + LSA. Let a be
such that o+ 1 = QF and set I* = {A C R : w(A) < 0,}'. The difficulty is that the
pair that generates I'’ is the same as the pair that generates I'.

Definition 8.1.2 Suppose (P,X) is a hod pair or an sts hod pair such that P is of

Isa type and ¥ has strong branch condensation and is strongly fullness preserving.
We then let

T(P,%) = {A: for cone of t € R, AN Lp”™“(z) € Lp5™" ()}.

It is not immediately clear that L(I'(P,X))Np(R) = I'(P,X). Theorem 8.1.13 shows
that it is indeed true. Before we prove it, we prove some useful lemmas. The first
lemma shows that various Y-sts mice are internally >-closed.

Lemma 8.1.3 Suppose (R, ®) is an sts hod pair such that ® is fullness preserving
and M is a ®-sts mouse over R. Suppose & is a Woodin cardinal of M and (§+)M
exists. Then for any v < 6§, if SM is the output of (R, ¥M)-hod pair construction of
M/L(S and T on P is the normal tree leading to S} then 77 exists and 77 *(A\RF—1) =
AST 1.

!The superscript “b” stands for bottom.
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Proof. Suppose not. Then we must have that 77 exists and SM = M*(T)(«) for
some o < XM (D) Tt follows that

ES5008 M| : :
(1) (g 7s")M° does not have Woodin cardinals.
However, notice that
(2) ME “MH(T)(a+1) is §*-iterable via S0y 7y apn) -

(2) simply follows from our indexing scheme and the fact that M is a ®-sts premouse.
oy M
It follows that the comparison of (]E’Esi‘” YMI% and M*(T)(a+1) is successful. But
Fos M
because (J E’ESIM)MM is a fully backgrounded construction, in the aforementioned

comparison, only M™(T)(a + 1) moves. It follows from (1) and universality of
oy M
(" FsEMI that

—

. ExM, M5 ) ExM, M5 «sS
(3)if S < (J s is the iterate of M(T)(a + 1) then (J '~ s2) E “5

is not a Woodin cardinal”
(3) contradicts the fullness preservation of ®. O

Suppose (P, X)) is a hod pair such that P is of Isa type and 3 has strong branch
condensation and is strongly fullness preserving. Suppose Code(X) is Suslin, co-
Suslin.

Let Iy < T" be any two good pointclasses such that Code(X) € Arp,. Let F
be as in Theorem 4.1.6 for I'. Let A € T' be a set coding a self-justifying-system
(A; : i < w) such that Ay = {(z,y) € R* : y € Cr,(x))}. Fix x such that if
F(z) = (NF, My, 0,,5,) then Code(X) and A are Suslin, co-Suslin captured by
(N5, 6., 50,

We then have that the fully backgrounded hod pair construction of N¥|d, reaches
a tail of (P, X) (see Theorem 4.6.10). Let (Q, A) be this tail. Let N' = (JE7AStC)N;‘5I.
Because X is fullness preserving we have that A" E “6< is a Woodin cardinal”. Let ®
be the strategy of N induced by 3,. Notice that ® is fullness preserving in the sense
of Lp operator, i.e., whenever M is a ®-iterate of N and 7 is a strong cutpoint of M
then M|(nT)M = Lp*™* (M|n). This can be shown using the proof of Theorem 4.5.3.
We now prove several lemmas about (N, ®) leading up to showing that I'(Q, A**)
can be realized as a derived model of N. Let k be the least strong cardinal of N.
The first lemma is quite standard.
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Lemma 8.1.4 N F “k is a limit of Woodin cardinals”.

Proof. Tt is enough to show that d, is a limit of cardinals 5 such that Lp*™ (N*|n) E
“n is a Woodin cardinal”. Fix k < d,. Because Code(X) € Ar,, we have that for
cone of z, Lp™"(x) € Cp,(z). We can assume, using absoluteness, that the base of
this cone is in N¥. Let T, S € N be d,-complementing trees witnessing that A is
Suslin, co-Suslin captured by (N}, d,,%,). Let m# : M — H sz be a Skolem hull
such that crit(7) >  is an M-cardinal and {7, S} € rng(w). Let n = crit(w). Then
it follows that Cr,(N|n) € M and hence, Cr, (N} |n) E “n is a Woodin cardinal”. It
follows that Lp™™(N*|n) E “n is a Woodin cardinal”. O

The next lemma shows that
Lemma 8.1.5 ® is fullness preserving, i.e., ® witnesses that T'(N |k, ®) = I'*(Q, Ast¢).

Proof. Clearly, because ® witnesses that A is a A“-sts mouse, I'(N|k, ®) C
I'(Q, A**). Fix then (7,R) € B(Q, A**). We want to see that

(1) there is a ®-iterate N of N|r such that for some ¢ = (Q,7T,S,U) € N; such
that t is according to XM, Ag <, Age.

Suppose (1) fails. We can then assume, without loss of generality, that for some
v < 6, and some g C Coll(w,v), (T,R) € N[g]. Yet again without losing gen-
erality we can assume that R is of successor type. Let now S be the output of
(Q, ¥N)-construction of A in which extenders used have critical point > v. Let U
be a normal tree on O with last model §. We claim that

(2) 7 exists, TP(A2 — 1) = AS" and for some § < XS, Sb(3) is a Ag-iterate
of R.

The first two clauses of (2) are consequences of Lemma 8.1.3. We prove the third
clause of (2). We have that the comparison of R and S produces a normal tree W* on
R according to Ag with last model R. If R; < S° then because R is of successor
type we must have that for some 8 < 5", S°(B) = R1. Suppose then Ry 4 Sb. We
then have S € Y™, We now have two cases.

(3) ™M exists.
(4) otherwise.



8.1. T'(P,¥) WHEN AP IS A SUCCESSOR 159

Suppose first that (3) holds. It follows that there is an extender E* € ER such
that crit(E*) = 55" and S < Ult(Rq, E*). Let E be the R;-least such extender and
let v be such that S = Ult(Rq, E)(y). Let Ry = Ult(Rq, E). It follows from the
proof of Lemma 8.1.3 that (JV*®20)" reaches a Woodin cardinal implying that S
cannot be the output of (Q, ©)-construction in which extenders used have critical
point > v.

Suppose then (4) holds. It follows that U is of limit length and M™(U) E “6(U)
is a Woodin cardinal” (otherwise we again have that S cannot be the output of
(Q, ¥™N)-construction in which extenders used have critical point > v). Because R,
is Isa small, it follows that

(5) R1 E “6(U) is not a Woodin cardinal”.

Let then W < Ry be the least such that W E “6(U) is a Woodin cardinal” but
J1OW) E “§(U) is not a Woodin cardinal”. Notice that we must have that

(6) the M-authenticated background construction (see Definition 6.2.2) over M™(U)
does not reach W.

(6) holds because otherwise S cannot be the last model of (Q,¥*)-construction
in which extenders used have critical point > v.

Let then &; be the N-authenticated background construction over M*(U). If
the comparison of the construction producing &; and W halts then, because S; side
does not move, we must have that W < &; contradicting (6). Suppose then the
comparison of the construction producing &; and W does not halt, implying that it
must reach a strategy disagreement. It follows that

(7) there is a normal iteration tree IC on W according to Ay, with last model Wi,
and there is Sy, which is a model appearing in the construction producing &7, such

that letting o(Sy) = 5, WA |B = S2|8 but Wi||B # Ss.

Let then ¢t = (M*TU), T*, R*,U) € Wi|3 NS, be such that the branch of ¢ is
indexed at 3. Let b be the branch indexed in W;. Let ¢ be the branch indexed in
S, if there is such a branch indexed in S,.

Suppose that c is defined. We claim that u # (0. Suppose U = (. Then b and
¢ are branches of 7*. We must also have that 7* is both W; and S, ambiguous.
But indexed branches of such trees just depend on Wi|f = S|, implying that
b = c¢. Thus, we have that both b and ¢ are the branches of U. But we have that
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b= A(R*)b(b_i) = ¢ (see Lemma 5.5.1), contradiction!
Suppose thgn c is undefined. In this case, we have that N never authenticates
the branch of U, as otherwise ¢ would be defined. It follows that

(8) letting & = o(R*), the (Q,¥V)-hod pair construction of A/ in which extenders
used have critical points > ¢ does not reach an iterate of (R*)°.

Notice that (R*)* € pB(R,Az). Let Ss be the (Q,¥V)-hod pair construction of
N in which extenders used have critical points > £. Notice now that (8) asserts that
the failure of (2) holds for ((R*)", A(z-y») and Ss. Let then Ry = ((R*)"). Repeat-
ing the argument given above we obtain an infinite sequence (Rox : k < w) such
that Rp = R and Raogro € pB(Rak, Ar,k), contradiction! This finishes the proof of
Lemma &8.1.5. O

Before we proceed, we record some lemmas that the proof of (7) gives.

Lemma 8.1.6 Suppose 7 : N|(k¥)N — M is an iteration via ®p, and g is M-
generic. Then letting F be the function F(X) = Lp»“(X), F | Mlg] is uniformly
in M, g* definable over M|g].

Proof. Suppose first X € N|k[g] for some generic g. Let § be a cutpoint Woodin
cardinal of M|k such that g is a < d-generic and X € Nd[g]. We can now use
the proof of (6) in the previous lemma to show that Lp™™(X) is the union of all
hybrid sts mice over X based on Q that project to o(X) and appear as models in the
N |s-authenticated fully backgrounded construction over X. This definition carries
over to any ®P-iterate of M (this is a consequence of absoluteness as the failure of
our claim can be reflected inside N). O

Corollary 8.1.7 Suppose 7 : N|(kt)N — M is an iteration via Dyt and F s
as in Lemma 8.1.6. Then if h C Coll(w, < 7(k)) is M-generic then F | HCM[h] €
M[RMA,

Lemma 8.1.6 can be used to prove the following lemma.

Lemma 8.1.8 Suppose 7 : N|(kT)N — M is an iteration via @+ and § is a
cutpoint Woodin cardinal of M. Let £ be a cutpoint cardinal of M such that M has
no Woodin cardinals in the interval (£,9). Let n € (£,98) be an M-cardinal and let ¥

2L.e., the definition works for any such M and g.
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be the fragment of ® that acts on normal non-dropping trees based on M|(n*)™ that
are above . Then letting h C Coll(w, (nt)™) be M-generic, ® | M|r(k)[h] € M
and is m(k)-universally Baire in M|[h].

Corollary 8.1.9 Suppose m : N|(kT)N — M is an iteration via @ (.+yv. Suppose
g is M| (k)-generic, X € (M|n(k))[g] and R € Lp*™ (X) is such that p(R) = o(X).
Let h C Coll(w,|X]) be (M|r(k))[g]-generic. Then R € M|g|[h] and M|g][h] E “R
has a 7(K)-universally Baire iteration strategy W witnessing that R is a A¥*-sts mouse
over X based on Q.

Moreover, if R € (M|r(k))[g] is a A5*-sts premouse over X such that for some
(M|r(k))[g]]-generic h C Coll(w,|X]), (M|r(k))[g][h] E “R has a 7(k)-iteration
strategy” then R < Lp™™" (X).

The next lemma shows that T'(Q, A**¢) is a derived model of N.

Lemma 8.1.10 The derived model of N'|(x7) as computed via ® is L(T(Q, T°)).
In particular, T(Q, A*) = p(R) N L(T'(Q, A*¥)).

Proof. We will use clause 2 of Theorem 6.1.5. First we verify that clause 2 of Theo-
rem 6.1.5 applies. For this we need to verify that

(1) N is internally A*“-closed, and
(2) @ is a fullness preserving strategy for NV.

Notice that (1) is a consequence of Lemma 8.1.3 and (2) is just Lemma 8.1.5. We
thus have that clause 2 of Theorem 6.1.5 applies.

To prove Lemma 8.1.10 we need to show that given an R-genericity iteration
™ N|(5T)N = N according to @y e+,

(3) if A € T'(P,%) then A € Ni(R), and
(4) if A € Ni(R) is such that L(A,R) E AD" then A € I'(P,X).

We start with (3). Towards a contradiction, assume not and let A € I'(P, ) witness
this. We have that for cone of z € R, ANLp ™ (2) € Lp}™(2). Let z be some base of
the aforementioned cone. Let £ > © be such that L¢(p(R)) F ZF—Replacement and
o: M — L¢(p(R)) is a countable hull such that N,z € HC™ and {®, A} € rng(o).

Let g € L(p(R)) be M-generic for Coll(w,RM). Let (y; : i < w) be the generic
sequence enumerating RM and let (§; : i < w) be a sequence of cutpoint Woodin
cardinals of N|(k*) with sup . Let (N, T; : i < w) be the RM-genericity iteration.
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Thus, Ny = N|(xT)V, T; is a tree on N; based on Nj|7®i<iTi(§;) and 7; is built ac-
cording to the rules of y;-genericity iteration. Let m;j : N; — N be the composition
of the iteration embeddings. Let N, be the direct limit of A; under m; .

Because z € R we have that A N (N |wM)(RM) € Lp*™" (N, |wM)(RM))).
Notice that it follows from Lemma 8.1.6 that if NI is the iterate of A/ obtained by
applying @;.,,T; to N then

LpM" (N Jwi") (RM)) € N (R).

It follows that A € D(N,,,wM h) where h C Coll(w, < wi’) is an N,-generic such
that RV« = RM_ This finishes the proof of (3).

We keep the notation used to prove (3) and start proving (4). To prove (4), we
need to show that if A is as in (4) then

(5) A€ (T(P,X)M.

Suppose that (5) fails. We then have that there is A € N ,(RM) such that L(A, RM) E
AD" and A & (T'(P,%))M. We first claim that

Claim. in L(A,RM), for cone of y, AN Lp*™(y) € Lpb™(y).
Proof. Suppose not. Working in L(A,RM), fix y € RM such that for any y* € RM
Turing above y, ANLp™™ (y) & Lp}™ (y). Fixi < w such that y € N,[hNColl(w, ;)].
Notice that
(6) for every y € RM, (LpA™ (y))MAR™Y) = LpA™(y).
(6) is a consequence of Corollary 8.1.9. This is because if R < (Lp*™ (y))“AR™)
is such that p(R) = w then R has an iteration strategy in N, [y] as the iteration
strategy of R is ordinal definable from A®* in the derived model of N,,.

Let k < w be such that there is a name 7 for A in N,[h N Coll(w,d;)]. Let
j = max(i, k) + 1. We then have that

(7) in L(A,RM), AN (NL|6;)[h N Coll(w, ;)] & LpAStC((./\/'w](Sj)[h N Coll(w, 6;)]).
However, it follows from Lemma 6.4.6 that

(8) Lp™"((NLI6;)[h N Coll(w, 6;)]) = N (55Nl 1 Coll(w, 6;)].
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(8) and (7) contradict (6) (as Thncoi(w,s;) = A N (Nw|d;) [ N Coll(w, 5;)]). O

We will now make use of [I5, Theorem 0.1]. It follows from the proof of the
aforementioned theorem (applied to all sets of reals in L(A, RM)) that

(9) in L(A,RM), L(A,RM) = Lp*™ (RM).

We also have that

(10) if T'; = {C € p(RM) N N(RM) : L(C,RM) E AD*} then L(I';,RM) E AD.

It then follows from (9), (10) and homogeneity of the collapse that

(11) Ae M.

(11) and the Claim imply (5). O
The following is a simple corollary of the proof of Lemma 8.1.10.

Corollary 8.1.11 Suppose (n; : i < w) is a sequence of consecutive Woodin cardinals
of Nk and \ = sup;_, ;. The derived model of R =gy N|(A)N as computed via
P is L(I'(Q,X5%)). In particular, T'(Q, A*¢) = p(R) N L(I'(Q, A**)).

Let ¥ be the minimal component of A (see Definition 3.9.8). Let Q. be the direct
limit of all A-iterates of Q and let 7 : @ — O, be the iteration embedding. Notice
that m | Q° depends only on ¥ and hence (by the coding lemma), it is in L(T'(P, X)).
Also, because W is fullness preserving, it follows that 7[Q°] can be coded as a subset
of w(I'’(Q, A)). This is because Q% [0%% = [J{Muw(R,Ag) : R € pB(Q,A)} and
09" = w(I*(Q, A)).

Lemma 8.1.12 ¥ € 7,(r[Q%], Q%,,T(Q, A)).

Proof. Notice that if (7,S) € I(Q, ¥) and W is a tree on S of limit length according
to As such that W is above 65" and W € b(Ws) then letting b = Ws(W), Q(b, W)
exists and has an iteration strategy in I'°(Q, A). This is simply because there is an
extender F € ./\/T})/V with critical point 0% such that Q(b, W) < (Ult(M)Y, E))’. We
can the define ¥ in 7, (7[Q°], Q% ,T°(Q, A)) with the following procedure. We work
in J.,(r[Q"], @2, T*(Q, A)).
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Suppose first X is a transitive set and R € X is an Isa type hod mouse. Suppose
that there is an embedding 7 : @ — R?. Suppose further that M is an sts mouse
over X based on R. We say M is good if it has an iteration strategy A such that if
S is a A-iterate of M, t = (R, T,R:,U) € S is according to ¥M, and Ry = 77 #(R?)
then letting A* be the strategy of R, induced by A,

1. (R1,A) is a hod pair such that A has strong branch condensation and is
strongly fullness preserving,

2. Ry = Hull® (77" o 7[QY] U §F1),

3. letting o : Ry — Q% be given by
o(z) = 7(f)(7R, (),

where f € Q" and a € (6%7)<“ are such that = 77" o 7(f)(a),

T,b

7] Q=con’tor.

4. U is according to A*.

We can now define Lp9°°®*'$7(X) which is the stack of good sts mice over X that
are based on R. Then we can define Lp9°°dsts7(X).

Suppose next that R is an lsa type hod premouse and 7 : Q° — R’ is an
embedding. Suppose U is a stack on RY. We say (Rb,lj) is a 7-good iteration if
there is k : R® — QP such that 7 | Q" = ko7 and for some (S,A) € T°(Q, A)
such that A has strong branch condensation and is strongly fullness preserving,
kT (RY6R") C 78 [S] and if 0 : R — S is given by

o(x) = (75) 7 (k(2))

then U is according to o-pullback of A. .
Suppose now that 7 = (S;,7; : i < m) is a stack on Q. We say T is good if the
following conditions hold.

1. For every ¢ < m, §; is an lsa type hod premouse such that
Si = MT(8|6%).

2. For every i < m, ni* exists.
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3. For all cutpoints S of T such that 7 =g ¥ rl<sb exists, letting WV be the longest
normal initial segment of 755 that is based on & and is above 55", for all limit
ordinal v < [h(W) such that W | 7 is ambiguous,

(a) if LpIeodstsT(ME(W | 7)) E “6(W | v) is a Woodin cardinal” then W
doesn’t have a branch for W [ v and MKV = §; for some 7 < m, and

(b) if LpIeodstsT(MT(W | ) E “6(W | v) is not a Woodin cardinal” then
W has a branch b for W | 7 such that Q(b,W | 7) exists and Q(b, W |
) S Lp#ot T (MEW | 7).

4. For every cutpoint S of 7 such that 7 =def rl<sb exists, letting U be the
largest initial segment of 7 based on S, (S, U) is a T-good iteration.

5. For every cutpoint & of T such that 7 =def rTss exists, letting U be the
longest normal initial segment of 7 that is based on § and is above 65" and is

such that for some n € ((55b, 6%), U is based on O;?,nm and is above 7, then letting

E € ES be the least extender with critical point 65 such that (9,‘797,7777<IUlt(8, E),
(UIt(S, E))*,U) is a (7 | S®) o 7 good iteration.

Let then A be an iteration strategy for Q such that its domain consists of good
stacks and if 7 € dom(A) then A(T) = b if and only if 7 {M7 } is a good iteration.
It can now be shown that A = W. The proof is very much like the proof of clause 2
of Theorem 6.1.5. We leave it to the reader. 0

We are now in a position to state the main theorem of this section.

Theorem 8.1.13 Suppose (P,X) is a hod pair such that P is of lsa type and ¥ has
strong branch condensation and is strongly fullness preserving. Suppose Code(X) is
Suslin, co-Suslin. Then for some Q € pI(P,%),

1. L(I(Q,¥g)) Np(R) =T(Q,Xg),

2. the set {(z,y) : x € R andy & Lp~3°(z)} cannot be uniformized in L(T'(Q, Xo)),
and

3. L(I'(Q,%q)) F LSA.

Proof. Let I'y < I' be any two good pointclass such that Code(¥) € Arp,. Let F
be as in Theorem 4.1.6 for I'. Let A € I'“ be a set coding a self-justifying-system
(A; : i < w) such that Ay = {(z,y) € R? : y € Cr,(x))}. Fix z such that if
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F(z) = (N*, M,,0,,%,) then Code(X) and A are Suslin, co-Suslin captured by
(N 0z, B).

We then have that the fully backgrounded hod pair construction of N¥|d, reaches
a tail of (P, X) (see Theorem 4.6.10). Let (Q, A) be this tail. Let N' = (JE’AM)N;“SI.
Because X is fullness preserving we have that A" E “6< is a Woodin cardinal”. Let ®
be the strategy of A/ induced by X,. We now start proving that (Q, A) is as desired.

Clause 1 is just Lemma 8.1.11. We prove clause 2 of Theorem 8.1.13, which
amounts to showing that the set B = {(z,9) : € RAy & Lp™" ()} cannot be
uniformized in L(I'(P, X)). Towards a contradiction assume we can uniformize B. It
follows that we can find a set of reals A € I'(P, ) such that A codes a sjs (4; : i < w)
with the property that Ay = B.

Let m : N|(k*) — M be an R-geneicity iteration. We then have that A is in
the derived model of M. Fix then a < m(k)-generic g over M such that there is
a term relation 7 € M]g| realizing A. Let ¢ be a cutpoint Woodin cardinal of M
such that g is a < d-generic. Let £ < ¢ be a cutpoint M-cardinal such that M has
no Woodin cardinals in the interval (£,9). Let M* < M be such that 7 € M* and
M|r(k) S M*. Let now o : § — M* be such that crit(o) € (§,9), o(crit(o)) = 6,
crit(o) is an M-cardinal and 7 € rng(o). It follows that Lp*™*(Mcrit(s)) € S and
LpM" (Mlerit(a)) E “crit(o) is a Woodin cardinal”, contradiction! This finishes the
proof of clause 2 of Theorem 8.1.13.

To finish the proof of Theorem 8.1.13 we need to show that L(I'(Q, A)) E LSA.
Suppose first that

(1) for every transitive X € HC such that Q € X and for every R < Lp*™(X)
such that p(R) = o(X), if ® is the iteration strategy of R witnessing that R is a
Ase-sts mouse then ['(R, ®) <, T°(Q, A).

We claim that (1) implies L(I'(Q,A)) E LSA. Towards contradiction assume not
and set B = {(z,y): 2 € RAy & Lp™(2)}. We claim that

(2) B is Suslin, co-Suslin in L(I'(Q, A)).

Clearly (2) contradicts clause 2 of Theorem 8.1.13. To see (2), let ¥ be the minimal
component of A% (see Definition 3.9.8). Because I'’(Q,A) = I'’(Q, V), it follows
from (1) that

(3) B is projective in .
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Let Q. be the direct limit of all A-iterates of @ and let 7 : @ — Q. be the
iteration embedding. Notice that 7 | Q° depends only on ¥ and hence, because of
Lemma 8.1.12, it is in L(I'(P,X)). Also, because V¥ is fullness preserving, it follows
that 7[QP] can be coded as a subset of w(I'*(Q,A)). This is because QF |69 =
U{Moo(R,AR) : R € pB(Q,A)} and 62 = w(I*(Q, A)).

It follows from (3) and Lemma 8.1.12, B € J,(n[Q°], Q°,T'*(Q, A)). Since we are
assuming L(I'(P, X)) E —LSA and since, in L(T'(P, X)), 6% is both < © and is a
limit of Suslin cardinals, B must be Suslin, co-Suslin in L(I'(P, X)), implying (2).
Thus, it is enough to prove (1).

Suppose (1) fails. We can then assume that the witness is in some < d,-generic
extension of AVF. Moreover, by iterating if necessary, we can assume that X is < k-
generic over N'. Let then R < Lp*™*(X) be least such that p(R) = o(X) yet if A is
the strategy of R then I'(R, A) = I'’(Q, A). Notice that we have that

(4) Code(A) is Suslin, co-Suslin in L(I'(Q, A)) (this follows from Lemma 8.1.9).

We again let ¥ be the minimal component of A%, It follows that for some < k-generic
h over N, there is some (7,8*) € I(Q,¥) N N|k[h] such that As- € L(I'(Q,A))
(this can be shown using Theorem 4.6.8 and the fact that W is Suslin, co-Suslin in
L(I'(Q, A)), which follows from (4) and Lemma 8.1.12). It then follows that if S is
such that (7,8) € I(Q,A) N N|x[h] then the fragment of As [ N|k[h] that acts on
stacks based on §* is in N[h] (in fact, As | N|k[h] € N because of Lemma 8.1.6).
Let now § > o(8S) be a cutpoint Woodin cardinal of AV|k. Let S; be an iterate of
S above ¢° that is built according to the rules of N|d-genericity iteration. We have

that S; € N[h]|(6t)V. Let N} be the output of (jE’A«SStlc)N. It follows from fullness
preservation that Aj F “5% is a Woodin cardinal”.

Let A3 be the (N, 77°[Q%])-authenticated backgrounded construction over A/|d
based on Q (this makes sense as N[ is generic over S; and 7% € N|J, see Defini-
tion 6.2.2). Then it follows from universality of N5 that N|(6+)Y C Ny € M [N]9].
However, 6! is not a cardinal of A/ yet it is a cardinal of N;[A]d], contradiction!
This finishes the proof of (1) and hence, the proof of Theorem 8.1.13. U

The next theorem can now be proved using Corollary 8.1.11 and the proof of
Theorem 5.20 of [10].

Theorem 8.1.14 Suppose (P,X) is a hod pair such that \¥ is a successor ordi-
nal and ¥ has a branch condensation and is fuﬂlness preserving. Suppose B €
B(P~,Xp-). There is then Q € pI(P,%X) and B = (B; : i < w) C B(P,Xp-)

=

such that B strongly guides YXg.
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8.2 A hybrid upper bound for LSA

The main theorem of this section, Theorem 8.2.6, is a corollary to the proofs given
in the previous section. It can be used in core model induction applications to show
that certain hypothesis imply that there is a model of LSA. We give a fairly detailed
proof of Theorem 8.2.6.

Definition 8.2.1 Suppose (P,X) is an sts hod pair. We let N# (P,X) be the

w,lsa
minimal X-sts mouse M over P such that M has w many Woodin cardinals greater

than 67 such that if X is their sup then M = M*(M|N).

Definition 8.2.2 We say N is an active w Woodin Isa mouse if it has an iteration
strategy > such that

1. N has a Woodin cardinal § such that if k is the least < d-strong cardinal of N'
then letting P = N|((67)*)YV, (P, 25 is an sts hod pair such that Y5¢ has
strong branch condensation and is strongly I°(P, $5¢)-fullness preserving,

2. N = lesa(,])7 2%0)7

3. for every a < A\¥ and for every & € (67,0(07)), if MT(P|E) E “¢ is a Woodin

cardinal” then

lesa(MJr(PE), SN (pley) F “€ is not a Woodin cardinal”.
We say P is the lsa part of N. We say (N,X) is an active w Woodin lsa pair. It
follows that p(N') < (k)N where & is as in clause 1°.

In what follows, we let the statement there is an active w Woodin lsa pair be
shortening for the statement that there is a pair (N, X) such that A is an active w
Woodin lsa mouse and ¥ witnesses the clauses of Definition 8.2.2.

Notice that it follows from Theorem 4.10.4 that if (V,YX) and (M, A) are two
active w Woodin lsa pairs with common Isa part P such that 35 = A%t then N' = M
and X = A.

3The fact that p(NV) < (k7)) can be proved as follows. Suppose that p(N) > (kT)V. Let
M = HullN ((xH)N). Clearly M is also an active w Woodin Isa mouse. We would be done if we
had M < N. To show this, we use the proof of Theorem 4.9.7, and compare (N, M, (K+)N) with
N. We need to verify that a version of Lemma 4.9.5 holds for (M, M, (k7)V). However, this can
be done via exactly the same proof. We leave the details to the reader.
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Lemma 8.2.3 Suppose (N,X) is an active w Woodin Isa pair and P is the lsa part
of N'. Let N be the result of iterating the last extender of N through the ordinals. Let
(6; 1 i < w) be the Woodin cardinals of N above 67 and let X be their supremum. Let
7 : N — M be an iteration via X that is above 6. Suppose g is < 7(\)-generic over
M and § € (M|Xg]) NpB(P,X*). Then S is an M-authenticated hod premouse.

Proof. Towards a contradiction assume not. We assume © = id and g = (), the
proof of this special case can be easily generalized. We can then find an iteration
o : N — N above 67 and S € pB(P,X%) N (Ni|o(N)) such that if k& < w is such
that S € Ni|o(dy) then

(1) for every iteration 7= : N7 — M according to ¥ and above o(d;) and for any
Q € pB(S,X¥) N (M]r(N)), for some £ < w(A) and | € (k,w), Code(Xg) <
COde(E(sMM(&l))b) and

(2) for any k < w(A) and [ € (k,w), C’ode(E(sﬁmal)b) <w Code(Xs).

The strict inequality in (2) is a consequence of Lemma 8.1.3. Without loss of gener-

ality we assume N' = Nj. Let k be such that S € N|d;. Let Py = Sg\kflé’““ and let
T be the comparison tree on P such that P; = M™(T). Notice that we must have
that 77 exists (this is a consequence of Lemma 8.1.3). We can now compare S with
the construction producing P; in A. This comparison is done via N-authentication
procedure. We outline it below.

Suppose U is an initial segment of the comparison tree on § with last model S;.
Suppose U is of limit length. Let a be largest such that S;(a) = Pi(«). Suppose
first that Si(a + 1) is of successor type. As Py is fully backgrounded it follows that
P1(a+1) is also of successor type. It follows that the rest of U is a stack on S;(a+1)
and is a result of comparing S;(« + 1) with Py(a + 1).

Suppose that M(U) <Pi(a+1). Then let W < Pi(a+ 1) be the least such that
W E “5(U) is a Woodin cardinal” but J;(W) E “0(U) is not a Woodin cardinal”.
Because S is a Y-iterate of P it follows there is a branch b of ¢ (the branch chosen
by Xs) such that Q(b,U) exists and Q(b,U) = W. Then clearly b € N and we let
IT play b. Next suppose that M(U) = P;(a + 1)[67+ @D, In this case we look for a
branch b of U such that for some 5 € b, s(T,a+1) C ﬂ%{ »- Again the branch chosen
by ¥ is the unique branch with this property, and so there is such a branch in N
and we can extend U by letting /1 play such a branch.

Next suppose that S; (a+1) is of limit type. It follows that 531 i5 4 measurable
cardinal in S;(a + 1). Suppose then there is W < Py(a + 1) such that W E “0(U)
is a Woodin cardinal” but J;(W) E “§(U) is not a Woodin cardinal”. We can then
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identify Y s(U) inside N as above and extend U accordingly.
Assume then there is no such W. Let b = Xg(U). Because S € pB(P, X%°), we
have that Q(b,U) exists and is a Xf, ;) -sts mouse over M*(U). It follows that

(3) Pi(a+1) = MH(T)=M"(U) and T is an N-ambiguous tree.

We now work towards showing that N has a branch indexed for 7. Let K be
the NM-authenticated background construction over M™(7T) in which extenders used
have critical point > 9.

Claim 1. K has w Woodin cardinals.

Proof. Suppose not. This can only happen if the construction stops at some stage K*
and this can happen only if we encounter some stack ¢t = (M*(T), T1, Po,U) € K* of
length 2 such that according to our indexing scheme (see Definition 3.8.2), we have
to index a branch of ¢ in K* yet we cannot find an N-authenticated branch of ¢.
Notice, however, that because Ps € pB(S, Xs), we have that P, is A-authenticated
and so, we must have that (733,?/7) is an N -authenticated iteration. Also, notice
that if &/ = () then the branch of ¢ just depends on * and not our authentication

procedure. O

Our goal now is to compare the construction producing K and Q(b,U). Let ¥ be
the strategy of Q(b,U) induced by ¥Xs and acting on trees above 6(U)

Claim 2. The comparison of the construction producing K and Q(b,U) is suc-
cessful.

Proof. Suppose not. We can then find a normal tree U; on Q(b,U) with last model
Q; and a normal tree 77 on N with last model N; such that U is according to V¥,
T is according to ¥ and for some 3 ¢ dom(E)?*, letting K, = n71(K), Q1|8 = K18
and Q1|8 # K1]|8. Let then t = (M*(T), W, R, W) € Q1|8 be a stack of length
2 whose branch is indexed at (. It follows that ¢ is a stack whose branch should be
indexed at 8 in KCy. Let ¢ be the branch of t in Q;. Let e, if it exists, be the branch
of t in KC;. Notice that if Wl is undefined then both ¢ and e exists and are equal as
such branches just depend on Q|5 = K4]5.

We thus have that ¢ is a branch of W;. Notice that if e exists then e = Sz, (W), It
follows that e = ¢. We thus have that e doesn’t exist. It follows that in N, (R?, V_Vl)
is not an Nj-authenticated iteration. Since crit(n”1) > d; and since R® € pB(S, L¥°),
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we get a contradiction to (1). O

Because I has w Woodin cardinals and is a proper class model, it follows from
Claim 2 and clause 3 of Definition 8.2.2 that Q(b,U/) < K. We thus have that
Q(b,U) € N. It follows that to show that A has a branch indexed for T, it is enough
to show that clause 4 of Definition 3.8.2 holds for Q(b,Uf) and ¢ where ¢ = ¥p(T).
Let W= Q(e, T) = Q(b,U). To do this, we need to show that

(4) there is M < N such that ¢ € M is a cofinal branch through 7 such that
for some pair (3, 7) such that v < o and 5 < o(M),

1. M| is unambiguous (see Definition 3.6.1) and M|S F ZFC+ “there are in-
finitely many Woodin cardinals > §(7)”,

2. b e M|B and M|S E “b is well-founded branch”,
3. M|BE “Q(b, T) exists and is an sts 1),-premouse over M(7)” and

4. letting (0; : i < w) be the first w Woodin cardinals > §(7") of M|3, M|B E “W
is < Ord-iterable above §(7T) via a strategy ¥ such that letting A = sup,.,, 0;,
for every generic ¢ C Coll(w,< ), ¥ has an extension T € D(M|B, A, g)
such that D(M, A, g) E “S7T is an ws-iteration strategy” and whenever R €
D(M|B, A, g) is a X" -iterate of W and ¢t € R is a stack on M™*(T) of length 2
then ¢ is (P, XM)-authenticated”.

To show the existence of such an M, it is enough to show that A satisfies clauses
1-4 and first three clauses are straightforward. We show that clause 4 holds with
(0; 11 € (k+2,w)) as our sequence of Woodin cardinals. We next identify the model
R in the construction producing K such that C(R) = W. We first claim that

Claim 8. if Ky is the N-authenticated construction of N|dxo over M™(T) using
extenders with critical point > 5/,;11 then Iy < K.

Proof. Suppose not. It follows from the proof of Claim 2 that Iy has height d; 5. If
K1 A4 K then there is some model Q appearing in the construction producing K such
that p(Q) < dg42. Let p be the standard parameter of Q. Let X < Q be such that
p(Q) < XNy € Opyo is a cardinal in A* and Q be the transitive collapse of X. By
condensation (using the fact that X contains solidity witnesses for p), @ < Q. Since

4This is possible because 0y is strongly inaccessible in N
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Q is sound and p(Q) = p(Q) < X N§, X N§ is not a cardinal in A/. Contradiction.
U

It follows from Claim 3 that W < ICy. To complete the proof of Clause 4 of (4),
it is now enough to show the following claim.

Claim 4. Suppose 7 € (611, 0k42) is an N-cardinal and g C Coll(w, (n*)V). Let
® be the fragment of ¥ that acts on non-dropping trees that are based on A|(n*)V
and are above 8;,1. Then ® [ M|A[g] € N|\[g] and if A = & | HCNIN9! then in Ng],
A is a < A-universally Bair iteration strategy such that for any poset P € N|\[g],
if k C P is N[g]-generic and A* is the canonical extension of A to HCNM9*kl then
A =@ I HCONIAg#k]

Proof. We only prove that ® [ N|\[g] € N|A[g] and leave the rest to the reader.
Let @ = N|(n*)" and let W, € Ng] be a tree on Q of limit length and accord-
ing to ®. Let e = ®(W;). We want to show that e € N[g] and N[g| has uniform
way of identifying e. Notice that Q(e, W) exists. Let Ky be the N-authenticated
background construction over M(W;). The proof of Claim 1 and Claim 2 show that
Q(e, W) < Ky. Tt is now easy to find the uniform definition of e. O

Claim 4 finishes the proof of Lemma 8.2.3. 0

Corollary 8.2.4 Suppose (N, %) is an active w Woodin lsa pair and P is the Isa part
of N'. Let N be the result of iterating the last extender of N through the ordinals. Let

® be the fragment of . that acts on stacks above 67. Then ® is T°(P, X5¢)-fullness
PTreserving.

Proof. Given S € pB(P,X%¢), let 7 : N' = M be a X-iterate of N above §” such
that S is generic over M for the extender algebra at the first Woodin of M that is
larger than 67. It follows from Lemma 8.2.3 that S is M-authenticated. O

Lemma 8.2.5 Suppose (N,X) is an active w Woodin Isa pair and P is the lsa part
of N. Let N be the result of iterating the last extender of N through the ordinals.
Let § < n be two consecutive Woodin cardinals of N such that § > 67. Let N'* be the
output of N -authenticated background construction of N'|n in which extenders used
have critical point > . Then

1. N* has height n and
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2. if N7 is the result of translating N onto a structure over N* via S-constructions
then N1 is a normal iterate of N via a tree that is based on N'|6y where &y is
the least Woodin cardinal of N above 5.

Proof. We start by verifying clause 1. Suppose N* fails to reach height 7. This
can only happen if at some stage of the construction we reach a model M such that
there is some ¢ = (P, T,Py,U) € M such that t € dom(2M), t & dom(ZV), and
it is required by the rules of sts indexing scheme that we add a branch of ¢t to M.
It follows that if ¢/ = () then the branch of T just depends on M. So u # (), and
hence (P? U ) is not an N-authenticated iteration. It then follows that P? is not an
N-authenticated hod premouse, contradicting Lemma 8.2.3.

We verify clause 2. Notice that Ni[N|n] = N. Thus N; is n-sound w Woodin
mouse. It is then enough to show that there is a tree U € N on N|dy such that
MU) = N*.

Suppose not. Let U € N be the tree on N|dy that is a result of comparing N|dg
with the construction producing N*. Since comparison fails, we must have that
Y(U) & N. Let b=X(U). We must have that Q(b,U) exists and Q(b,U) 4 N*. Tt
follows that N* E “§(U) is Woodin”. Tt follows from Lemma 6.4.6 that Q(b,U) € N
(Q(b,U) can be obtained as via an S-construction). Thus, in the further comparison
of Q(b,U) and the construction producing N*, N* side does not move.

Let Wy = Q(b,U). We can then successivly produce a sequence (W;,U;, b;) such
that

1. U; is a tree on W; that is a result of comparing WW; with the construction of
producing N*,

3. Wiy = Q(b,U;),

It then follows that N* E “0(U;) are Woodin cardinals” and if n = sup,_, 0(U;) then
MFT(N*|n) < N*. This contradicts the minimality of N O

Theorem 8.2.6 Suppose (N,X) is an active w Woodin Isa pair and P is the lsa part
of N. Let N be the result of iterating the last extender of N through the ordinals.
Then the derived model of N' computed via ¥ using the Woodin cardinals above 5%
is a model of LSA.
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Proof. Let (8; : i < w) be the Woodin cardinals of A" that are greater than 7. Let A
be their sup. It follows from Lemma 8.1.3 that |\ is internally X-closed. It follows
from Corollary 8.2.4 that X is T°(P, ¥5¢)-fullness preserving.

Suppose X is a transitive countable set such that P € X. Let for i € 2,
7 N — M, be an iteration according to ¥ such that crit(m;) > 6 and X is
< m(A)-generic over M.

Claim 1. LpMosts(X,P) = LpMsts(X, P).

Proof. Let Ky be the Mj-authenticated background construction over X based
on P and K; be the Mi-authenticated background construction over X based on
P. We compare the construction producing Ky with the one producing ;. Notice
that it follows from the proof of Claim 1 of Lemma 8.2.3 that both constructions
reach proper class models. It then follows from the proof of Claim 2 of Lemma 8.2.3
that the aforementioned comparison produces oy : My — My and o1 : M — M;
such that crit(o;) > o(X) and 00(Ky) and o1(Ky) are lined up (i.e. one is an initial
segment of the other). Because they both have exactly w Woodin cardinals it follows
from our minimality assumption on A that oq(Kg) = 01(K;). The claim now follows.

O

Given a transitive X € HC, we let W(X) = Lp™=*(X, P) where M is such that
there is an iteration 7 : N' — M according to ¥ such that crit(n) > §% and X is
< w(A)-generic over M. Suppose S € pI(P, %), a < X%, n € [63s_,,0°) is such that
MT(8|n) E “n is a Woodin cardinal”. We then claim that

Claim 2. W(M™(S|n)) E “n is not a Woodin cardinal”.

Proof. Suppose otherwise. Notice that § F “n is not a Woodin cardinal”. Let
Q < S be the least such that Q F “n is a Woodin cardinal” but J[Q] E “n is not
a Woodin cardinal”. Then Q is a Ej\f‘l;(sm)—sts mouse. Let now m : N = M be

an iteration according to ¥ above 67 such that S is < m(\)-generic over M. Let
K be the M-authenticated background construction over M*(S|n). Because we are
assuming that the claim fails, we must have that IC F “n is a Woodin cardinal”.

We now compare Q with the construction of M producing K. Notice that this
comparison halts (this follows from the proof of Claim 2 that appears in the proof of
Lemma 8.2.3). Now, Q has to win this comparison. Since K is proper class and has
w Woodin cardinals, the fact that Q wins contradicts the minimality assumption on
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N (more precisely, contradicts (3) of Definition 8.2.2). O

Suppose next that n = 6°. Let W, (X) be the ath iterate of WW. We then have that
Claim 3. W,(M™(S|n)) = S.

Proof. Let 0 : N' — ST be the result of applying the iteration producing S to
the entire model /. Thus S is the Isa part of St. Let now 7 : N — M be an
iteration according to 3 above 67 such that S is < 7(\)-generic over M. Let K be
the M-authenticated background construction over M™(S|n). We now compare the
construction producing K with ST. As before this construction has to halt. It then
follows from our minimality condition on N that W,(M™(S|n)) = S. O

The next claim computes the powerset of the Woodin cardinals of A/. The proof
is very similar to the proof of Claim 3 and we omit it.

Claim 4. Let 7 : N — M be an iteration according to ¥ above §7. Then for
any k < w, M|(6;)M = W(M|).

The next claim can be proved using the proof of Claim 3 and the proof of Lemma 8.1.9.
Also see the proof of Claim 4 of Lemma 8.2.3.

Claim 5. Suppose X € HC is a transitive set and R < W(X) is such that
p(R) = o(X). Let 7 : N/ — M be an iteration according to ¥ above 6" such
that X is < m(\)-generic over M. Let k be such that for some g C Coll(w, < 7(d)),
X € HCMIm0Wl9l. Then R has a < 7(\)-universally Baire iteration strategy in M]g].

Suppose g C Coll(w,R) generic. Let (x; : i < w) be an enumeration of R in V[g].
Let 7 : N'— M be R-genericity iteration according to ¥ and guided by (z; : i < w).
The next claim is a corollary to Claim 5 and clause 2 of Theorem 6.1.5.

Claim 6. Then the set B = {(x,y) € R? : y € W(z)} and Z%¢ are both in M(R).

Let ¥ be the minimal component of X5¢ (see Definition 3.9.8). Let Py, be the direct
limit of all Y-iterates of P and let m : P — P,, be the iteration embedding. Notice
that = | P® depends only on W. Also, because V¥ is strongly Fb(P,Z%C)—fullness
preserving, it follows that 7[P’] can be coded as a subset of w(I'’(P,¥%¢)). This is
because PP |07% = (J{M (R, Ar) : R € pB(P, %Y%)} and 67" = w(I*(P, ). Tt
follows from Lemma 8.1.12 that
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Claim 7. O € J,(PL, w[P],T°(P, xs5t)).
Next we establish a crucial claim.
Claim 8. j(Pé’o,ﬁ[’}DbL Fb(p, sste)) AD+.

Proof. Suppose not. A € J(Pb, n[P?],[*(P, X)) be a set of reals that is not de-
termined. We have that A € M(R). Let X = n[P?]. Fix x € R and Q € pB(P, X5%)
such that A is definable from X, z,(Q, o), P2 and a finite sequence of ordinals over
J(PL, =[P?],T°(P,¥%)). By minimizing the sequence of ordinals we can suppose
that A is definable without ordinal parameters.

Let (M, T; : i < w) be the R-genericity iteration of NV guided by (z; : i < w).
For i < w let m; = m%i<iTi and for i < j < w let i - Mi — M; be the composition
of iteration emebddings. Let i be large enough so that z, @ € HCM:l(=5<)]l and
Yo | HOMil@:=0] is < m;(\)-universally Baire. Let 7 € M;[(z; : j < )] be a name
such that 7; ,(7) is a term relation for A. We claim that if R = (M,]|(m;(5; 1)) [(z; :
J <i)] then letting ® be the fragment of ¥ that acts on trees based on R that are
above m;(9;), (R, ®, 7) term captures A. It then follows from a result of Neeman that
A is determined (see [9]).

Let then 7 be an iteration tree on M; based on R according to ®. Let n =
7;(6i41). Let S be the last model of 7. We want to see that if h C Coll(w, 77 (n)) is
S-generic then (77 (7)), = ANS[h]. Let k > i be large enough that S € M[(x; : j <
k)]. Let 8* be the output of My|mx(dx41)-authenticated backgrounded construction
over S|77 (n). We then have that S* is an iterate of S|w7 (m;(d;12)) (see Lemma 8.2.5).
Let 8** = mp4+1(S*). Finally, let S; be the result of translating My, over S** via
S-constructions. We then have that S [M1|mri1(Ops1)] = Mpar.

It follows that we can think of (7; : j € (k4 1,w)) as a R-genericity iteration on
S guided by (z; : j € (k+1,w)). Let then Sy be the last model of this genericity
iteration. We then have that So[M|7(dk41)] = M. Let 0 : M; — Sy be the iteration
embedding. It then follows that in Sy[(z; : j < i)], o(7) is the term relation that
denotes the least set in J (P, n[P?],[*(P, %)) which is not determined and is
definable from z and (Q, ¥g). It then follows that o(7) is realized as A. O

The proof of the next claim is exactly like the proof of (1) that appeared in the
proof of Theorem 8.1.13 and Lemma 8.2.3. We leave it to the reader.

Claim 9. For any transitive X € HC such that P € X and for any R < W(X) such
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that p(R) = o(X), R has an iteration strategy in T'°(P, X5%).

It follows from Claim 9 that the set B =
jective in ¥ and hence, B € J(P°, w[P®],T*(P
J(B) E AD". We now have that

{(z,y) € R? : y & W(x)} is pro-

(x,
,2)). It follows from Claim 9 that
Claim 10. Tn M(R), let T = {A C R : L(A,R) F AD*}. Then ¥, B € L(I, R).

It follows from the proof of clause 2 of Theorem 8.1.13 that B cannot be uni-
formized in L(I'",R). Hence, L(I', R) F LSA. O

8.3 Strong [-fullness preservation reviseisted

Theorem 8.3.1 Suppose (Q,A) is a pair appearing on the I'-hod pair construction
of Ny" Then A is strongly T'-fullness preserving.
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Chapter 9

Condensing sets

The goal of this chapter is to introduce the theory of condensing sets. Such sets were
first considered in [11, Section 10, 11.1], where they were presented in the form of a
condensation property for elementary embeddings (see [11, Definition 11.14]). The
current presentation dates back to an unpublished note by the first author.

Prior to this work, condensing sets have been used in the context of the core model
induction. As a convenience to the reader, we recap some of the basic machinery
used in the core model induction. We model our presentation on [l 1] but we will
also use the set up of [31]. A typical situation is as follows. We have an embedding
j : M — N with critical point x and such that H¥ = HY . In M, we consider
the maximal model of determinacy that has been built via core model induction.
While the exact definition of the maximal model is somewhat case specific, it can be
essentially described as follows.

Let g C Coll(w, < j(k)) be N-generic. For v < k let g, = g N Coll(w, < v). We
then can extend j to act on M|g,.]. We denote this extension by j again and we have
that j : M[g.] — Nlg|.

Working in Mg,], consider the set of hod pairs (Q, A) such that

1. Q € HCM,

2. for some v < & such that Q € M][g,], letting ¥ = A | HCMl9"] W € M[g,] and
M|g,] E “Code(¥) is k-uB” and

3. if T, S € M]|g,] witness that Code(V) is k-uB then Code(A) = p[T]Ml9xl.

Let I' be the set of such pairs (Q,A). An additional requirement is that A is fullness
preserving and has branch condensation. While the branch condensation is the same
as before, fullness preservation is not the same as the definition given in this paper.

179
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We refer the interested reader to [11] for more details on how to define I'. It is in
fact somewhat more involved.

The goal of a core model induction is to show that I' is rich. This is done as
follows. First a target theory is fixed. The theory used in [I1] is “ADg + “© is
regular”. In Chapter 12, our target is LSA. Suppose then there is no Isa type hod
pair (Q,A) € I'. Preliminary arguments, such as those used in [12, Theorem 4.1],
show that I' is of limit type, i.e., for any (Q,A) € I" there is (R, V) € I" such that
T(Q,A) <, [(R, ).

Next we let P~ = [Jigajer Moo(Q,A). Fixing @ < A7 and (Q,A) € T such
that P~ (o) = Moo(Q,A), we let Xy = Ap-(). It follows from comparison that
Y, is independent of (Q,A). Let ¥ = @, _,»-X. Suppose next that there is
M < Lp¥(P~) such that p(M) < o(P~). We then let P be the least such M.
Otherwise we let P = Lp=(P~).

The next major step is to build an iteration strategy for P that extends >. We
let X7 be this new strategy. X7 is constructed as follows.

Definition 9.0.2 (The construction of the strategy) Suppose T € HCN! is
a stack on P. Working in Nlg|, we say T is j-realizable if there is a sequence

— -

(or : R €tn(T)) and a sequence (Sg,Ag : R € tn(T)) C j(I') such that

1. op = o, for all terminal nodes R of T, og : R — j(P) and whenever R <Ts
Q; OR = 09© W;Izd,g

2. For every non-trivial terminal node R of T, og[R(ETR +1)] C rng(wg\s,oo).

3. For every non-trivial terminal node R, letting kx : R(éf’n +1) = Sg be given
by kr(x) =y if and only if o (z) = W§z7m(y), krTr is according to Ag.

4. Suppose R is a non-trivial terminal node of T. Let Sk be the last model of

krTx. Suppose Tx has a last model Qr and that 7T” i defined. It then follows
that Qr € tn(T) and R <7 Qg. Let ki : Qr — Sk come from the copying
construction. Then for all v € Qp, og,(x) = UR(f)(Wé\g,oo,j(n)(k%(a)) where

fER and a € [QR(W;;QR@T—’R) + 1)< are such that x = WZQR(f)(a).

5. Suppose R s a trivial terminal node of T. Then for every € < A%, there is
(S,A) € §(I') such that or[R(§+1)] C rng(ﬂg\,m,j(n)).

We say that (o : R € tn(T)) are the j-realizable embeddings of T and (Sg, Ax :
R € tn(T)) are the j-realizable pairs of T .
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Given a stack T € HCN on P such that either there is a strongly linear closed
and cofinal set C' C tn(T) or Ts. is of limit length, we set T € dom(X¥) if T is

— —

j-realizable. We set X7(T) = b if T“{MZ’} is j-realizable.

¥ may not be a total strategy simply because we may not be able to find (S, A)
as in the last clause of Definition 9.0.2. However, the proof of [I 1, Lemma 11.6] gives
the following.

Theorem 9.0.3 Suppose |P| < (k7)M. Then X7 is a total (wy,w; )-strategy in N|g].

Then there are two arguments that we run as part of the proof of Theorem 9.0.3.
First we show that P = Lp=(P~). The reader can see, for example [31, Lemma 3.78],
for an argument. Roughly, if not, suppose n is such that p,,1(P) < 67 < p.(P),
then in j(I'), we can define an OD%S) set A C 07 such that A ¢ P. By fullness of
P(a) and SMC in j(I'), A € P(a) € P. Contradiction.

The next argument attempts to show that P F “07 is regular”. Showing this
finishes the proof of the main theorem of [ 1]. In this book we present two arguments
for obtaining a model of LSA from PFA (see Theorem ?? and Theorem 12.0.22). In
both cases, we need to do more in order to finish the argument. It is in this step that
the theory of condensing sets is used. A reader interested in many details should
consult [11, Section 10, 11.1] and [31, Lemma 3.81].

9.1 Condensing sets

We introduce the notion of condensing set in the most general setting. Suppose ¢ is
a formula in the language of set theory and A is a set. We let F, 4 be a collection
of hod pairs (Q, A) such that Q is countable, A is an (ws,ws, ws)-iteration strategy
having strong branch condensation and such that ¢[A, (Q, A)] holds.

Terminology 9.1.1 1. We say (¢, A) is bottom part closed if whenever (Q,\) €
Foa and R € pB(Q,A) then (R,Ar) € Fya.

2. We say (¢, A) is of limit type if for every (Q,A) € Fya, there is (R,¥) €
Fp.a such that R is of limit type and Code(A) € T°(R, V).

3. Let Ty 4 = U{I(R,¥) : (R, W) € Fya AR is of limit type}. We say (¢, A) is
stable if whenever (R,¥) € Fy a, V is strongly I'y a-fullness preserving.

4. We say (¢, A) is directed if whenever (Q,A),(P,X) € Fy a, there are R €
pI(Q,A) and S € pI(P, ) such that either
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(a) R poa S and X = Ag or
(b) S ﬁhodR and AS = 23.

Notation 9.1.2 Suppose (¢, A) is bottom part closed, is of limit type, is stable and
15 directed.

1. Let P(;A = U(Q,A)E]:d),A Moo(QuA)

2. Fiza < \Pea and (Q, N) € Fy 4 such that Pyala) = Mw(Q,A). Let X pa =

AP;A( and let ¥y 4 = @a<,\7°<f;A YapA-

@)

3. Suppose there is M < Lp'eA>#(P_ ) such that p(M) < o(P; ). Then let
Py.a be the least such M. Otherwise let Py 4 = Lp£¢’A’Z¢‘A(73q;A),

Definition 9.1.3 Suppose (¢, A) is bottom-part closed, is of limit type, is stable and
is directed. We say (¢, A) is full if Py = Lpf,“”A’E"”A(Pd;A).

Definition 9.1.4 Suppose (¢, A) is full. We say lower part (¢, A)-covering holds
if cf(0(Pp,a)) > wi.

Suppose now that (¢, A) is full and lower part (¢, A)-covering fails. We let T' =
Fpa, P="Ppaand ¥ = Xy 4. Given X € p,,(P), we let Qx be the transitive
collapse of Hull”(X) and 7y : Qx — P be the inverse of the transitive collapse. We
let ¥ x be the Tx-pullback of X.

Definition 9.1.5 (Weakly condensing set) We say that X € g, (P) is a (¢, A)-
weakly condensing set if P = Hull” (X U6”) and whenever X CY € g, (P), Xy
15 a strongly U'-fullness preserving iteration strategy with strong branch condensation.

Let X CY € p,,(P). We say that Y eztends X or Y is an extension of X if
L. 7xy | (Qx]09¥) is the iteration map via Yx and
2. Qy = Hullp” (0% UTx,y[Qx]).

Let 69 = 7;1(5). Let 7xy : Qx — Qy be Ty_l oTyx. Let 05’_ = Uas1oror wéi(a)’oo
and o3 : Qy — P be given by: for any f € Qx and any a € (Qy|d<¥)<*, and
r =1xy(f)(a),

oy (a) = ox ()75} w0 (@) = ox(f)(0y (a)).
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Definition 9.1.6 Suppose Y 1is an extension of a weakly condensing set X. Let
dy = 69v. We say that Y is an honest extension of X if

(a) Tx = o5% oTyy, and
(b) 75" o 1 (Qyvloy) =05 | (Qy|dy).

Remark 9.1.7 X is obviously an honest extension of itself, but there are other (non-
trivial) honest extensions of X. For example, if X = X' NP where X' < H) for
some reqular X (this will be the case for our intended X ) and Y =Y' NP for some
X' <Y’ then'Y is an honest extension of X.

Definition 9.1.8 (Condensing set) Suppose X € @, (P) is a (¢, A)-weakly con-
densing set. We say that X is a (¢, A)-condensing set if whenever Y extends X,
Y is an honest extension of X.

We expect that under many hypothesis such as PFA lower part (¢, A)-covering
fails. We also expect that under many hypothesis, failure of lower part (¢, A)-
covering implies the existence of (¢, A)-condensing sets. In the next few chapters,
we explore some specific situations where we know how to prove the existence of
(¢, A)-condensing sets.

We finish by remarking that (¢, A) depends on the specific situation we are in.
For instance, in [I 1], ¢ isolates those hod pairs that have certain extendability and
self-determining properties (see [I 1, Definition 3.1, 3.5, 3.8]).

We finish here by showing that below LSA, pullback strategies are unique.

Lemma 9.1.9 (Uniqueness of strategies) Suppose (¢, A, X) is such that ¢ is a
formula in the language of set theory, (¢, A) is full, lower part (¢, A)-covering fails
and X is a (¢, A)-condensing set. Suppose further that whenever (Q,A) € T'y 4, Q
1s not of lsa type. Then wheneverY and Z are two honest extensions of X such that

QY = QZ; EY = Z]Z-

Proof. Suppose that Xy # Y. Let ® = ¥y and ¥ = Y. Because we can
trace disagreement of strategies to minimal disagreements, we can find a stack 7 on
Q =45 Qv (= Qz) according to both ¥y and X, with last model R such that

—

(1) for some a < A%, §(T) C 07!, R(a + 1) is of successor type, Pri. 7 = Yr(a) 7
but ro11) 7 7 YR(asr) 7

IRecall that 6(T) is the sup of generators of 7
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We claim that 7xy = 7x_z. Because both Y and Z are extensions of X, we
have that both 7xy [ (Qx|dx) and 7x z(Qx|0x) are the iteration embedding ac-
cording to Xx. Because Xx has strong branch condensation and is strongly I'y 4-
fullness preserving, we have that 7xy [ (Qx|0x) = 7xz | (Qx|dx). Because
Ox = Hull®*(6x UX) and X C Y N Z, we have that Txy = Tx,z. Let then

T =def TXY = TX,Z-
Next, because of the smallness assumption on hod pairs in I'y 4, it follows from
(¢, A)-condensation of X that

(2) sup(Hull® (0%, T o 7[Qx])) = 5§+1.

We can now find, using the normal comparison, a normal tree &« on R(a+ 1) accord-
ing to both @, 1) 7 and W,y 7 such that it b= @y ) 2(U), ¢ =Wy, 2(U),
= MY and R. = MY then

(3) b # c and m, (5§+1) = ¢ (01)
(4) letting v = 7 (o + 1), Ry(v) = Re(v) and @, Tt~ (Ry) = YRo(w) T U (R}

Let ky : Ry — P and k. : R. — P be the realizabilty maps according to @Rb’fhuﬂ (Ro}
and Wp 71~z Notice that it follows from (4) that ky [ Ry(v) = ke | Re(v).
Notice that we also have that

(5) ko I (Hull® (57, 7 o 7T 0 7[Qx])) = ke | (HullRe (6%, 7% o 77 0 7[Qx])).

Combining (2) and (5) we get that (recall that §(U) = 67%)

(6) rng(m) Nrng(m) N o).

Clearly (6) implies that b = c.

9.2 Condensing sets from elementary embeddings

The following two theorems can be proved using the proof of [11, Lemma 11.15].
First we introduce some terminology. Suppose k is an inaccessible cardinal and
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G C Col(w, < k) is V-generic. Suppose (¢, A) is such that V[G] E “(¢, A) is full and
lower part (¢, A)-covering fails”.

Terminology 9.2.1 We say (¢, A) is homogenous if Py s € V, Xy 4 [V €V and
for any (Q,\) € Fy.a, there is (R, V) € Fya such that R € V, U | HY € V and
['(Q,A) CT(R, V).

Theorem 9.2.2 Suppose N C M are transitive models of set theory and j : M — N
is an elementary embedding with critical point k. Suppose g C Coll(w, < j(k)) is
N-generic and h = g N Coll(w, < k). Let j : M[h] — N|g| be the extension of j.
Suppose ¢ is a formula in the language of set theory and A € M|g]. Suppose further
that M[g] & “(¢,A) is full, (¢, A) is homogenous and lower part (¢, A)-covering
fails”. Then j[Py.a] is a (¢, j(A))-condensing set in N|g]. Hence, M[g] E “there is
a (¢, A)-condensing set”.

Terminology 9.2.3 We say (¢, A) is maximal if there is no hod pair or an sts
hod pair (Q,A\) such that Q is of limit type, A has strong branch condensation and
is strongly 'y a-fullness preserving and I'(Q,A) =T'4 4.

Theorem 9.2.4 Suppose (¢, A) is mazimal and full, lower part (¢, A)-covering fails
and X is a (¢, A)-condensing set. Then Py a E “67¢4A is reqular”.

We will not prove Theorem 9.2.2. However, in what follows we will outline a proof
of another existence theorem, Theorem 9.2.7, that is somewhat harder to prove than
Theorem 9.2.2. Theorem 9.2.7 will be applied in situations where there are no large
cardinals (e.g. measurables) in V'; one intended application is in the construction of
models of LSA from instances of threadability in Chapter 12. There the embedding j
is replaced by a kind of uncollapse maps of some hull that is countably closed; also,
the hull is transitive past the size of the collapse forcing.

Suppose k is a cardinal such that k¥ = k. Let G C Col(w, < k) be V-generic.
Suppose (¢, A) is such that V[G] F “(¢, A) is full and lower part (¢, A)-covering
fails”. Working in VI[G], let P~ = P, ,, P = Pya, X = Epa, F = Fya and
[ =T4a4 Let § =87 =0o(P7), v = A and A = max{(|[|*F), (2%)*}VI¢. In this
case, too, much like Terminology 9.2.1, we can define what it means to say that
(¢, A) is homogenous.

We continue by assuming that (¢, A) is homogenous. Working in V', we say
that X < HY is good if kK C X, |X| = k, X* C X and {P~,,F} C X[G]. Let
7x : Mx — HY be the uncollapse map (7x naturally extends to Mx|[G] and we also
denote the extension 7x). Let (I'x,Px,dx,Fx, Sx,7x) = Tx (L, P, 6, F, %, 7).
Let
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PX = LpEXI(P)_()?

For any hod pair (Q,A) € Fx, (Q,7mx(A)) € F. For notational convenience, we
will also use A to denote its extension 7x (A).

For a good X, using the embedding 7x we can define a strategy X% for Px using
the construction of Definition 9.0.2. We have that X% is such that

o X1 extends Yx;

e for any X% iterate Q of Px via stack 7 such that the iteration embedding T
exists, there is an embedding o : @ — P such that 7y = o o7’ . Furthermore,
letting ¥ = (X% ) o, for all a < A8, Wg(4) has branch condensation.

e X7 is I'(Px, X} )-fullness preserving.

We call X3 the mx-pullback strategy for Px. By the theory developed above, for
any (U, R) € I(Px,¥x), letting A = (Xx);; », there is (W, S) € I(R,A) such that
AW, s has branch condensation.

Terminology 9.2.5 Given a good X, we say X captures (¢, A) if Px € Mx,
Y% €T, nx(Px) =P, and 7x is cofinal in o(P). We say (¢, A) is captured if for
a stationary set of good X, X captures (¢, A). We call this set Sy 4.

Below, we use the notation “v*X € G4 4”7 to mean “V.X € €NGSy 4 for some club
(S

Theorem 9.2.6 Suppose (¢, A) is captured. Then V*X € &y 4, X NP is a weakly
condensing set.

Proof. Suppose not. Fix a good X’ such that X’ captures (¢, A) but X = X' NP
is not a weakly condensing set. Note that mx [ Px is cofinal in P. Let Y be
an extension of X such that (Qy,Xy) ¢ F (Zy is the ry-pullback of ¥). This
means there is (R, 71) € I(Qy,Yy) such that 77T exists and a strong cut point ~y
such that letting o < A® be the largest such that §% < ~, then in T, there is a
mouse M < Lp(EY)fRW (R|7)? such that M ¢ R. By definition, 7x = 7v o Txy
(tx = 7 | Px here). We use i to denote 7T o 7xy and k : R — P to denote the
Ty-realization map in the definition of Xy

Let (P¥,Ax) € V be a ¥x-hod pair such that

2The other cases of I'-fullness preservation are handled similarly.
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o I'(P%,Ax) E R is not full as witnessed by M.
o Ax €T is I'-fullness preserving and has branch condensation.
e M\Px is limit and cof”x (APx) is not measurable in P}

Such a pair (P, Ax) exists by boolean comparisons. In particular, Py is a X x-hod
premouse over Px.

By arguments similar to that used in [31, Lemma 3.78], V*X' € &, 4, letting
X = X' NP, no levels of Py projects across Px and in fact, o(Px) is a cardinal of
Py. The second clause follows from the following argument. Suppose not and let
Nx < 77;5 be least such that p,(Nx) = 0x for stationary many good X' € S, 4.
Fix such an X’. Let f : Kk — Jdx be an increasing and cofinal map in Py, where
k = cof *(0x). We can construe N as a sequence ¢ = (N, | a@ < &), where
N, = Nxn 5})();). Note that N, € Px for each a < k. Now let Ry = Ulto(Px, i),
R1 = Ultp(Nx, i), where p € Py is the (extender on the sequence of Px coding
a) measure on £ with Mitchell order 0.2 Let iy : Px — Ro, i1 : Nx — Rq be the
ultrapower maps. Letting 6 = Jx, it’s easy to see that ig [ (6 +1) =41 [ (6§ + 1),
i0(0) = i1(6) = 9, and p(6)R0 = p(§)®'. This means (i;(N,) | a < k) € p(§)*°. By
fullness of Px in T')* (i;(N,) | a < k) € Px. Using g, (i1(N,) | o < k) € Px, and
the fact that ig | Px|ox = i1 | Nx|dx € Px, we can get Nx € Py as follows. For
any «a, f < 0y,

a € Nj if and only if ig(a) € i1(Nj3) = ig(N3).

Since Px can compute the right hand side of the equivalence, it can compute the
sequence (N, | o < k). Contradiction.
By the above argument, Py thinks Py is full. Let

% Py — Pt

be the ultrapower map by the (crt(7x), d)-extender E induced by 7x. Note that 7%
extends 7x | Py (since Ty is cofinal in P) and P is wellfounded since X is closed
under w-sequences. Let

i* P — RT

be the ultrapower map by the (crt(i), 6%)-extender induced by . Note that R <R T
and R* is wellfounded since there is a natural map

3The case k is not measurable in Px is easier and we leave it to the reader.
4Any A C §in Rg is OD;, and so by Strong Mouse Capturing (SMC), A € Px.
X
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E*: Rt — Pt

extending k such that 75 = k* o ¢*. Without loss of generality, we may assume M’s
unique strategy X <, Ax. Also, let (R, 71) be the canonical Col(w, k)-names for

(R,T). Let K be the transitive closure of HY U (R, T).

Let W = M2x# and A be the unique strategy of W. Let W* be a A-iterate of W
below its first Woodin cardinal that makes K-generically generic. Then in W*[K],
the derived model D(W*[K]) satisfies

L(T(P%, Ax),R) E R is not full.’

So the above fact is forced over W*[K] for R.

Let H < H) be countable (in V') such that all relevant objects are in H. Let
7 : M — H invert the transitive collapse and for all a € H, let @ = 7~ '(a). By the
countable completeness of E, there is a map 7 : Rt — Py such that

7| Pt =moi*S

Let Ay be the m-pullback of Ay and A; be the w-pullback of Ax. Note that Ag extends
77 1(Ap) and Ay is also the i*-pullback of A; so in particular, Ay <, A;. We also
confuse A with the m-pullback of A. Hence I'(Py, Ag) witnesses that R is not full
and this fact is forced over W*[K] for the name R. This means if we further iterate
W+ to ) such that RVIE can be realized as the symmetric reals over ) then in the
derived model D()),

L(T(PE, o)) E R is not full. (9.1)

In the above, we have used the fact that the interpretation of the UB-code of the
strategy for Py in ) to its derived model is Ay | RVI: this key fact is proved in [10,
Theorem 3.26] and Chapter 6.

Now we iterate R+ to S via A; to realize RVI¢ as the symmetric reals for the
collapse Col(w, < §%), where 6° is the sup of S’s Woodin cardinals. By the fact that
Ao <u A1, we get that in the derived model D(S),

R is not full as witnessed by M.

This is because we can continue iterating W* above the first Woodin cardinal to W** such that
letting A be the sup of the Woodin cardinals of W**, then there is a Col(w, < \)-generic h such
that RV is the symmetric reals for W**[h]. And in W**(RVIS]), the derived model satisfies that
L(T'(PY%, Ax)) E R is not full.

6This is because i* o7 = 7 [ RT (by countable completeness of E) and i*or | P =7 [ Rt oi*.
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So Yy is ODy_ in D(S) and hence M € R. This contradicts internal fullness of R
in RT.
O

The main theorem of this chapter is.

Theorem 9.2.7 Suppose (¢, A) is captured. Then V*X' € Sy 4, X' NP is a con-
densing set.

Proof. To prove the theorem, we need the following definition, due to the first author
(cf. [11] or [31]). The proof is based on [31, Lemma 3.82]. For completeness, we give
a fairly detailed argument here.

Suppose X is a weakly condensing set and B € Px Np(dx).” We say that 7x has
B-condensation if whenever Q@ = Qy (where Y is an extension of X) is such that
there are elementary embeddings v : Px — Q, 7 : @ — P such that Q is countable
in V[G] and 7x = 7 o v, then v(Tp, 5) = To. p, where

Tpyp ={(9,5) | s € [0x] N Px F ¢s, B]},

and

T, —

Torp=1{(¢,5) | s € [0 for some o < Mg AP E ¢[md, . (s), x(B)]},

where X7 is the 7-pullback strategy and X3~ = EBa<,\QETQ(a). We say 7x has con-
densation if it has B-condensation for every B € Px N p(dx).

To prove that a weakly condensing set X is condensing, it is enough to prove
that 7x has condensation.

Suppose for contradiction that the set T' of X' € &, 4 such that X = X' NP is
cofinal in P and is not a condensing set is stationary. For each X’ € T let X = X'NP
(we will use this type of notations throughout this proof without mentioning again)
and Ax be the <y-least such that 7x fails to have Ax-condensation, where <y is
the canonical well-ordering of Px. We say that a tuple {(P;, Q;, 7, &, m, 04 | i <
w), Mooy} is a bad tuple if

1. Y eT,
2. P; = Py, for all i, where X! € T and Q; = Qy, for Y; an extension of Xj;
3. foralli<j, X; <Y, <X; <Y,

"For the rest of this proof, whenever X is weakly condensing, we automatically assume that
X = X' NP for some good X'.
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4. Moy be the direct limit of iterates (Q, A) of (Py, Xy ) such that A has branch

condensation;
5. foralli,& P — Qi,0i 1 Qi = Mooy, Tt Piy1 — Mooy, and m; 1 Q; — Pigy;
6. for all i, 7, = 0;0&;, 0y = g1 o™y, and Tx, x,., | Pi =det Piiv1 = ™ 0 &
7. Cbi,i—o—l(AXi) = AXM;
8. for all 4, fi(TpivAXi) %+ T, 0,4, -

In (8), Tg, 0,4y, is computed relative to Moy, that is

T4

b
To, 01,4, = {(#,5) | s € [62i]<« for some o < A9 A Moy E ¢[7TQ1_Q(;)7OO(S),TI~(AXZ.)]}
Claim 9.2.8 There is a bad tuple.

Proof. For brevity, we first construct a bad tuple {(P;, Q;, 7, &, mi, 04 | i < w), P}
with P playing the role of M, y. We then simply choose a sufficiently large, good
Y and let iy : Py — My be the direct limit map, my : My y — P be the natural
factor map, i.e. my oiy = my. It’s easy to see that for all sufficiently large Y, the
tuple {(P;, Q;, m;l o Ti,m;l 0&,my' o m—,m;l o00; | i <w), My} is a bad tuple.

The key point is (6). Let A% = 7x(Ax) for all X € T. By Fodor’s lemma, there
is an A* such that 3*X € T A% = A*.® So there is an increasing and cofinal sequence
{Xao | @ < KT} CT such that for o < 3, 7x, x,(Ax,) = Ax, = T)};(A). This easily
implies the existence of such a tuple {(P;, Q;, 7i, &, mi, 04 | 1 < w), P}. d

Fix a bad tuple A = {(P;, Q;, 7, &, T, 04 | i < w), Moy} Let (Pi, 1) be a (g-
organized) Y7, -hod pair (cf. [20]) such that

[(Py,1I) E Ais a bad tuple.

We may also assume (P, I1 [ V) € V, AP0 is limit of nonmeasurable cofinality in
770+ and there is some a < AP such that Yy < HPg'(a)' This type of reflection is

possible because we replace H™ by My y. Let W = MEPY LI a0 A be the
unique strategy of W. If Z is the result of iterating W via A to make RV generic,
then letting h be Z-generic for the Levy collapse of the sup of Z’s Woodin cardinals
to w such that RVI¢ is the symmetric reals of Z[h], then in Z(RVI),

843*X € T” means “stationarily many X € T7.
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[(Py, 1) E Ais a bad tuple.

Now we define by induction & : P — O, n : QF — Py, ¢, : P —
P as follows. ¢g, : Py — Pi is the ultrapower map by the (CI‘t(ﬂ'XO,Xl) Ox,)-
extender derived from 7y, x,. Note that ¢7, extends ¢g1. Let & : Pf — QfF
extend & be the ultrapower map by the (crt(&))?égo)—ex’cender derived from &.
Finally let 75 = (¢g,) ' &5 . The maps &, ", ¢, are defined similarly. Let also
My = Ult(Py, E), where E is the (Ax, Oy )-extender derived from 7xy. There are
maps €; : P — My, €41 1 QF — My for all i such that €y = €91 0 & and
€2i11 = €212 O 7r+ When i = 0, € is simply ig. Letting %; = ¥, and ¥ = X |
A; = Ay, there is a finite sequence of ordinals ¢t and a formula 9(u v) such that in

(PO’ )

9. for every i < w, (¢,s) € Tp, 4, < Q[Wg;(a)oo,t], where « is least such that
s € (051

10. for every i, there is (¢;,s;) € To, ¢ a,) such that ﬂé’[ng(a)(si),t] where « is
least such that s; € [62i]<~.

The pair (6, t) essentially defines a Wadge-initial segment of T'(P;, IT) that can define
the pair (Muoy, A*), where 7;(A;) = A* for some (any) i.

Now let X < H) be countable that contains all relevant objects and 7 : M — X
invert the transitive collapse. For a € X, let @ = 7~ !(a). By countable completeness
of the extender E, there is a map 7* : My — Py such that 7 | My = ¢ o 7*. Let
II; be the 7* o g-pullback of II. Note that in V[G], Xy <,, Iy <,p I -+ <, TT7.

Let A € (Hx)™ be the canonical name for A. It’s easy to see (usmg the as-
sumption on W) that if W* is a result of iterating W via A (we confuse A with the
m-pullback of A; they coincide on M) in M below the first Woodin of W to make
H-generically generic, where H is the transitive closure of H f);[ U A, then in W* [H],
the derived model of W*[H| at the sup of W*’s Woodin cardinals satisfies:

L(Py,R) E A is a bad tuple.

Now we stretch this fact out to V[G] by iterating W* to W** to make RYI¢L
generic. In W*(RVIE) letting i : W* — W™ be the iteration map then

T(P,", 1) £ i(A)? is a bad tuple.

) 9Weiabuse the notation slightly here. Technically, Ais not in W* but W* has a canonical name
A for A. Hence by i(A), we mean the interpretation of i(A).
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By a similar argument as in [30, Theorem 3.1.25], we can use the strategies
E+’s to simultanously execute a RYICl-genericity iterations. The last branch of the
iteration tree is wellfounded. The process yields a sequence of models (P < i wa i<

p + T . OF F _ ¥ T
w) and maps f : Piw — QW, : Qi,w — P+1w’ and ¢i,¢+1,w = Tiw © M-
Furthermore, each P

o Q;Lw embeds 1nt0 a II™ -iterate of My and hence the direct

limit P of (P}, o Q;Fw | i,j < w) under maps 7r+ 's and §+ 's is wellfounded. We

note that PZLW is a (g-organized) X7-premouse and Qi,w is a 9UT-premouse because
the genericity iterations are above P; and Q; for all i and by [10, Theorem 3.26], the
interpretation of the strategy of P; (Q; respectively) in the derived model of P}, (wa,
respectively) is (g-organized) X7 (W7, respectively). Let C; be the derived model of
wa, D; be the derived model of Qf, (at the sup of the Woodin cardinals of each
model), then RVI¢) = R¢ = RP:. Furthermore, C;Np(R) C D;Np(R) C Ci1Np(R)
for all i.

(9), (10) and the construction above give us that there is a t € [OR|<, a formula

0(u,v) such that
11. for each 4, in C;, for every (¢, s) such that s € 67, (¢, s) € Ts 71 < 0[ To (a) (s),t]

where « is least such that s € [67¢]<%.

Let n be such that for all ¢ > n, f_( t) = t. Such an n exists because the direct limit
P is wellfounded as we can arrange that P, is embeddable into a II™ -iterate of
My. By elementarity of &' and the fact that f [P =&,

12. for all ¢ > n, in Di, for every (¢,s) such that s € 6%, (p,5) € T e <

O[Wg(a) (8),1] where « is least such that s € [02i]<«

However, using (10), we get
13. for every i, in D;, there is a formula ¢; and some s; € [(5@]<“ such that
(¢, si) € Tg; ;) but —|q§[7rf Oo(si), t] where « is least such that s € [62i]<v

Clearly (12) and (13) give us a contradiction. This completes the proof of the lemma.
U

The following is a useful corollary of the proof of the previous theorem. We will
apply this corollary in many applications later.

Corollary 9.2.9 Suppose Y < Z are honest extensions of a (¢, A)-condensing set
X. Suppose B € p(67) NP and B is in the range of Ty, 7. Let a € (§9V)<*. Then
ng (@) € B if and only ifﬂg?m(ﬁ/,z(a» € B.
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9.3 Condensing sets in models of AD"

Thus far we have build condensing sets while working in models of ZFC. In this
section, we prove their existence in models of AD'. The material presented in this
section will be used in the proof of generation of pointclasses (see Theorem 10.1.1).
Throughout this section we assume AD" + V = L(p(R)). Recall the notation
Iy <pouse L2 (see [10, Page 82] or Section 5.3).

Suppose I' is a mouse full pointclass (Definition 5.3.2) such that:

(*)r there is a good pointclass I'* containing I and there is a sequence (I, : o < Q)
with the property that

1. Qis a limit ordinal,
2‘ FCX <]m0use F7
3. for a < B8 < Q, 'y Ynouse L'

4. there is no completely mouse-full pointclass ¥ <,,,usc I' such that for some «,
Fa Unouse v mouse Fa—l—la

5. if @ < Q is a limit ordinal then I'y = (J;, I's,

6. T = U, o

Recall the definitions of HP' and Mice! (see Notation 4.1.4). Let F = {(P,X) €
HP : ¥ is strongly I-fullness preserving and has strong branch condensation}. We
then let M™ = UJp sycr Moo(P, X). It follows from AD" theory that if (P,X) € F
then X can be extended to a (0, ©, ©)-iteration strategy. To see this, consider HODy;
and use generic interpretability (see Theorem 5.2.5) along with the fact that if T is
a stack on P coded as a set of reals then it can be added to HODy, generically. In
what follows, we assume that if (P, %) € F then X is a (0, ©, ©)-iteration strategy.

Given @ < M| we let ¥, be the strategy of M~(a) such that whenever
(P,X) € F is such that My (P,¥) = M~ («) then Ep- (o) = Eo. Next we let
Lpr’@ad/\/t‘za (M) be the stack of all sound @, _,u- Xq-premice N over M~ such
that p(NV) < o(M™) and whenever 7 : S — N is elementary and S is countable then
S, as a B penr—1m) 27 )-IoUse, has an wi-iteration strategy in I'. Finally, if there

is N <0 Lp"Pacxt= > (M) such that p(N) < o(M™) then let M be the least such
r, o3,
N and otherwise let M = Lp,, Faca (M™).
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We let ¢(U, V) be the formula that expresses the fact that U is a mouse full
pointclass such that (x)y holds and V' is a hod pair (Q, A) such that Code(A) € U
and A has strong branch condensation and is strongly U-fullness preserving.

Theorem 9.3.1 One of the following holds.

1. There is a hod pair (P,%) such that ¥ has strong branch condensation and is
strongly I'-fullness preserving, and I'(P,X) =T (i.e., (¢,I') is not mazimal).

2. M = Lp" Facsv= (M) lower part (¢,T)-covering fails and there is a (¢, T)-
condensing set X € g, (M).

Proof. Towards a contradiction assume that both clauses are false. We drop (¢, T")
from our terminology. Let Ay C R be such that w(Ay) = I'. We enlarge the set
HPT. Let HP be the set of hod pairs in HP' and also the pairs (P, ) such that
for some limit ordinal A there is a sequence of hod pairs ((P,, Xa) : @ < A) with the
property that

1. for all @ < A\, (P,, X)) € HPT,
2. for a < B < A, Pa <hoa Ps and 3, = (X5)p,, and
3. Pl6” = ,er Pa and & = BocrXa.

We also change Mice!. Let Mice be the sets in Micel and also triples (a, X, M)
such that if My is the structure ¥ iterates then (My,¥) € HP, a € HC and M is a
Y-mouse over a. Let (Ag)r be the set of reals o that code a pair (oy, 0,.) of continuous
functions such that o; '[Ag] is a code for a set in (Q,A) € HP and o, 1[A] is a code
for a triple (a, M, V) such that (a, A, M) € Mice and ¥ is the unique strategy of
M. Let Al == (Ao)p.

For each pair (P,X) € HP, there is a sjs (B; : i < w) such that Micek, = By and
for every i < w, B; € I'. We then let Ay be the set of reals (0, 0,) such that

1. 07 '[Ap] codes a hod pair or an sts hod pair (P, X) such that Code(X) € T and
>’ has strong branch condensation and is strongly I'-fullness preserving,

2. 0,7 [Ap] codes a sjs (B; : i < w) such that B; € T for all 7 and Micek, = By.

Finally let A3 be the set of reals o such that o; '[Ag] is a code for a set (Q,A) €
HP and o, is a real coding a pair of reals (u,v) such that v codes Lp"(u)

Let I'y <, I'1 be a two good pointclasses such that for each i < 4, A; € Ar, and
sets that are projective in a universal 'y set are contained in Ar,. Let Fy, (N, ®o)
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and Fy, (N7, ®1) be as in Theorem 4.1.6 for I'y and I'y respectively. Let € dom(Fp)
be such that if Fy(z) = (N, M, , ¥) then (N, §, ¥) Suslin, co-Suslin captures @;4A;.
Let y € dom(F) be such that if Fi(y) = (N, My, d,,%,) then (N, d,,%,) Suslin,
co-Suslin captures Code(U*) where U* is the wi-strategy of MZ¥ (and hence, also
Suslin co-Suslin captures @;4A4;).

Let £ be the least < §,-strong cardinal of Nj. Let g C Coll(w,< &) be N -
generic. Let A7 = Ay NN/ [g]. Let ¥(u,v) be a formula such that N F [A3, o] if
and only if v is a hod pair (Q,A) € Nj[g] such that A is an (wp, ws,ws)-strategy in
N;lg] and there is o € A such that N;[g] E o, '[Ag] = Code(A | HCNol)),

Given (Q,A) € Fyag and o € A§, we let A% be the iteration strategy of Q coded
by o, '[Ag]. Notice that (Q,A%) € F and (Q, A) is independent of o (this later claim
is a consequence of the fact that A, is Suslin, co-Suslin captured by (N},d,,%,)).
We then abuse our notation and let A also stand for A?. Notice that if h is any
< d,-generic over Nj[g] then

Code(A) NN [g * h] = (o7 [Ag])Noloxhl,

We clearly have that (¢, Aj) is lower part closed. Examining the definition of As, it
is also clear that (¢, Aj) is stable. The next claim shows that it is directed.

Claim 1. Nlg] F “(1, A3) is directed”.

Proof. Fix (Qo, o), (Q1, A1) € Fyag. Fix for i < 2, 0; € Nj[g] such that for
cach i < 2, N¥[g] E (0:); '[Ag] = Code(A;).

We now compare (Q;, A;) with the hod pair construction of N;. It follows from
Theorem 4.6.10 that for each i < 2, Q; iterates, via A;, to some model Q; in the afore-
mentioned hod pair construction such that (A;) or 18 the strategy Q; inherits from

the background construction. Let v; < x be such that Q;,a; € N[g N Coll(w,;)],
and let g; = g N Coll(w,v;). To complete the proof it is enough to show that

(1) for each i, (Qf,(As)o+) appears in the I-hod pair construction of N|[g;] in
which all extenders used have critical point > max (v, v1).

Suppose (1) fails. Let n € (x,d,) be such that (Q;, A;) appears in the I'-hod pair
construction of NV;|nlg;]. Let then E € ENi be such that crit(E) = & and vg > v
It follows that in Ult(N, E)[g], (Q;, A;) appears in the I'-hod pair construction of
(UIt(Ny, E)|mg(r))]g:]. Using elementarity we get a contradiction. O

Working in N, let P~ = 731; 49~ Our next claim implies that (1, AJ) is of limit
A5
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type.
Claim 2. AP™ is a limit ordinal.

Proof. Suppose not. It follows that there is (Q, A) € F9 such that P~ = M (Q,A).
Let 0 € RM/9 be such that Code(A) = (o7 [Ao])9l9. Let v < & be a cutpoint
cardinal of AV such that Q,o € Nj|v[g]. It follows from the proof of (1) above that
the I'-hod pair construction of ./\/'Z:,k | in which extenders used have critical point > v
reaches a pair (R, ®) such that R is a A-iterate of Q and ¢ = Ax.

Because of our condition on I' (namely that € is a limit ordinal) there is a+1 < 2
such that T, = I'(Q,A). Tt follows that the I'-hod pair construction of N using
extenders with critical point > v reaches (S, A) € F such that ['(S,A) =T'h4q1. It
follows from the proof of (1) above that the I'-hod pair construction of V| in which
extenders used have critical point > v reaches such a pair (S, A). It is now enough
to show that there is 7 € RVv19) such that Code(A) = 7,7 [Ag]. Let vy € (v, k) be an
N;-cutpoint cardinal such that S € N |v1.

Let n € (v1, %) be the least N, -cardinal such that Mf\y(/\/'ﬂn) F “n is a Woodin

cardinal”. Let N; be the output of J B construction of N; |n done using extenders
with critical points > v;. We now compare (S, A) with the I’-hod pair construction
of V. Notice that all extenders of N} have critical points > v;. Let S; be the output
of the aforementioned I'-hod pair construction.

We claim that some proper initial segment of S; is a A-iterate of S. Suppose
not. Let 7 € R be such that Code(A) = (7);'[Ag]. Let z € dom(F;) be such that
y, 7 <r z. Let Fi(z) = (NS, M., 0., %,).

Working in N, let 5, be the least A*-cardinal such that M¥Y(N*ny) £ “py
is a Woodin cardinal”. Let N* be the output of the fully backgrounded [J E_
construction of N[n done over N |v;. Comparing N, with the construction pro-
ducing N** we get a tree 7 on N according to ¥, such that 7 is based on N |n and
if 7— is T without its last branch then M(7 ™) = N*|n;.

We now have that M7 ¥ (N*|n,[7]) E “ny is a Woodin cardinal” (this can be shown
by considering S-constructions). Yet, by elementarity (S, A) wins the comparison
against the I'-hod pair construction of N*|n;, contradicting universality of the latter.
This contradiction implies that some initial segment of S; is a A-iterate of S. Let
S, be this initial segment.

We now show that there is a real ¢ € RNvl9 such that Code(As,) = ¢; *[Aq]. Fix
r € V such that Code(As,) = 7, '[Ao]. Let € be a cutpoint of N such that Sy € N|€.
Let Nt = M¥Y(WNi|n) and let ¥ be the strategy of Ni". Let 7 : NjF — A be an
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iteration of At via ¥+ such that 7 is generic over N} for the extender algebra at
7(n). Let & be the second Woodin cardinal in N;" (so § > 7). We now have that

(2) for every h C Coll(w,m(d)) that is Na[r]-generic, Na[7][h] E “Code(As,) =
-1 9

It follows from elementarily of 7 that

(3) Ni" E “it is forced by Coll(w,n) that there is a real s such that in any fur-
ther Coll(w, §)-generic extension Code(Ag,) = s; ' [Ag]”.

Because A" is countable in N, lg], by absoluteness, we can fix ¢ € RNy such
that

(4) q

is generic over N} for Coll(w,n) and whenever h C Coll(w, d) is N [g]-generic,
N [all

hlF “Code(As,) = q; ' [Ao]”.

Now 4 is a Woodin cardinal in N;"[g]. Tt follows from genericity iterations that
Code(As,) = q; '[Ao)-
This finishes the proof of Claim 2. 0

Our discussion before Claim 1, Claim 1 and Claim 2 show that (¢, AY) is lower
part closed, is of limit type, is stable and is directed. We now work in ./\/'y* [g]. Let

1. ¥ =3, 49 (see clause 2 of Notation 9.1.2) and
2. P - Pw’Ag.

Notice that if h is Coll(w, RV 19))-generic over N;lg] and z is the real coding Ay N
RM/9) then 2 also codes a real 7 such that Code(X) = 7,1 [Ag].

Claim 3. Code(X) € T,

Proof. Towards a contradiction assume not. Suppose that for some «, p(J.[P~]) <
o(P~). Let then S = J,[P~] where « is the least such. If there is no such « then
let S = M*[P].

Suppose now that S F “cf(§°) is not a measurable cardinal”. Tt then follows that
I'(S,%) =T, contradicting that clause 1 of our theorem fails. Suppose S F “cf(§%)
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is a measurable cardinal”. Let E € ES be the Mitchell order 0 extender in S such
that crit(E) = cf°(6%). Notice that Code(X) <,, Ult(S, E)(\S); this implies that
if §* = Ult(S,E)(\®) and % = @,.)sZs+(a) then I'(S*, %) = I'. This is again a
contradiction, as we now have that clause 1 of our theorem holds. 0

Since I' # p(R) is a mouse full pointclass, there is a C' C R such that I'y €
L(C,R). We then have that L(C,R) F DC. Work in W = L(C,R) and let G C
Coll(wy,R) be W-generic. Notice that W[G] E ZFC. Let ((Qa,As) : @ < wy) be an
enumeration of F and (2, : @ < wp) be an enumeration of R. In WG], choose a
sequence (Y, : a < wy) of reals such that

L. Yo =Y,

2. for all a < wy, letting Fi(ya) = (N, My,, 0y, 5y, ), (25 : B < o) € Ny and
Dp<alla is Suslin, co-Suslin captured by (N ,dy., %y, ), and

3. fora < B, (N} 1< f) c HCMs.

Y,

We now construct a sequence of ®;-mice (Mg, Ny : Ny <My Aa < wp) and a
sequence of commuting embedding 7, 5 : M, — M such that 7, 3(N,) = N3 and if
Ko = crit(m, 5) then N, = M, |ko. For a > 0 we will have that M, is the output of
a fully backgrounded construction of N, relative to ®; and also that N, < M,. We
then let A, be the strategy of M, induced by %, . Let My = N; and Ny = Mols.

Given M, and N, let M, = (Jﬁ’q)l INL])Nva . Let Taat1 @ Mo = Moy be the
iteration embedding according to A,. Let k.1 be the least J, ., -strong cardinal of
M1 and let Nogq = Taa41(Na) = Maagi|Fatt

Suppose now that we have constructed a sequence (Mg, Ny : Ny <My Aa < N)
and a sequence of commuting embedding 7,5 : M, — Mp for a < f < A. Let
M3 Dbe the direct limit of M, under 7, 5. Let 7, \ : M, — M3 be the embedding
given by the direct limit construction. Let then N, = 7y (Ny) and let M, be the
output of JE®1[A}] construction of N, done over N,. Letting k : M5 — M, be
the iteration embedding according to (3,)my, We set 7o\ = ko7, .

Finally let M, be the direct limit of M, under 7, s and let 7, ., : My — M,
be the direct limit embedding. Let P, = mo 4, (P) and P = mo ., (P 7).

Ya+1

Claim 4. Fix a < wy and let h C Coll(w, < kq) be N;a—generic. Then 7 (P) =
(Py,an Nl and Ag = (3, 41)ia " where A} = Ay NN [h].
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We leave the proof of Claim 4 to the reader. To prove it use the proof of (1)
and show that given (Q,A) € F, 4, some I'-hod pair construction of M,, reaches a
A-iterate of Q. We let P, = 70 o(Pa), P, = moo(P~) and X = 1y o (X).

Claim 5. Py = M.
Proof. Notice that

(5) for @« < B8 < wy and for & < AP 7,5 | P,(€) is the iteration embedding
according to (3%)p, (¢), and

(6) if @ < wy and Q is a (X%)p, ¢ -iterate of Py (&) then there is f < w; such that
Ps(ma5(§)) is a (X*)g-iterate of Q.

To see (6), let 5 be large enough such that (Qg, Ag) = (Q,(X%)g). It then fol-
lows that Pg(mas(§)) is a (X%)g-iterate of Q. It follows from (5) and (6) that
Poo|0M = M|SM.

If p(Ps) < o(PL) then we must have that P,, = M. Suppose then p(Ps) >
o(PZ). Clearly P, < Lpl*(M™). Suppose then P, < Lp"*(M™). By a stan-
dard Skolem hull argument, it follows that for some o < wy, P, < Lp"=" (7.0 (P7)).
However, because p(Ps) > 0(PL), Nj F “Po = Lp"*" (m94(P7))”, contradiction.
0

Claim 6. p(M) > o(M™).

Proof. Assume p(M) < o(M™) (it follows from the definition of M that equal-
ity is impossible). Using Definition 9.0.2, we can construct an iteration strategy %
extending > such that X% is the my,, -realizable strategy. We have 31 is strongly
['(P,X")-fullness preserving (see Theorem 5.4.6). It follows from Theorem 5.4.6 that
¥ has (lower-level?) strong branch condensation. Because X* is m ,, -realizable, we
have that I'(P,X%) C I'. Because clause 1 fails, we must have that I'(P,X%) <, I.
Because ¥ is strongly I'-fullness preserving, we can finish by using the argument
given on page 143 of [10].

The argument proceeds by considering the set G of all hod pairs (S,®) such
that I'(S,®) = T'(P,X%) and ® has strong branch condensation and is strongly
['(S, ®)-fullness preserving. Let v = sup W%LO [P]. We have that p(M.(P,X1)) < v.
However, because for any (S,®) € G, M (S,®) = M, (P,X"), we have that if
(Q,A) € F is such that (P,E) € L(A,R) then VHOP" ™ C AM_ (P, 2F)|v. We
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leave the details to the reader. O

Suppose then P = LpL*(P).
Claim 7. Ny F |P| = k.

Proof. Recall the real z introduced before the statement of Claim 3. We have
that z € N [g][h] where h is Coll(w, RNy ) -generic and z codes AJ. It then also
follows that z codes a real 7 such that Code(X) = 7, '[Ao]. Because (N, 6,,%,)

Suslin, co-Suslin capture As, it follows that there is a real u € N[g][h] that codes
P. O

Notice that Claim 7 implies that lower part (¢, I')-covering fails as it implies that
cf(0o(Px)) = w.
It follows from Theorem 9.2.7 that X =45 m01[P] € p(P1) N M; is such that

(7) for any M,[g]-generic h C Coll(w,< k1), My[g * h] E “X is countable and
is a (¢, A7")-condensing set” where AJ™ = A, N M[g * h).

It follows from Claim 7 that

(8) for every e € [1,wy) and for every M, [g]-generic h C Coll(w, < kq), My, [g*h] E
“T1o[X] is a (1, AS™)-condensing set” where A" = Ay N M,[g * h).

We claim that X+ = 7y, [X] is a condensing set in W. Notice that X is count-
able in W[G] and hence, it follows from w-completeness of Coll(w;,R) and DC that
X7 isin W. To prove that X7 is a condensing set in W we need to show that (8)
holds for AV , not just M, .

Claim 8. For every o € [1,w;) and for every N [g]-generic h C Coll(w, < Ka),

N, g+ h) E “mo[X] is a (¥, A™)-condensing set” where AJ" = Ay NN, [g * h).

Proof. We give the proof for a« = 1 and leave the rest to the reader. Let h C
Coll(w,< k1) be N [g]-generic and let Y C P; be an extension of X. In what
follows we will use the notation used to defining condensing sets all localized to N;l.
Thus, Yy € N;l is the my-pullback of 71 (X). However, we will also confuse ¥y and
7,1(2) with their canonical extensions that act on all stacks.
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First we need to show that

(9) Xy is a strongly I-fullness preserving iteration strategy.

The proof follows the steps of Lemma 9.2.6. Recall that in that proof the key step
is to find a universal model extending P such that 7, acts on it. Here, we describe
how to find this universal model and leave the rest, which is just like the proof of
Lemma 9.2.6, to the reader. To simplify, we only show that if Oy = 75.'(P;) then
Qy = LpL*(Q5). The rest of the proof is very similar.

Suppose then that Qy < Lpl*v(Qy) and let S < LpL*Y (Qy ) be the least such
that p(S) = Qy and S 4 Qy. Let (R,A) € HP" be such that A\¥ is a limit ordinal
and L(I'(R,A),R) E “S, as a Yy-mouse, has an iteration strategy. Let a < w; be
such that Code(A) is Suslin, co-Suslin captured by (N, d,,, 3y, )-

Let W* be the output of J E®1.Y_construction of N; done using extenders with

critical point > k. Let W* be the output of 6_", Poo, -construction of ./\/';a done
using extenders with critical point > k,. Notice that it follows that o(W*) = ¢, and
o(W**) = d,,,. We now compare the construction producing W* and the construction
producing W**. The comparison produces a tree 7 on N; of limit length such that
T e N, and if b= %,(T) then W%(W*) = W

Let W be the I'-hod pair construction of WW** done over P and relative to . It
follows from Theorem 4.6.8 some model of the hod pair construction of W reaches a
A-iterate of R. It then follows that for some o < AV, if ®* is the strategy of W(a)
induced by ¥, then S, as a ¥y-mouse, has an iteration strategy in L(I'V(a), ®*)).
W(a) is our universal model but we cannot yet apply m; to it. To do this, let
U=mo1T. Let b=3,(T). The copying construction produces o : M] — MY such
that 7t o 1 = o o ] . Moreover, crit(o) > k.

It then follows that o(W(«)) is a hod premouse over P; relative to g 1(2).
Moreover, ®* is the o-pullback of the strategy of c(W(«)) induced by (3, )y It

now follows that we can lift 7xy to W, and obtain 7%, : W(a) = W** and

W — o(W(a)). The rest of the proof follows very closely to the proof of
Lemma 9.2.6.

Next, we need to show that Y is such that 7xy [ P~ is the iteration embedding
according to X then 7y, = o3 o mxy. It follows from the proof of (1) that there

is (R,A) € (F, Ag*h)Ml[g*h} such that X UY C 7 p, and if Z = 7 p [R]0%] and

k= (7?7%7731)*1 o Ty, then both k£ | Qy and mx 7 | P~ are the iteration embeddings
according to Yy and 3 respectively. It follows from (8) that



202 CHAPTER 9. CONDENSING SETS

(10) 7T071 = 0'%( o 7TX,Z

Notice that o = 75 p . We then have that
o1 = 0’%( OMx 7z = 0'%( okomxy.

Notice now that o ok = o3 . We then have that mo; = o3 o mxy. This finishes the
proof of the claim. O

We now show that Xt is a condensing set. We omit the proof that X is a
weakly condensing set and move directly to verifying the clauses of Definition 9.1.8.
This is because both proofs are very similar.

Let Y € 9, (Ps]6”=) N W be an honest extension of X*. Let a < w; be large
enough so that Y C rng(ﬂgzm) and for some 3 < a, zz codes some Y* C Q,
such that YV = ﬂg‘;m[Y*]. It now follows that ¥ = n L [Y] € N . Indeed, YV =
WQZ,PQ [Y*] (this follows from (6)).

Let 7v : Qy — Ps be the inverse of the collapse of Hull"~(X* UY) and
let 7¢ : Qp — P, be the inverse of the collapse of Hull™ (myo[X] UY). Let
Tx+y = (1y)Lory+ and let mx y = (13) 7! 0 (74, . (x))\¥e. We then have that

(11) QY = QYﬁ TxX+y =Txy, Y = Taw Ty and T, =Ty OTTx Y-

Suppose then 7xy [ P|67 is the iteration embedding according to . Let Xy be
the my-pullback of 3, . Notice that it follows from (6) that

(12) 7T07w1(2) = qu,r‘.

Let o5 : Qy — Ps be given by o5 (u) = WX(f)(ng(ﬁ)’oo(a)) where u € Qy,
feP,B<AY and a € Qy(B)<“ are such that u = 7x.y(f)(a). We want to show
that

(13) Tx+ =def Towr | P =05 omx+y.
We define o and Xy similarly. It follows from(11) and (12) that

(14) By = Sy and 055" = g, © oy
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It follows from Claim 8 that
(15) Mmoo [ P = aé O Tx v

Combining (14) and (15) we get that 7o, | P = o5 o 7y. This finishes the proof of
Theorem 9.3.1. U
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Chapter 10

Applications

10.1 The generation of the mouse full pointclasses

In this section, our goal is to show that under Strong Mouse Capturing (SMC) if I'
is a mouse full pointclass (see Definition 5.3.2) such that I' # p(R) and there is a
good pointclass I'* with the property that I' C I'* then there is a hod pair or an sts
pair (P, ) such that I'(P,X) = I'. Recall that SMC states that for any hod pair or
sts hod pair (P, X)) such that ¥ is strongly fullness preserving and has strong branch
condensation then for any z,y € R, z € OD, 5 if and only if x € Lp*(y).

We work under the following minimality assumption.

#1sa¢ There is a pointclass I' C p(R) such that there is a Suslin cardinal bigger
than w(I") and L(I',R) & LSA.

As in [10, Section 6.1], we will construct (P,X) as above via a hod pair con-
struction of some sufficiently strong background universe. Here is our theorem on
generation of pointclasses.

Theorem 10.1.1 (The generation of the mouse full pointclasses) Assume AD"
and —#sa. Suppose T' # p(R) is a mouse full pointclass such that T'E SMC. Then
the following holds:

1. Suppose I is completely mouse full and let A C R witness it. Then the following
holds:

(a) Suppose L(A,R) E =LSA. Then there is a hod pair (P,%) € L(A,R) such
that L(A,R) E “X has strong branch condensation and is super fullness
preserving” and I'(P,X) =T.

205
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(b) Suppose L(A,R) E LSA. Then there is an sts hod pair (P,%) € L(A,R)
such that L(A,R) E “¥ has branch condensation and is fullness preserv-
ing”, P is of lsa type and T°(P,X) = . If in addition there are good
pointclasses beyond L(A,R), then there is a a hod pair (P,%) such that
(P,x%) € L(A,R) and (P, X5) satisfies the above conditions.

2. Suppose I" is mouse full but not completely mouse full. Then there is a hod pair
or an anomalous hod pair (P, %) such that ¥ has strong branch condensation,
P is of limit type and either

(a) P is of lsa type and T°(P, X)) =T or
(b) P is not of lsa type and T'(P,3) =T.

Proof. Our proof has the same structure as the proof of [10, Theorem 6.1]. However,
unlike that proof, we will make an important use of Theorem 9.3.1. The proof is
again by induction. Suppose I # p(R) is a mouse full pointclass such that whenever
['* is properly contained in I' and is a mouse full pointclass then there is a hod pair
(P,X) asin 1 or 2. We want to show that the claim holds for I'. Suppose not. We
examine several cases.

Case 1. There is a sequence of mouse full pointclass (I'y : o < Q) such that
o €T, I'=U,cqla and for a < 8 < Q, I'y Douse [

We will use the terminology of Section 9.3. Let ¢(U,V) be the formula that
expresses the fact that U is a mouse full pointclass having the properties that I’
has and V' is a hod pair (Q,A) such that Code(A) € U and A has strong branch
condensation and is strongly U-fullness preserving.

Let M~ =P, and M = Py r. Because we are assuming that I' is not generated
by a hod pair, it follows from clause 2 of Theorem 9.3.1 that p(M) > o(M™) and
that there is a condensing set X € g, (M). In what follows we will use the notation
introduced in Section 9.1. In particular, recall the definition of 7y and o5 .

Following the proof of Theorem 9.3.1, let (A4; : i < 4), Ty <, I'1, Fo, and Fy be
as in that proof. We introduce two more kinds of set of reals that we need to be
captured.

Let (o : i < w) be an enumeration of X and let z; = (o : k < 1). Let (¢ 1 i < w)
be an enumeration of formulas in the language of hod mice. Let B; be the set of
pairs ((Q, A, B), (R, ¥,7)) such that (Q,A),(R,¥) € HP', B3 < §9, v < 6% and
777\%,00(7) is the unique ordinal ¢ such that M E ¢k[$i,ﬁgm(5), ¢]. We then let A,
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be the set of reals o such that ¢ codes a pair of continuous functions (o, 0,.) such
that (0, '[Ao], 0 [Ag]) is a code for a pair in B;y.

Next, let B be the set of (Q, A) such that XNéM C 75 [Q]69] and the transitive
collapse of HullM(X Un§ [Q]0°]) is Q. Given (Q,A) € B, let Yo = 7§ ,[Q6°].
Let A4 be the set of reals ¢ such that o codes two reals (0;,0,) such that o; is a
continuous functions with the property that o, [A4¢] is a code for a pair (Q,A) in B
and o, is a real coding a countable sequence Xg C Q such that TYor [Xoa] = X.

We now define our final set A;. Given z € R, let A, = {u € R : {u} is
OD; x}. We let A5 = {(z,y) € R? : y codes A,}. Let now x € dom(Fp) be such
that if Fo(x) = (N, M, 5, ¥) then (N0, ¥) Suslin, co-Suslin captures @;.¢A4; and
@i kyew2Aig- Let U* be the iteration strategy of MZY and let y € dom(F}) be such
that if Fy(y) = (N, My,0d,,%,) then (N}, d,,%,) Suslin, co-Suslin captures W*.

We claim that some hod pair appearing on the I'-hod pair construction of ./\/'y”‘ 0y
generates I'. Here the proof is somewhat different than the proof of Theorem 6.1 of
[10]. There the contradictory assumption that such constructions do not reach I' led
to a construction of a hod pair (P,3) such that A¥ = §” and P E “67 is regular”.
This meant that a pointclass satisfying ADg + “© is regular” had been reached giving
the desired contradiction. In our current situation, if the constructions never stops
then we will reach an Isa type hod premouse P of height J,. We need techniques to
argue that this cannot happen.

We proceed by assuming that the I'-hod pair construction of /\/'y* |0, does not
reach a pair generating I'. Let P* be the final model of the I'-hod pair construction
of Nj|0,. Let P = M*(P*) and let ¥ be the strategy of P induced by %,.

Claim 1. o(P*) = 9,.

Proof. Suppose not. It follows from Theorem 4.7.6 and Theorem 8.3.1 that the
only way our construction could break down before reaching 6, is if P* is of Isa
type. Let A = Xp.. We then have that (P*,A) is a hod pair such that P* is of
Isa type and A has strong branch condensation and is strongly I'-fullness preserving.
Because ['(P*, Ast¢) C T' and I'°(P*, A%*¢) # T, we can fix (R, ®) € HP" such that
AR is limit and (P*,A) € L(T'(R,®)). We have that in L(T'(R,®)), A has strong
branch condensation and is strongly fullness preserving. It now follows from Theo-
rem 8.1.13 applied in L(I'(R, ®)) that for some S € pI(P*, A), L(I'(S,As)) F LSA,

contradicting our assumption that —#;,, holds. O
Let k = 52\37;_1. Notice that in P, k is < §"-strong.
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Claim 2. (P*,Xp) € B.

Proof. Let g € Coll(w, < k) be N, -generic. We let 1(u,v) be as in the proof of The-
orem 9.3.1. Following the notation used in the proof of Theorem 9.3.1, let S = Py 49
and 8~ =P ,,. It follows from the proof of Theorem 9.3.1 that p(S) > o(S).

e

We claim that S is an iterate of P’. Clearly M (P’ Xp) < S. This is simply
because for every Q <p.q P°, (Q,¥o) € HPT. Suppose then that M, (P?, p)<S.
Let (R,A) € HP' N N;[g]' be such that M(P°,Eps) < Moo(R, A). Let n < & be
such that (R, A) € Nj[g N Coll(w,n)].

Let Q be the output of the hod pair construction of P in which extenders used
have critical points > 7. It follows from universality that for some a < A9, Q(«) is
a A-iterate of R. Let E € E” be an extender with critical point k such that vg > a.
Let E* be the resurrection of £. It follows that in Ult(N;, E*), some hod pair
appearing on the hod pair construction of 7(P?) in which extenders used are bigger
than 7 is a A-iterate of R. It then follows that some hod pair appearing on the hod
pair construction of P? in which extenders used are bigger than 7 is a A-iterate of
R. Tt follows that Code(A) <,, Code(Xpv) implying that Moo (R, A) 9 Moo (P, Xps),
contradiction. This contradiction proves the claim. 0

It is not hard to see, by a simple Skolem hull argument using the fact that P € /\/;;k ,
that

(2) for a club of n < 6, M*(P|n) E “nis a Woodin cardinal”.

Let C be the club in (2). For n € C, let R, = M*(Plp), ¥, = E3° and
Q, < P be the largest X,-sts mouse such that Q, F “n is a Woodin cardinal”.
Using Lemma 6.4.6, we can translate Q, onto X,-sts mouse Q, over M™(N;|n).

Notice that

(3) for every n, Q, has an iteration strategy A witnessing that Q, is a ¥,-sts mouse

over M*(N;|n).

(3) is a consequence of the fact that Q, appears on a I'-hod pair construction of
N, Moreover,

(4) for every n and for every real = coding Ny |n, Q, is ODL .

'Here we are abusing the notation and use A for both the strategy in N; [g] as well as its
extension in V.
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(4) follows from proofs that have already appeared in the book. For instance, see
the notion of goodness that appeared in the proof of Lemma 8.1.12. We now claim
that

Claim 2. for a club of n € C' — (k + 1), Q, € J,)(N;|n) where v, is the least
ordinal such that J,”" (N |n) = ZFC.

Proof. Towards a contradiction, suppose not. Let A be least such that 73" (N;]6,)
ZFC. Let n € C be such that Q, ¢ J,7" (N |n) and there is a map 7 : jl,‘g*(/\/'ﬂn) —

TV (N;16,). Thus
(5) ‘7,/‘1: F “n is a Woodin cardinal”.

Using genericity iterations, we can find N” € J,7" (N |n) such that A is a U*-
iterate of M#\Ij such that M™(N;|n) is generic over the extender algebra ]B%{;\g where
do is the least Woodin cardinal of N'. Let g C Coll(w,n) be N-generic. Fix a
real x € NN |nl[g] coding N |n. Tt follows that there is y € R such that (z,y) €
As N NN [nllg]. Therefore Q, € NN |n][g], implying that Q, € J,7". Tt follows
that jl,‘g* F “n is not a Woodin cardinal”, contradicting (5). O

The rest of the proof is easy. It follows from Claim 2 that we can find an 1 such
that Q, € JV‘I;(N;M) and there is an elementary embedding 7 : Jl,f*(./\/’ﬂn) —
TV (N;16,) where A is the least such that J3'" (N;|d,) = ZFC. Because Q, €
j;f(/\/mn), we have that jf:(/\/’;hy) F “n is not a Woodin cardinal”, and because
m s T (Ngln) = T3 (Ngld,), we have that Jy" (N;]d,) E “0, is not a Woodin
cardinal”. This is an obvious contradiction! Thus, we must have that the I' hod pair
construction of ./\/'y”‘ reaches a generator for I'. We now move to case 2.

Case 2. I is a completely mouse full pointclass such that for some «, L(I',R) E
9a+1 - @

Because we are assuming —#s,, we must have that L(I',R) F —LSA. The rest

of the proof is very much like the proof of [10, Theorem 6.1]. To complete it, we
need to use Theorem 7.2.2 instead of [10, Theorem 4.24]. We leave the details to the
reader. 0

Theorem 10.1.1 has one shortcoming. It cannot be used to compute HOD of



210 CHAPTER 10. APPLICATIONS

the minimal model of LSA as it only generates pointclasses whose Wadge ordinal is
strictly smaller than the largest Suslin cardinal. To compute HOD of the minimal
model of LSA we will need the following theorem.

Theorem 10.1.2 Assume ADT +LSA and suppose ~#5q. Let o be such that 0, =
©, and suppose that there is a hod pair or an sts hod pair (P, X)) such that ¥ is strongly
fullness preserving and has strong branch condensation and T°(P,¥) = {A C R :
w(A) < 0,}. Then (P,X) is an sts hod pair and for any B € B[P,X] there is
Q € pl(P,X) such that (Q, %) is strongly B-iterable.

Proof. Towards a contradiction, assume not. We reflect the failure of our claim to
A2 Let (3,7) be lexicographically least such that letting I' = {A C R : w(A) < ~},

1. I' = p(R) N J3(I",R) and Lg(I',R) E LSA + ZF—Replacement,

2. letting o be such that Lg(I',R) E “O,41 = ©”, Lg(I',R) F “there is a hod pair
or an sts hod pair (P, %) such that X is strongly fullness preserving and has
strong branch condensation and T*(P, %) = {A C R : w(A) < 0,} but either

(a) (P,%) is not an sts hod pair or
(b) there is a B € B[P, X] such that whenever Q € pI(P,X), (Q,Xg) is not
strongly B-iterable”.

Because (3,7) is minimized, we have that I' C A% Fix (P,X) as above. First we
claim that

Claim. X is not an iteration strategy.

Proof. Suppose not. Let 'y be a good pointclass beyond I' and let F' be as in The-
orem 4.1.6 for T'g. Let z € dom(F) be such that letting F(z) = (N}, My, 6., 3.,
(N, 6,,%,) Suslin, co-Suslin captures Code(X) and T. It follows that (JE=)Nel6
reaches M7 Let U be the iteration strategy of MZ¥>. Notice that

(1) ¥ € Ly(T,R).

Because X is an iteration strategy, it follows from clause 1 of Theorem 6.1.5 that
there are trees (T, S) € MZ" such that letting dy < &, be the Woodin cardinals of
M

1. M}#’Z F “(T,S) are d;-complementing”,
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2. whenever 7 : M¥* — A is an iteration according to ¥ and g C Coll(w, 7(J))
is N-generic then Code(X) N RN = pir(T)] and (Code(X))e N RNl =
plm(5)].

Let My, be the direct limit of all U-iterates of M¥> and let 7 : M — M, be the
direct limit embedding. It then follows that Code(¥) = p[n(T)] and (Code(X))¢ =
p[r[S]]. It follows from (6) that 7',.S € L(I',R), implying that L(I',R) F “Code(X)
is Suslin, co-Suslin”. It follows that Code(X) € T'(P, %), contradiction! O

It follows from Claim 1 that (P, X) is an sts hod pair. Hence, we must have that

(2) there is B € B[P, X] such that whenever Q € pI(P,¥), (Q, %) is not strongly
B-iterable.

We can now finish by appealing to Theorem 8.1.14.

10.2 A proof of the Mouse Set Conjecture below
LSA

Throughout we will assume AD™* =4 AD* +V = L(p(R)). Let

#15a¢ There is a pointclass I' C p(R) such that there is a Suslin cardinal bigger
than w(I") and L(I',R) E LSA.

The following is the main theorem of this section.
Theorem 10.2.1 Assume ADTT 4+ —#.. Then the Strong Mouse Capturing holds.

The rest of this section is devoted to the proof of Theorem 10.2.1. Recall that
Strong Mouse Capturing (SMC) is the statement that for any hod pair or an sts
hod pair (P, Y) such that ¥ has strong branch condensation and is strongly fullness
preserving, and for any reals z,y, x is ordinal definable from ¥ and y if and only if
x is in some Y-mouse over y. We assume familiarity with the proof of [10, Theorem
6.19] and build directly on it. We start by stating the main steps of [10, Theorem
6.19]. We will follow these steps and provide proofs only for the new cases.

Towards a contradiction assume that the Strong Mouse Capturing (SMC) is false.
Our first step is to locate the minimal level of Wadge hierarchy over which SMC
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becomes false. For simplicity we assume that the Mouse Capturing, instead of the
Strong Mouse Capturing, is false. Mouse Capturing is the same as SMC when the
pair (P,X) = (. The general case is only different in one aspect, it needs to be
relativized to some strategy or a short tree strategy . Let I' be the least Wadge
initial segment such that for some «

L. T = p(R) N Ly (T, R),
2. Lo(I,R) F SMC,

3. there are reals z and y such that L, (I',R) E “y is OD(x)” yet no xz-mouse
has y as a member.

For the purposes of this section we make the following definition.

Definition 10.2.2 Suppose (P,X) is a hod pair and T* is a pointclass. We say
(P, %) is [-perfect if the following conditions are met.

1. X 1s I -super fullness preserving and has strong branch condensation.

2. For every Q € pI(P,X) U pB(P,X) such that A2 is a successor ordinal and
Q is meek there is B = (B; : i < w) C B[Q(A® —1),Xgne_1)) such that B
strongly guides Xg.

If T* = (R) then we omit T* from our notation.

The following theorem was heavily used in [10]. It is essentially due to Steel and
Woodin (see [23]).

Theorem 10.2.3 Assume AD" and suppose (P,X) is a hod pair or an sts hod pair
such that L(E,R) E “(P,X) is perfect”. Then L(X,R) E MC(X).

A key theorem used in the proof of Theorem 10.2.1 is the following capturing
theorem. Its precursor is stated as [10, Theorem 6.5].

Theorem 10.2.4 Suppose (P,X) is a perfect hod pair and I'1 is a good pointclass
such that Code(X) € Ar,. Suppose F' is as in Theorem 4.1.6 for I'y and z € dom(F')
is such that if F(z) = (N}, M.,0,,%.) then (N},6.,3.) Suslin, co-Suslin captures
Code(). Let N = (JEYN19:. Then there is Q € pI(P,S) NN such that o | N €
TN

The next key lemma that is used in the proof of Theorem 10.2.1 is the following
generation lemma that can be traced to [10, Lemma 6.23].
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Lemma 10.2.5 There is a I'-perfect pair (P, %) such that
(P, X)) CT' C L(E,R).

Our goal now is to outline how to use Theorem 10.2.4 and Lemma 10.2.5 to prove
Theorem 10.2.1.

10.2.1 The structure of the proof of the Mouse Set Conjec-
ture

We make the following convention. If P is a hod pair then P(—1) = 0. If ¥ is a
strategy for P then ¥p_1) = 0. First we outline the proof of the following general
theorem.

Theorem 10.2.6 Suppose (P,%) is a perfect pair. Then L(X,R) E “for every B €
[—1, A7), Mouse Capturing holds for Sp(s)”.

Proof. We only outline the proof as the full proof is presented in [10, Section 6.4].
Fix 8 < A\P. We want to show that

(1) L(X,R) E “Mouse Capturing holds for Xp(s)”.

For simplicity we assume § = —1. The general case is only notationally more com-
plex. Suppose z,y € R are such that L(X,R) E “y € OD(z)”. It follows from
Theorem 10.2.3 that there is a ¥-mouse M over (P, x) containing y such that M
has an iteration strategy in L(3,R). In fact, it follows from Theorem 10.2.3 that

(2) for every Q € pI(P,3) there is a ¥.g-mouse M over (Q, z) such that y € M and
M has an iteration strategy in L(3,R).

Let Mg be the least ¥g-mouse over (Q,x) such that y is definable over Mg. Let
Ag be the iteration strategy of Mg (witnessing that Mg is a Yg-mouse). Let
' € L(X,R) be a good pointclass such that the set

A ={(z,u) € R?: z codes some Mg and u is an iteration according to Yo}

is in Ap«. Let F be as in Theorem 4.1.6 for I'* and let z € dom(F') be such that if
F(z) = (N, M, 0., %,) then (N7, 6,,3,) Suslin, co-Suslin captures 3 and the set
A. Let N = (J¥(x))N?1%. It follows from Theorem 10.2.4 that
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(3) there is a @ € N such that ¥o | N € J[N].

It follows from the universality of A" that Mg € AN (this is because (JEZTe}V
is universal in NV} and the strategy of Mg is captured by N). It then follows that
y € N. As N is an z-mouse, this completes the proof. O

Suppose now that (P,3) is a I-perfect pair such that I'(P,X) C I' C L(X,R).
Such a pair is given to us by Lemma 10.2.5.

We now apply Theorem 10.2.3. For each Q € pI(P,X) there is a ¥ o-mouse Mg
over (Q,z) such that y is definable over Mg. We then again can find an z-mouse
N such that for some Q@ € N Npl(P,X), Mg € N. Tt follows that y € N. Thus,
to finish the proof of Theorem 10.2.1, it is enough to establish Theorem 10.2.4 and
Lemma 10.2.5.

10.2.2 Review of basic notions

In this subsection we review basic notions introduced in [10, Theorem 6.5] for prov-
ing a version of Theorem 10.2.4. We are in fact working towards the proof of Theo-
rem 10.2.4, and the notation and the terminology of this subsection will be used in
the later subsections. .

Fix (P, %), I'y, F and z as in the statement of Theorem 10.2.4. Let N’ = (J*)V.
We are looking for Q € pI(P, %) NN such that Yo | N € J[N]. We start working
in AV, Without loss of generality we can assume that

(1) whenever R € pB(P,%) N (NF]4,) there is S € pI(R,Xr) NN such that
Ys TN e TN

As in [10], there are several cases.
1. A7 is a successor and P is meek.
2. AP is a limit.
3. A is a successor, P is non-meek but P is not of Isa type.
4. (P,X) is an sts hod pair.

The first two cases are just like the cases considered in [10, Theorem 6.5], we leave
those to the reader. Here we analyze the remaining two cases. To start, we need to
import some notions from [10, Section 6.3].
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Suppose for a moment that we are working in some model of ZFC. Suppose & is
an inaccessible cardinal. We say that (Q, A) is a hod pair at k if

1. (Q,A) is a hod pair,

2. Qe HC,

3. Ais a (k, k)-iteration strategy,

4. Code(A) is a k-universally Baire set of reals.
Suppose (Q, A) is a hod pair at k. Then we let

Lp™(a) = U{M : M is a sound A-mouse over a such that p,(M) = a and
M2 (TPHa))"}.

As is customary, we let Lp2*(a) be the ath iterate of Lp™*(a). Below S*(R) is the
x-transform of § into a hybrid mouse over R, it is defined when R is a cutpoint of

S (cf. [18]).

Definition 10.2.7 (Fullness preservation in models of ZFC) Suppose now that
(Q,A) is a hod pair at k. We then say A is r-fullness preserving if whenever

(T,R) € I(Q,A) NV,

@D A, =K
1. For all limit type S € YS, 8* = Lp,»We">" "7 (S]6%).

2. For all successor type S € Y&,

S — Lpi?weySbAW,?vﬁ(8|5S).

stc

A K
3. If R is of Isa type then R = Lp,™" ™7 (R|6R)2,

4. If n is a cardinal cutpoint of R such that for some Ry, Ro € Y such that
Ry is the R-successor of Ry (see Definition 3.9.2), Ry is a cutpoint of R and
n € (6%, 6%2) then

(RI(n*)%)* = Lp"= 7" (R|p).

2Here, if A is a short tree strategy then A% = A.
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Continuing our work inside some model of ZFC, suppose (Q,A) is a hod pair at
k such that A has branch condensation and is s-fullness preserving. Suppose A < &
is an inaccessible cardinal. Then we say

Definition 10.2.8 (Universal tail) (Q*, A*) is a A\-universal tail of (Q, A) if there
s a stack T according to A on Q with last model Q* such that

1. IW(T) =X and for all B < IW(T), T | B € Vx:

2. for any (S, R) € I(Q, A)NVy there is a stackU on R according to Ag with its
last model on the main branch of T .

[f’f s as above then we say T is a A-universal stack on Q according to A.

We now resume the proof of Theorem 10.2.4 and start working in N}. Observe
that because of our assumption on (P, X), whenever Q, R € pI(P, %), (Q,%o) and
(R,Xx) have a common tail in NV*|d,. In fact more is true. Suppose k is a strong
cardinal of V¥, Then it follows from Corollary 4.6.10 that if Q, R € pI(P,X)NN} |k
then (Q,Yg) and (R,X%) have a common tail in A*|x. This means that whenever
Kk < 0, is a cardinal of N7 and Q € (pI(P,X) U pB(P,X)) NN}k, we can form
the direct limit of all ¥g iterates of Q that are in N*|x. Let R2*2 be this direct
limit. The next lemma shows that the universal tails are unique. It appeared as |
Lemma 6.8].

I

Lemma 10.2.9 (Uniqueness of universal tails) Suppose Q € pI(P,X)NN}0..
Then for each N -strong k < §, such that @ € N¥|k and o < A2, there is a unique

r-universal tail of (Q(a),Xgw@)). In fact, letling R = R,?(‘”‘)’ZQ“”, (R,XR) is the
unique k-universal tail of (Q(a), X o))

Suppose Q € (pI(P,X) UpB(P,%)) NN|d, and k is an N -strong cardinal such
that Q € N}|k.

Definition 10.2.10 Then we say N captures a tail of (Q,%Xg) below k if there is
a hod pair (R,A) € N such that A is a (k, k)-iteration strategy and there is a term
relation T € NCOU@<®) such that whenever g C Coll(w,|R|") is N -generic,

1. Ng] E “(R,1,) is a hod pair at k such that 7, is k-fullness preserving” and
T, [N =A,

2. for some A < k, R = R and letting T,U € Nlg] witness that 7, is k-uB,
whenever h C Coll(w, < k) is Ng]-generic, (p[T))NIM = Code(Xz)NNg][h].
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We say N captures B(Q, Xg) below k if whenever R € pB(Q, X0) N7 |k, N captures
(R,Xr) below k.

Towards a contradiction, we assume that N does not capture a tail of (P, X) and
that either

1. A? is a successor, P is not of lsa type and P is non-meek or
2. (P,X) is an sts hod pair.

Notation 10.2.11 For each Q € pB(P,X), we let Ag be the least N -strong cardinal
v such that N captures the v-universal tail of (Q,%g). We let (R, ¥<) be the \g-

universal tail of (Q,¥g). For each inaccessible cardinal v such that Q € N|v, we let
(RS, ¥2) be the v-universal tail of (Q,Yg).

10.2.3 The ideas behind the proof

The notation and the terminology introduced in this subsection will be used in the
next few subsections. Suppose now « is an AN/-strong cardinal that reflects the set of
N-strong cardinals. Let

£={E e EN: N E “v(E) is inaccessible” and for all n € (k,v(E)), N E “nis a
strong cardinal” if and only if Ult(N, E) E “n is a strong cardinal” }.

Notation 10.2.12 Working in N, let

F={(Q,N): Qe N[dANTN]E “(Q,A) is a hod pair at 5, and A has branch

condensation and is 0,-fullness preserving’}.

We have that F is a directed system. Let for A <9,,
FIA={(Q,A) e F: Qe N|\}
We let R* be the direct limit of F | x under the iteration maps. Let
R = (RF)°.
The next lemma summarizes what was proved in [10].
Lemma 10.2.13 The following holds.
1. Suppose Q € pB(P,X) NN} |k. Then Ag < k. Thus, RC € N|x.
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2. Suppose Q € pB(P,X), X\ > k is a strong cardinal such that \g < X\, and
E € & is an extender with critical point x such that v(E) > (A")YN2. Then
Ve | (ULt(N, E)[8) € UIt(N, E).

3. Either R <poq R* or R|0® = R*. Moreover, R € N and X | N € L[N].

Clause 1 is just [10, Lemma 6.11], clause 2 is [10), Lemma 6.12] and clause 3 is [10,
Lemma 6.13].

In the sequel, we will develop a technology for recovering a full iterate of P.
Let RT™ = R” be the iterate of P extending R and let i : P — R™ be the iteration
embedding. We will recover an iterate of R inside N as an output of a backgrounded
construction that is done over R. Such constructions are called mixed hod pair
constructions. The details of this construction appear in Section 10.2.9.

There are two kind of extenders that we will use in this construction. The ex-
tenders with critical point > §% will have traditional background certificates. We
will use the total extenders on the sequence of N to certify such extenders. The
extenders with critical point 8 will come from a different source. The following key
lemma illustrates the idea. Let § = §%.

Lemma 10.2.14 Suppose S € pI(R",Xr+) is a normal iterate of R that is ob-

tained by iterating entirely above 6%. Suppose that E, € ES is such that crit(E,) =
R, Sla € N and Ssja | N € LIN]. Then E, € N. Moreover, (a, A) € E, if and
only if a € v, A € [6]ll and whenever F € & is such that crit(F) = k and

N E “there is a strong cardinal v in the interval (k,h(F)) such that S € N|v”,

ES\(X

TrS\a,ﬂ'F(R) ((I) S 71-F(‘A)

Proof. Set Mt = Ult(R*, E,) and M = Ult(R, E,). Let F’* be the resurrection
of F and let o : Ult(N,F) — Ult(N}, F*) be the canonical factor map. We have
that o | vp = id. Thus, g | N = 0 o mp. It follows that mp- [ R is the iteration
embedding implying

> + R+
(1) 7 1R = 75 o T



10.2. A PROOF OF THE MOUSE SET CONJECTURE BELOW LSA 219

We now have that

(a,A) € E a€rl (A)

Tt ey (@) € Tt (TR, (4))
(T3t () (@) € Tre (A)
P (@) € o(rr(A)
(a) € mp(A)

r T T e

7TM 7p(R)

Therefore,
(a,4) € By > Tt (@) € mr(A).

By our assumption, the right hand side of the equivalence can be computed in N.
Hence E, € N. d

Thus, the extenders with critical point 6% that we will use in our mixed hod pair
construction have the following property. If Q is the current level of the construction
and A is its strategy then let E be the set of pairs (a, A) such that (a € §%)<% and
for every F' € £ such that crit(F) = x and

N E “there is a strong cardinal v in the interval (x,lh(F)) such that Q € N|v”,

WgﬂrF(R)(a) € mp(A).

There is one problem with this approach. We need to know the strategy A of Q
before we can find the relevant extender. To resolve this problem, we will first define
the strategy A. Essentially A will pick branches that, for some 7, are 7wg-realizable
for all £ € £ such that (h(E) > n. We will call such strategies E-certified.

In the sequel, we will first introduce the £-certified strategies. Then we will prove
basic fact about them. Then we will introduce the mixed hod pair constructions and
show that some model appearing on this construction is an iterate of R via an
iteration that is entirely above 67%.

10.2.4 &-certified iteration strategies
The following is a modification of [10, Definition 6.14].

Definition 10.2.15 (7g-realizable iterations) Suppose
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1. M € N is a hod premouse extending R such that R = M?,

2. T € N is a stack on M played either according to the usual rules of the
iteration game or (in the case M is of lsa type) according to the rules of the
short tree game,

3. Fek.

Set Bz = {Q etn(T): Qe tn(T) and EEE exists}.
We say T is wp-realizable Zf there is a strong cardinal A\ < v(E) such that T e
N|)\ a sequence (og : Q € tn(T)) € N|X and a sequence (Wa, ¥g) € F I X: Q €
Bz) € J[N] such that the following holds:

1. OR = TEg [ R.
2. For all terminal nodes Q of T such that w7<2 exists, 0g: Q" — mr(R).

3. For all Q,S € By such that Q <758, 5o =050 Wg%s#

4. For all Q € Bz, letting So < mp(R) be the Vo-iterate of Wg, 6% = 00(69")
nd 5g[QY] C rng(mys,).

5. For all Q € Bz, lettmg ko : Q° — Wq be given by ko(x) = vy if and only if
oo(x) = 7TWQ75Q< ), koTo is according to Wg.

6. For all Q € Bz, (Q°, \IJkQQ) € m5(F) and og | (Q°62") is the iteration embed-

ding according to \I/kQQ.
7. For all Q,K € Bg such that Q <Ts K, letting B be such that K(p) =
Tg K b(Qb)
(T = (T&)x
and oxc | (KK(B)|6%P) is the iteration embedding according to (@ZQ)K(ﬁ).
8. Suppose there is a main drop at Q@ € By. Then 712Q 18 according to \IkaQ.

We say that (0g : Q € Bz) are the mg-realizable embeddings of T and (Wa, ¥o) :

Q € Bz) are the wg-realizable pairs of T. We say T is E-realizable if for some n, T
is E-realizable for every E € £ with the property that Ih(E) > 7.
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We now introduce a kind of backgrounded constructions reminiscent to the back-
grounded construction introduced in Definition 4.2.1. We will use them to find the
O-structures of various iterations.

Definition 10.2.16 (E-realizable backgrounded constructions) Suppose M, 7',8,
Q.,n are such that

1. M € N is a hod premouse extending R such that M® =R,

2. T is a E-realizable stack on M (played either according to the usual rules of

the iteration game or according to the rules of the short tree game) such that

7Tt exists,

3. Se ntn('f) and U 1s the largest normal initial segment of 7_;3 that is based on
S and is above 556,

4. if U is of limit length then Q@ = M(U) and otherwise for some o < Ih(U),
Q = Ma;

5. MT(QIn) E “n is a Woodin cardinal”.

Then for& <6, (M4, Ny 1y <), (Fy : v <)) € TIN] is the {th initial segment
of the output of the fully backgrounded & -realizable construction over M*(Q|n) done
in N if the following is true.

1. My =TJ1(X), and for all £ <n, M¢ and N¢ are sts premice such that ifW s
a stack indexed either in Mg or N then Teo "W is E-realized.

2. Suppose (M, N, : v < B),(F, : v < B)) has been defined for f < . Then we
define Mgpi1, Nay1 and Fp as follows.

(a) Suppose Mg = (jf’f, €, E, f) is a passive hp, i.e., with no last predicate,
and there is a total evtender F* € EN such that F* coheres (M., N, :

v < B),(Fy - v < f)), an extender F over Mg, and an ordinal v < «
such that N'lv +w C UIt(N, F*) and

Flv=Fn(px I,
Then
Nﬁ-l—l = (jaE—:f>€7E_:7f7 F)
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and v = vNo+1 where F is the amenable code of F3. Also, if Ny is
reliable then Mgy = C(Npi1)* and Fg = F. If N3y is not reliable then
we stop the construction.

Suppose Mg = (jf’ﬂ €, E, f) is a passive hp, the hypothesis of item 2.a
above doesn’t hold, Mg F ZFC-Replacement, and Mg is ambiguous. Let
t=(Q,T,Q1,U) € TESndom(A) on Q be the Mg-least stack of length 2
witnessing that Mg is ambiguous and such that Ih(T) is not of measurable

—

cofinality in Mg and Ih(U) is not of measurable cofinality in Mg. Suppose
there is a branch b € N of U such that Teg ~t~{MY} is E-realizable.
Let b be the N -least such branch® and set v =supb and W = J,(Mg). If
p(W) > « then

Ny = (TP e E, 1+)

where [T = fU(T, (1), 5) where b C a+v is defined by a+v* € b < v* € b.
If pOWV) < « then let v € (o, v] be least such that p(J,(Mp)) < a and let
Nay1 = C(Ty(Mp)). Also, if Nsiy is reliable then Mgy = C(Nps1) and
Fg = 0. If Nsi1 is not reliable then we stop the construction. If there is
no such branch b then stop the construction.

Suppose Mg = (jf’f, €, E, f) is a passive hp, the hypothesis of item 2.a
and 2.b above don’t hold, Mg = ZFC, Mg is unambiguous and there is a
normal terminal T € jf’f N dom(A) such that Mg = “T is ambiguous
and Ih(T) is not of measurable cofinality”, fMs(T) isn't defined and there
is an Mg-minimal shortness witness for T. Let U be the Mg-least such
tree, (¢,C,b) be a shortness witness for U, v = supb and W = J,(Mpg).
If pOWV) > « then

Ni= (I € E, f7)
where f+ = fU{(T,(U),b)} where b C o+ v is defined by o+ v* € b
v eb. If p(W) < a then let v € (a,v] be least such that p(JT,(Mp)) <

a and let Ngp1 = C(T,(Mp)). Also, if Nay1 is reliable then Mgy, =
C(Ngy1) and Fg = 0. If Ny is not reliable then we stop the construction.

3. Suppose B < nis a limit ordinal and (M, N, : v < B),(F, : v <)) has been

defined. Then we define Mg and N3 as follows®. Let v = limsupy_g(p™)Ms.

3For the definition of the “amenable code” see the last paragraph on page 14 of [23].
4Recall that C(M) is the core of M.

5Such branches are essentially unique, see Lemma 10.2.19.

6 F3 will be defined at the next stage of the induction as in clause 2.
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Then we let Nz be the passive lhp W = J)V, where for all 8 < v we set jﬁw be

the eventual value of T3 as A — B. Also if N is reliable then Mg = C(Nj).
If N is not reliable then we stop the construction.

We can now define the £-certified iterations.

Definition 10.2.17 Suppose M € N is a hod premouse extending R such that
R = MP". Suppose T € N is a stack on M (played either according to the usual
rules of the iteration game or according to the rules of the short tree game) and
Eec&. Wesay T is E-certified if the following conditions are satisfied.

1. T is mg-realizable.

2. Suppose S € Bz and let U be the largest normal initial segment of 7_;5 that
is based on S and is above S°. Let o < Ih(U) be a limit ordinal and let ¢ be

the branch of U | a chosen by U if there is such a branch. Then the following
conditions hold.

(a) MY MU | «)) E “5(U | «) is not a Woodin cardinal”. Then Q(b,U | «)
ezxists and Q(b,U | o) I MT (MU | «)).

(b)) MT(MU | «)) E “OU | «) is a Woodin cardinal” and there is W that is
an nitial segment of the fully backgrounded &-realizable construction over
MFTE(MWU| | «)) and is such that TW] E “6(U | «) is not a Woodin
cardinal”. Then Q(b,U | a) exists and Q(b,U | a) = W.

(c) The above two clauses fail. Then in U, player I1 played MT(M(U | «))
at stage a, and U = (U | &) MT (MU | «)).

We say that T is E-certified if for some A, T is E-certified for every E € £ such
that th(E) > .

And finally we define E-certified strategies.

Definition 10.2.18 Suppose M € N is a hod premouse extending R such that
R = M. We let Ay be the partial strategy of M with the property that

1. dom(A) consist of E-certified stacks T, and

2. for all T € dom(A), A(T) = b if b is the unique branch of T such that
T{M]} is E-certified.

We say A, is the E-certified strategy of M.
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10.2.5 Uniqueness of £-certified strategies

In this subsection we show that £-certified strategies are unique.

Lemma 10.2.19 Suppose M € N is a hod premouse extending R such that R =
M. Suppose A and U are two E-certified strategies for M. Then A = .

Proof. Suppose not. It follows from Lemma 4.6.3 that there is a low level disagree-
ment between A and U. Let (7_:, Q) constitute a low level disagreement between A
and U. Let Q7 be the last model of T. Because both A and U are E-certified, we
can find E € £ such that there are

1. an N-strong cardinal \ < vg,

2. Wy, ®g), Wy, ®1) € F | A,

3. 00: (9% = 7g(R) and 0y : (Q1)" = 7E(R),
®

4. for i <2, 0;[Q] C rng(my) . (0)):

5. for i < 2, letting k; : @ — W; be the embedding (Ws\jmi(g))—l o(o; | Q),
A4 7 = ko-pullback of ®y and W, 7 = ky-pullback of ®;.

Recall the definition of low level disagreement, Definition 4.6.2. It follows that

(1) AQ()\Qfl)Ji :ﬁ\IIQ()\Qfl)j’ and
(2) 02 =sup({n” (f)(a) : f € R Na € (QA% —1))<¥} N69).

Let then U be a normal tree on Q such that if @ = Ay #(U) and ¢ = Vg 2(U)
then

(3) MY = MY =4y Wand Ay 7y = Uy, 2y

We also have that for ¢ < 2 there are embeddings j; : W — 0,(Q) such that

(4) oo TQ:jooﬂg{ and oy fQ:jloﬂﬁ’-

It follows that if W," is the result of applying & and a to QF and W} is the re-

sult of applying U and ¢ to QT then we can extend jy to jg : W;)? — 7g(R) and
g1 to i1 : WH)? — 7g(R) such that
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(5) o0 1 Q%) = jif o7t and oy | (Q+)" = ji o 7.
Combining (2), (3), and(5) we get that
(6) sup(rng(mg) Nrng(me) N 6(U)) = o(U)

(6) implies that a = ¢, contradiction. O

10.2.6 Canonical certification witnesses

Suppose S* is a Lg+-iterate of Rt via an iteration that is entirely above 6%". Sup-
pose further that & < 8* is such that S* = R and S € V. Let 7 € N be a stack on
S. We will use S and T throughout this section.

Suppose that £ € £ and E* is the background certificate of E. Assume that
T ismg-realizable and is according to Xs. We want to show that we can choose
canonical embeddings and pairs that witness that T is mp-realizable. This is shown
in Corollary 10.2.23. First we prove two useful lemmas.

Lemma 10.2.20 K € Bz. Suppose further that for every Q € Bz such that Q <7
K,

1. 7(0g) | 62 is the iteration embedding according to Yov and
2. Uy =S,

Then T(ox) | oK is the iteration embedding according to Y. Moreover, if F' is the
(6%, 6K")-extender derived from n7* then 7(ox) extends to

o UK, F) — mp-(RT)
and J,’g is the iteration embedding according to Xy F)-
Proof. Set
a = sup({rg3""(5%) : @ <7 K}).
We have that

Kb = {77<cb(f)(a) : f € R Na € (0F)<“}.
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We also have that for every z € K?,

b)) EK(a
WK;:Z;E*(R) (x) = mp- (f)(ﬂjcl(coi);rm (R)(a))

where f € R and a € a<¥. It is then enough to see that
2K () K _ K
Ty (R) | % = 0k [ 0o ().

Suppose first « is a limit ordinal. Then for each f < «, there are Q <7 IC and
¢ < A2 such that K(3) is a \IJZQ—iterate of Q(§). Because we are assuming that
\IJkQQ = Y, and because of clause 6 and 7 of Definition 10.2.15, we get that

K K _ X K
0% 105 = T () mpe(r) | 05

As the above equality holds for any 5 < «, () follows. The case when « is a successor
ordinal is very similar. The rest follows easily because

UK, F) = {mp(f)(a) : f € R Aa e (65 )<}
implying that setting W = Ult(K, F)

>
Ty () = T (F) (Ml (@)
where f € RT and a € (0")<“ are such that z = mp(f)(a). O

Lemma 10.2.21 Let (0g : @ € Bz) € N|X and (Wq, Vo) € F [ A: Q€ Bz) €
JIN] witness that T is wp-realizable, and let ko : Qb — Wo be the embedding
described in clause 2 of Definition 10.2.15. Then for any Q € Bz,

Yoo | N = kg—pullback of ¥g.

Proof. Let A € (k,lh(E)) be an N-strong cardinal witnessing the clauses of Defi-
nition 10.2.15. Let E* be the background certificate of E and let 7 : Ult(N, E) —
7= (N) be such that g« | N = 7o mp. Because og | 0% = 7 | 0% and mp | R
is the iteration embedding according to Y2, Lemma 10.2.20 implies, by induction, that

(1) for every K € Bz, ox | (K?|6K") is the iteration embedding according to Eyes.
Now fix K € Bz. It follows from Clause 6 of Definition 10.2.15 that
(2) ok | (KP|6%") is the iteration embedding according to Wi

It follows from (1) and (2) that U and X are both ox | (K?|6%")-pullbacks
of mp+(Xr), and hence,
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U =Y [N,
finishing the proof of the lemma. O

We continue with our S and 7. Let \* = sup{Agr : @ € Bz} and let Az be the
least NV -strong cardinal > \*. Let A > Az be any N-strong cardinal. Let

ob
@QGBT,‘I’,\

W*=U{RS : Q€ Bz}, ¥ = Bgep, U5 and W = Lp, (W*).

Notice that c¢f(AY) < A implying that W E “cf(\"V) is not a measurable ordinal”. It
follows that W is an iteration strategy for W.

Suppose now that £ € £ is an extender such that A < [h(F) and let E* be the
background certificate of E. Let 7 : Ult(N, E) — mg-(N) be the factor map. Given
Q € Bz, we let 0  : Q" — mp-(R) be such that

o5 5() = T ()T, ) (@)

where f € R and a € (62")<“ are such that = = Wfé@vb(f)(a). The following is an
easy corollary of Lemma 10.2.20.

Corollary 10.2.22 There is a sequence (0o, : Q € Bz) € Nlg] such that for each
Qe Bf-; T(UQ,E) = U*Q,E-

Proof. Tt follows from Lemma 10.2.20 that 7(lg) = 0§  whenever (lg : @ € Bz)
witnesses that T is E-certified. O

It is now routine to check that

Corollary 10.2.23 (0gp : Q@ € Bz) and (R, US) : Q € Bs) witness that T is
E-certified.

Corollary 10.2.24 Suppose T is a stack on S such that all of its initial segments
are according to As. Then T € dom(Ag).

Proof. Let \* = sup{)\f<Q : Q € Bz} and let A be any N-strong cardinal greater
than A*. Then for any E € € such that [h(E) > X and for any K € Bz, (cgp: Q €
Bz ) and (RS, ¥2): Q€ By ) witness that T<x is E-certified. It follows that

(UQ;,E : Q € Bz) and (R, UF) : Q € B) witness that T is E-certified. O



228 CHAPTER 10. APPLICATIONS

10.2.7 Correctness of O-structures

In this subsection, we work towards showing that £-certified constructions produce
O-structures that are according to . Our first lemma of this subsection shows that
we can always embeddings witnessing certification.

Lemma 10.2.25 Suppose Q,W € N are such that there are stacks Uy on Rt with
last model QT and U; on QF with last model W+ such that 700 and 70 exist,
Q= (9N and W = WH)°. Suppose further that Q, W € N. Suppose \ is a strong

cardinal greater than max(Ag, \y). Then 70 7t e N and moreover, for any

E € & such that [h(E) > X, there are g : @ — wg(R) and oy : W — mr(R) such
that

— —

U, Ui ,b

g | R = 09010 and 0o = oy o 77,

Proof. Let E € £ be such that [h(E) > X and let E* be the background certificate
of E. Let Y = w2 [RC]. Then (in NJ) there is 7* : @ — 7p-(R) such that

RO 7+ (R)
rng(m) C {mp-(f)(a) : fERAa €Y}
Let k : Ult(N, E) — mg+(N) be the factor map. Because
{me-(f)(a): fERNa Y} Crng(k),
we have (in N) 7: Q@ — 7g(R) such that
rng(t) C k™ ({mp-(f)(a) : fERNa€Y}) = {mp(f)(a): fERNa €k '[Y]}.

Therefore, there is such a 7 € N[g] where g C Coll(w, \) is N-generic. But it follows
from Lemma 9.1.9 that for any such 7, 7-pullback of 7g(X%) (which is the same as
7-pullback of 7g«(Xr)) is just Xg. It follows that WéiE(R)[Q\(SQ} € Ult(N, E)]g] for
any such generic g. Set

oo(x) = 7p(f)(a)

where f € R and a € (§9)<* are such that Wﬁo’b(f)(a) = z. It follows that oo € N|g]
for any generic g. Therefore, 0o € N. We then have that

b () = og' (mp(x)).
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The rest of the argument is very similar. 0

Suppose now that S* is a Xp+-iterate of R™ via an iteration that is entirely above
6R". Suppose further that S < S* is such that 8" = R and S € V. Let T eNbea
stack on S. We will use S and T throughout this section. The following is an easy
corollary of Lemma 10.2.25

Corollary 10.2.26 Suppose T is according to Ys, ™ exists and for some Q,
’7'>Q0 is a normal tree of limit length on Qg above 590, Suppose further that letting

Q =gy M+ (7’290), Q F “69 is a Woodin cardinal”. Let U € N be a normal tree on
Q according to ¥.o. Then T U is E-realizable.

The next lemma argues that Q-structures appearing in a £-certified iteration are
according to .

Lemma 10.2.27 Suppose T is an E-certified iteration and Q € By. Let n > 5<
be such that M*(Q|n) E “n is a Woodin cardinal” and let W < Q be an sts mouse

over M*(Q|n) based on M*(Q|n). Suppose T-q is according to Ss. Then W is a
Zf\%(g )-sts mouse.

Proof. Towards a contradiction assume that WV is not a 35 M (ln)” -sts mouse. It fol-
lows that ’T<Q is not according to Xs. If then follows that 7'<Q has a last normal
component of limit length that is above 62", Let then Q, € ntn(’T) be such that
Q) = QF and U =g4.¢ 71290 is a normal tree of limit length that is based on Qy and
is above 02, For convenience, we change our notation and set @ = M*(U) and
T = 72@ It follows from Definition 10.2.17 that

(1) W is an initial segment of the fully background construction of N over Q.

What we need to see is that W is a Egc—s‘cs mouse over Q. To show this it is
enough to show that every stack indexed in W is according to Xg¢. To show this, it
is enough to show that

(2) if t = (Q,Uy, Ql,ﬁ) is a stack of length 2 on Q appearing in the fully back-
grounded E-realizable construction over Q (done in A) and b is the branch of ¢
indexed in this construction then t~{Mj} is according to 3g°.

(2) is indeed enough. To see this, notice that if s = (Q,Us, QF,U*) is a stack of
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length 2 indexed in W and c is its branch then for some stack t = (Q, Uy, Ql,ﬁ) as
above if e is the branch of ¢ then s™{M:$} is a hull of t~{M’}. If ¢ is according to
ZSQ“ then it follows from hull condensation of ESQ“ that s is also according to ESQ“.
We now work towards showing that ¢ is according to ¥g°.

Suppose first that U is according to £5°. We have that U is a stack based on Qb
Because t is E-certified, we can fix an extender £ € £ such that ¢ is mg-realizable.
We then have o : Q% — 75(R) such that 75 | R = coroborT:*, We also have that
L?“{Mzbj} is according to o-pullback of 75(X%). Therefore, ¢ is according to Xg°.

It remains to show that U is according to X§°. Without loss of generality, we
assume that all the initial segments of U, are according to Xg¢. The only Way that
Uy could fail to be according to 3g° is if for some Q* € ntn(uo) such that 70t exists,
(Up)>o- is above §¢° and the branch of (Up)>o+ chosen in Uy is not according to Zsm.
Let ¢g be this branch. We then have that Q(co, (Uy)>o-) exists and appears in the
fully backgrounded E-realizable construction over M*((Uy)so+) (done in N).

Set Qo =gey Q, Q2 = MT((Uo)>0+), Wo =des W and Wy = Q(co, (Up)>o+). Let
by = Yo, (Up). Notice that either by has a drop or 74" ©(6%) > §9. It follows that if
we repeat the above argument then we will eventually end up descending indefinitely.

O

The following is an easy corollary of Lemma 10.2.21 and Lemma 10.2.27.

Corollary 10.2.28 Suppose T eN is E- certified stack on S. Then if S is not of
Isa type then T is according to Ys and if S is of lsa type then T is according to the
minimal component of LZ¢ (see Definition 3.9.8).

We will also need to show that the fully backgrounded £-realizable constructions
reach all the necessary Q-structures. This is the goal of the next lemma. We continue
with S and T

Lemma 10.2.29 Suppose S is of lsa type, T is E-certified and for some Q € B,
T =des 7_LZQ 18 a normal tree on Q of limit length above 59" Suppose further that
MFE(M(T)) E “6(T) is not a Woodin cardinal” but letting ¢ = Ss(T), Qc,T)
exists. Then Q(c,T) is an initial segment of the fully backgrounded E-realizable
construction over MY (M(T)) (done in N).

Proof. Suppose the fully backgrounded &-realizable construction over MT(M(T))
(done in N) outputs a model of height ,. Then because this model is universal and
because all stacks indexed in such a model are according to X+ a7y (see Corol-
lary 10.2.28) we have that Q(c, T') appears in this construction. Thus, it is enough to
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show that the fully backgrounded E-realizable construction over M*(M(T)) outputs
a model of height ¢,.

Suppose this is not the case. We change the notation and let @ = M*(M(T)).
The aforementioned construction can fail to reach a model of height §, only because
we have encountered an E-certified stack ¢t = (Q, U, Ql,ﬁl) on @ but we cannot
find a branch ¢ of ¢ such that t~{M"} is E-certified. The rest of the proof is like
the proof of Lemma 10.2.27. If U, exists then we find such a branch following the
procedure used in the proof of Lemma 10.2.27. If the troublesome tree is U, then

this, just like in the proof of Lemma 10.2.27, inevitably leads to an infinite descend.
O

10.2.8 Ag is total

The goal of this subsection is to show that Ag, the E-certified strategy of S, is
total. Our first lemma shows that £-certified iterations can be continued. Recall
that S € N is an initial segment of some Y -iterate of Rt. We start with the
following corollary of Lemma 10.2.21 and Lemma 10.2.25.

Corollary 10.2.30 Suppose T is a stack on S that is according to both As and Xs.
Suppose 770 exists. Let M = 17 *(R). Then Sp | N € J[N] and whenever U is

an iteration according to Y then T~U is E-realizable.

Lemma 10.2.31 The following holds.

1. Suppose S is not of lsa type or if it is then Jy(S) E “6° is not a Woodin
cardinal”. Then s | N = Ag.

2. Suppose S is of lsa type and V is the minimal component of X¥¢ (see Defini-
tion 3.9.8). Then ¥ | N = Ag.

Proof. In a sense, the proof has already appeared in previous subsections. Here we
only collect the relevant facts.

Because the proof of clause 1 is very similar to the proof of clause 2 and because
the proof of clause 2 is more difficult and is really the only new case that is beyond
[10], we only give the proof of clause 2. We make an extra benign assumption that
S = M*(S]6%). We need to show that if 7 is a stack on S according to As and L
then

1. T € b(As) < T € b(V),
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2. As is total,
3. T em(As) & T € m(¥), and

Verlfymg these three clauses i is enough because it follows from Lemma 10.2.24 that
if 7 is accordmg to Ag then 7 € dom(As). Notice that clause 1 and 2 imply clause
3. Fix a stack 7 on S according to both Ag and Y.

We start with clause 1. Suppose 7 € b(As). Then letting b = Ag(7) we have
that 7 {M]} is E-certified. It follows from Corollary 10.2.28 that b = Ss(7).
Suppose now that b € b(¥). We now have two cases.

Suppose first that there is a Q € Bz such that T =g 7_;Q is a normal tree on Q
above 02", Because b € b(¥), we must have that Q(b,7) exists. If Q(b,T) <
MF(M(T)) then it follows that 7 € b(A). Assume then that M+ (M(T)) <
Q(b,T). It follows from Lemma 10.2.29 that Q(b,7) appears in the fully back-
grounded E-realizable construction over M*(M(T)) done in N. Therefore, T €
b(As). B

Suppose then there is Q € Bz such that the rest of 7o is an iteration based on
QP 1t follows from Lemma 10.2.25 that Ag(7) is defined. Letting b = Ag(T) we
have that f”{Mf} is E-certified. It follows from Lemma 10.2.28 that b = ¥(T). O

10.2.9 Mixed hod pair constructions

We devote this entire subsection to the definition of construction producing the iter-
ate of R™. In this construction, we use £-certification method to acquire extenders
with critical point %, and we use the total extenders on the sequence of N to gen-
erate extenders with critical point > 6*. We will use the operators introduced in
Section 4.3. Here all operators must be viewed as operators constructed in the model
N; however, we will omit N from our notation. For convenience, we will repeat some
of the definitions introduced in Section 4.3. Here we will need two extender operators.
First we define E-certified extenders.

Definition 10.2.32 Suppose Q € N is a hod premouse such that Ag (see Defini-
tion 10.2.18) is total and Q° = R. Suppose F is an extender such that (Q, F) is a
reliable Ihp where F is the amenable code of F. We say F is E-certified if for some
N -strong cardinal \, for any E € € such that Ih(E) > A, letting o : 7p(R) — 7(R)
be given by

o(2) = Tu(f) (A, 1 (@)
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where f € R and a € (Q)<¥ are such that x = wp(f)(a),
(a,A) € F <> o(a) € mp(A).
We say o is the E-realizability map.

Definition 10.2.33 (E°, E!, B, J%) Below we define the four sets EO, E!, B® and
0. First if Q € E°UEYUBCU J® then Q extends R, Q° =R and N E “Ag is a total
strateqy” (see Definition 10.2.18). In addition we have the following conditions.

1. Q@ € dom(E®) if Q@ € N is a passive lhp and there is an extender F* € N with
the property that crit(F*) > 6%, an extender F € N over Q and an ordinal v
such that N'E “v(F*) is an inaccessible cardinal”, F = F* N [v]<¥ x Q, and
(Q, F) is a reliable lhp where F is the amenable code of F and v(&F) = v.

2. Q € dom(E) if Q € N s a passive lhp, Qb = R, Ag is total and there is
an extender F such that crit(F) = 6%, (Q, F) is a reliable lhp where F is the
amenable code of F.

3. Q € dom(B%) if Q = Jié € N is a passive lhp such that for some R € Y<
such that R is a hod premouse and there is a stack T € Q —dom(%2) based on
R such that T is according to E%, INT) is not of measurable cofinality in Q,

and there is some cofinal well-founded branch b € M ofT such that 3 = supb
and if b is such that o +ve b if and only if v € b then (Q, €, E, f*) is an lhp

where f* = fU{(T(T),)}.
4. Q€ dom(J°) if Q is an lhp and Q € N — (dom(E®) U dom(B?)).

The next definition introduces the bad [hps.

(Bad) Suppose M is an lhp extending R such that M’ = R. We say Bad(M)
holds if one of the following conditions hold.

1. M is unreliable (i.e, for some k < w, Cy(M) doesn’t exist).
2. p(M) =%,
3. N E “Ay, is not total”.

We will have that dom(Eq) C dom(E®) and dom(E;) C dom(E') and dom(B) C
dom(BP). All five functions Eg, E;, B, J and Lim will be defined by induction.
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Definition 10.2.34 (Stage 0) We set.

1.

J(0) = 0.

2. Eg(0) = E; = B(0) = Lim(0) = 0.

When defining J, Eg, E;, B and Lim, we will maintain the following requirements.

Requirements

1.
2.

dom(J), dom(Ey), dom(E;), dom(B) and dom(Lim) are subsets of ¢.

If o = sup{& + 1 : € € dom(J) U dom(Eo) U dom(Ez) U dom(B) U dom(Lim))}
then the five sets dom(J), dom(Eg), dom(Ep), dom(B) and dom(Lim) form a
partition of aV.

{B < o : 3 is a successor ordinal} C dom(J).

For all 5 < o, the value of the hpc-operators at /3 is either undefined or is an
Ihp Q such that for every S € Y2, S is a hod premouse.

Given any Q and S as in clause 4, we let Ags be E-certified partial strategy of
S (see Definition 10.2.18). We will have that N E “Ag is total”.

If 8 € dom(Eg) U dom(E;) U dom(B) then f is a successor ordinal and § — 1 €
dom(Lim))

We start by describing how the operator Ey works.

Definition 10.2.35 (The first extender operator) Suppose J | 5, Eo | 3, E1 |

B, B | B and Lim [ B have been defined, B = v+ 1 and ~ is a limit ordinal. Let
Q = Lim(7y).

1. Suppose Q & E°. Then let Eq() be undefined.

2. Suppose then that Q € EC.

(a) Suppose there is no triple (F*, F,v) witnessing that Q@ € E® with the ad-
ditional property that F* coheres (J | 5,Eo | B,E1 [ 5,B | 5,Lim [ f3).
Then we let Eo(S) be undefined.

(b) Otherwise let (F*, F,v) witness that Q € E® with the additional property
that F* coheres (J | B,Eo | B,E1 | B,B [ B,Lim | ). Letting F be the

amenable code of F' and M = (Q, F), set
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Eo(d) — undefined : Bad(M) holds
o C(M) : otherwise.

Definition 10.2.36 (The second extender operator) Suppose J | 3, Eo | 5,
E: [ B8, B[ B and Lim | B have been defined, B = v+ 1 and v is a limit ordinal. Let
Q = Lim(y).

1. Suppose Q € EL. Then let E1(8) be undefined.

2. Suppose then that Q € E'. Let F witness that Q € E! and set M = (Q, F).
Then

undefined : Bad(M) holds
E:(8) = .
C(M) . otherwise.

We split the branch operator into three pieces Bpiss, Buasa and Basa. These
respectively stand for non Isa, unambiguous lsa and ambiguous lsa. We then let
B = Bhisa U Buaisa U Baisa- Suppose J | B, Eo | 8, E1 [ 8, B | 8 and Lim | 8 have been
defined, 8 = v+ 1 and + is a limit ordinal. Let Q = Lim(y). The following condition
is part of the definition of B.

(B1) Suppose Q ¢ B°. Then let B(3) be undefined.

Suppose then that Q = jﬁrf € B% and S € Y9 is least witnessing this. In the

next three definitions, we will isolate a stack 7 based on S and a branctl b of T.
Then letting b C £+ v be given by { +( € b« ( € b, set fT = fU{(tre(T),b)}. If
one of the following conditions is satisfied then we will let B(3) be undefined.

(B2) sup(b) # v or Bad(Q, f71).

Definition 10.2.37 (The non lsa branch operator) Suppose one of the follow-
ing holds.

1. S<aR.
2. S is not of lsa type.

3. S is of lsa type but Jy(Q) F “6° is not a Woodin cardinal”.
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Let T € Q — dom(XS) be the Q-least stack that is according to ¥, INT) is not of
measurable cofinality in Q," and L2(T) is not defined. Set b = Ao(T). If B2 holds
of (b, Q, fT) then let Busa(B) be undefined. Otherwise set Bus, () = C(Q, f1).

The following condition is also part of the definition of B.

(B3) Suppose S is of Isa type and J1(Q) E “§° is a Woodin cardinal”. If Q is
not an sts premouse over S based on M™*(S|6°) or it is but it is not closed under
sharps then let B(f) be undefined.

Suppose then Q is an sts premouse over S based on M*(S|6°) and Q is closed
under sharps.

Definition 10.2.38 (The ambiguous branch operator) Suppose Q is ambigu-
ous and let t € Q be the Q-least stack of length 2 witnessing this. Again since Q € B,
we can require Ih(t) is not of measurable cofinality in Q. Let AZ¢(t) = b. If B2 holds
of (b, Q, fT) then let B, (B) be undefined. Otherwise set Bsa(3) = C(Q, f).

Definition 10.2.39 (The unambiguous branch operator) Suppose Q is unam-
biguous. Suppose there is no Q-terminal T that has a Q-shortness witness. Then
let B(B) be undefined. Suppose then that there is a Q-terminal T that has a Q-
shortness witness and T is chosen as in the definition of Q € B°. Let (T,b) € Q
be the lexicographically Q-least pair such that for some (§,v), T is Q-terminal and
(&,v,b) is a minimal Q-shortness witness. If B2 holds of (b, Q, f) then let Byasa(0)
be undefined. Otherwise set Buasa(3) = C(Q, f1).

Finally set B(5) = Bpisa()UBuaisa(5)UBaisa(3). Next we define the constructibility
operator.

Definition 10.2.40 (The constructibility operator) Suppose J | 5, E [ 3, B |
B and Lim | 8 have been defined and =+ 1. Let

7T exists because Q € BO.
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Then

undefined : 3 € dom(E) U dom(B)
J(B) = § undefined : 3 & dom(E) U dom(B) and Bad(Q) holds
Ji(Q) . otherwise

Finally we define the limit operator.

Definition 10.2.41 (The limit operator) Suppose J [ 5, E | 5, B | § and Lim |
B have been defined and § is a limit ordinal. For v < [3, let

p

Eo(’y) v e dom Eo)
Ei(7) v € dom(Ey)
Q=4I

(Lim(y) :v € dom(Lim)

Given an ordinal &, we let Q% be the eventual value of Q,||¢ as v approaches f3
provided this eventual value exists. Then

undefined : for some &, QF is undefined
Lim(3) = < undefined : Bad(UgcoaQ°) holds
UgcoraQ® : otherwise.

Recall that we set
aé\gf =sup{€ +1: & € dom(J) U dom(Eg) U dom(E1) U dom(B) U dom(Lim)}.

We then say Q appears at stage [ if Q is the value of one of the construction opera-
tors at 3. We let Qg be this model and say that (Qg, Ag, : 8 < oV) are the models
and strategies of the mived hod pair constructions of N over R. Here Ag, is the
E-certified strategy of Qg (see Definition 10.2.18). The following two condition are
our final conditions signaling the halt of the construction.

(Reaching LSA) If for some limit 3, Qg is of Isa type and Qs = LpF’AS; (MF(Qp|6%))
then stop the construction.

(No Strategy) If for some Q appearing in the construction Ag is not total or (Q, Ag) ¢
F then stop the construction (see Notation 10.2.12).
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Definition 10.2.42 (Mixed hod pair constructions) The mized hod pair con-
struction of N over R is the sequence (E{)\/, EN, BV, IV, LimN). We say that the hod

pair construction is successful if oV = o(N). We say Q is a model appearing in the

hod pair construction of N if for some § < oV,

(EY(8)  : B € dom(EY)
EV(B) i B € dom(EY)
Q=<(BY(B) :pB¢cdomBY)
WNB) B e dom(IVY)
LimM(8) : B e dom(Lim")

\

10.2.10 The proof of Theorem 10.2.4

The following is the key step towards the proof of Theorem 10.2.4. We do the
proof assuming that R* is of Isa type. The remaining cases were either handled in

[10] or are very similar and easier. Let W be the minimal component of ¥%¢ (see
Definition 3.9.8).

Lemma 10.2.43 There is a model Q appearing in the mized hod pair construction
of N and a normal tree T on R* such that (T,Q) € I(RT, V) and Ag = Vg | N.

Proof. Assume first that such a tree T exists. Then it follows from Lemma 10.2.31
that Ag = Wg | N. Thus it is enough to show that such a 7 exists.

Suppose then M is some model appearing in the mixed hod pair construction of
N such that for some normal tree 7 on R* with last model Q, M < Q. Suppose
further that in the next step of mixed hod pair construction, we either index an
extender or a branch. It follows from Lemma 10.2.31 that if we index a branch then
this cannot cause a disagreement between Q and the next model in the construction.
It also follows from the stationarity of fully backgrounded constructions (see [10,
Lemma 2.11]) that if the next indexed object is an extender with critical point > 6%
then this too cannot cause a disagreement between Q and the next model.

Suppose then the next indexed object is an extender with critical point §%. We
want to show that this also doesn’t cause a disagreement between O and the next
model in the construction. Let F' be this extender. It follows that F'is £-certified.
Let E € &£ be some extender witnessing that F is £-realizable and let ¢ be the
E-realizability map (see Definition 10.2.32). It follows ¢ : mr(R) — mg(R) and
7 | R = 0 omr. We moreover have that
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(1) o I (mr(R|67)) is the iteration embedding according to W,,.g) | V.

(1) follows from the fact that this embedding just depends on o [ M which is
the iteration embedding according to Ays = Waq [ N.

We now have two cases. Suppose first that there is no G € E9 such that ep(G) =
6% and [h(G) > o(M). Then Q = M*(M) and Q F “5< is a Woodin cardinal”.
This is a contradiction because we index extenders at successor cardinals (implying
that M has a largest cardinal).

Suppose next that there is such an extender GG. Let E* be the background
certificate of F and let 7 : Ult(N, E) — 7p«(N') be the canonical factor map. Let
k:7mg(R) = mg«(R) be given by

k(z) = WE*(f)(W?ziE (R)(a))

where f € R and a € (7g(6%))<% are such that * = 7g(f)(a). It follows from
Lemma 9.1.9 that

(2) 7(o)-pullback of g+ (Xr) is Xr,(Rr)-
It follows from (1) that
(3) (o) | mp(R|67) is the iteration embedding according to 7(V, . (r))-

Combining (2) and (3), we get that 7(c) = k. It then follows that F' = G. This
finishes the proof that there is no disagreement between Q and the next model in
the construction, provided we index an object at M.

Next we analyze the situation when the next model in the construction is obtained
from M by not indexing anything. This can cause a disagreement between the next
model of the construction and Q provided there is an object indexed in Q. As
before, because Ay, = ¥ [ N, such a disagreement cannot happen because of
strategy disagreements. We claim that such a disagreement cannot happen because
of an extender with critical point §¢ = 6%,

Suppose then, toward a contradiction, that we have an extender F € £< such
that cp(F) = 6%. Suppose further that M = Q|Ih(F) and either F & N or F is not
E-certified (as otherwise we would have to put F' on the sequence of our construction).
Let A be a ¢,-strong cardinal of N* such that A is also an N-strong cardinal and
F,Q € NfI\. Let E € & be any extender such that A < [h(E). Let E* be the
background certificate of E and let 7 : Ult(N, E) — 7g«(N) be the canonical factor
map.
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We define k : mp(R) — 7mg-(R) as above by setting Let &k : 71p(R) — mp«(R) be
given by

k(z) = WE*(f)(WZzErE (R)(a))

where f € R and a € (7p(6%))<% are such that z = 7p(f)(a). We have that

(4) Wrp(w) is the k-pullback of 7p«(Xx) and k | (7mp(R|6%)) is the iteration em-
bedding according to ¥ .(w).

Notice that (5) W [ Ult(N, E) € Ult(N, E).

(5) follows because A is a strong cardinal in Ult(N, E). Because crit(7) > A, we
have that

(6) T(Wpq [UIN, E)) T (- (N)IA) = War [ (NV]A).

Again, because A is a strong cardinal in all relevant models, it follows from (6)
that

(7) U [ mpe(N) = 7(Tm | URN, E)).
Because k | (7x(R|6%)) depends only on k | M, it follows from (4) and (7) that
(8) k[ M € rng(r).

It is now routine to check that m =4 7'k | M) € Ult(N,E) defined F as
follows:

(a,A) € F +» m(a) € mp(A).
This finishes the proof of Lemma 10.2.43. U

We have now finished proving Theorem 10.2.4.

10.2.11 A proof of Lemma 10.2.5

In this subsection we outline the proof of Lemma 10.2.5. The proof is very similar
to the proof of [10, Lemma 6.23]. Suppose that there is no hod pair or an sts hod
pair (P, ) such that
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1. ¥ has strong branch condensation and is strongly fullness preserving,
2. T(P,X) CT'C L(X,R)

Just like in the proof of [10, Lemma 6.23], it follows from Theorem 10.1.1 that T" is
not a mouse full pointclass (as we are assuming that L,(I',R) F SMC). Following
the proof of [10, Lemma 6.23], we let A be the set of hod pairs or sts hod pairs
(P, X) such that Code(X) € I and ¥ has strong branch condensation and is strongly
fullness preserving. It follows from Claim 1 on page 158 of [10] that A # (). It follows
from Claim 2 on the same page of [10] that if

[y = Upseal (P, X)
then

(1) T'y is a mouse full pointclass such that for some limit ordinal « there is a sequence
of mouse full pointclasses (I's : f < «) such that for § < v < «, I'g <pouse L'y and

It follows from Theorem 10.1.1 that there is a possibly anomalous hod pair (P, )
such that either

1. P is of Isa type and I'*(P,¥) =Ty or
2. P is not of Isa type and I'(P, X)) = T';.

Because I' E SMC and because I'1 <pouse ©(R), we must have that X is strongly
fullness preserving (for instance see [10, Lemma 6.21]). Notice that even if clause 1.b
of Theorem 10.1.1 applies, we still get a hod pair as apposed to an sts pair. This is
because we have good pointclasses beyond T'.

Notice also that Code(¥) ¢ I', as otherwise it follows from Claim 2 on page 158
of [10] that (P,X) € A. Thus, it must be the case that P is an anomalous hod
premouse. We now get a contradiction as in page 159 of [10], where it is argued that
the computation of HODY®®) gives a contradiction.

10.3 A proof of LSA from large cardinals

In this section, we generalize [10, Theorem 6.26].

Theorem 10.3.1 The theory ADT + LSA +V = L(p(R)) is consistent relative to a
Woodin cardinal that is a limit of Woodin cardinals.
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Proof. Woodin showed that it is consistent relative to a Woodin cardinal that is
a limit of Woodin cardinals that there are divergent models of AD™, i.e., there are
sets of reals A, B C R such that L(A,R) £ AD", L(B,R) £ AD", A ¢ L(B,R)
and B ¢ L(A,R). Moreover, his construction shows that we can assume that both
L(A,R) and L(B,R) satisfy MC+0 = 6,. Thus, we assume that such a pair of
models exists.

Suppose towards a contradiction that there is no inner model satisfying AD' +
LSA+V = L(p(R)). Let I' = L(A,R) N L(B,R) N p(R). It is unpublished theorem
of Woodin that L(I',R) F ADgr. We also have that I' = p(R) N L(I',R). Applying
Lemma 10.1.1 in L(A,R) and in L(B,R) we get two hod pairs or sts hod pairs
(P,%) € L(A,R) and (Q,A) € L(B,R) such that both P and Q are of limit type
and I' =T(P, %) =T(Q,A).

Let M* = U w)eprs)M(S,¥) and for a < MM let W, be the iteration
strategy of M*(a) obtained from any (S, V) such that M*(a) = M (S, ¥). Notice
that M* and ¥, are independent of (P, X); using (Q, A) instead of (P, X) yields the
same model M* and the same strategy ¥,. Let

M = (LpPeers P (M)A and My = (LpPocss ¥ (M) HES),

We then have that either M, I Mp or Mg < M, . Without loss of generality we
assume that My < Mp.

Let m : P® — M be the iteration embedding given by ¥. It follows from the
proof of Claim 7 appearing in the proof of Theorem 8.2.6 that ¥ € L(w[P], M,T).
However, because 7[P] is a countable set we have that 7[P] € L(B,R). It follows that
Y. € L(B,R). Therefore, Code(X) € T implying that I'(P,X) C T', contradiction! [



Chapter 11

A proof of square in lsa-small hod
mice

Definition 11.0.2 For a cardinal £ and a cardinal v < K, the principle U, ., states
that there is a sequence (Cy : av < KT) such that for each o < k™

1. C, # () and for each C € C’;, C' is a closed unbounded subset of a of order type
at most K,

2' |6a| S ’7;
3. for each C € C,, for each B € lim(C,), C N € C_"g.

If v =1, then the principle O ., is simply [,;.

Pure extender models are models constructed from a canonical sequence of ex-
tenders. Jensen (cf. [1]) initiated the program of understanding square principles
in pure extender models by proving L F Vk [J,. Building on works of several peo-
ple, Schimmerling and Zeman (cf. [17]) give the most optimal characterization of (]
in (short) extender models, namely they prove that in an iterable, short extender
model, [, holds if and only if x is not subcompact. Results on squares in extender
models are important in understanding structure theory of such models and have
found many applications in set theory. The reader can see, for instance, [16] and
[5], for some of the applications of square in extender models in computing lower-
bound consistency strength of theories like PFA. Recent advances in the core model
induction methods have indicated that to improve the lower-bounds of combinatorial
principles like PFA, failure of square at a singular cardinal, the existence of guessing

243
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models etc., one way is to prove square holds in the hod mice that are currently
being studied and constructed.

All known square proofs in extender models rely heavily on the fine-structure
of such models, in particular, they make essential use of condensation properties of
these models (cf. [17, Lemma 1.6]). Unfortunately, the full condensation lemma,[17,
Lemma 1.6], does not hold in hod mice. However, it is possible to overcome this
shortcoming. We present here a proof of U, 2 in an lsa-small hod mouse P for all
cardinal x of P. In this chapter by Isa-small hod mouse, we mean that P does not
contain an active w Woodin Isa mouse as defined in Definition 8.2.2.

We first set up some terminology. Our hod premice P are Isa-small and hence for
no a < A7, P(a) is an lIsa hod premouse. Throughout this paper, if Q is an initial
segment of P, we let Xg denote the restriction of ¥ to Q. If P is of limit type and
has a top window [67, 07, ,), then we let P* = P|(67 ). See Section 11.1 for a more
detailed discussion of hod mice along with the definitions used in statements of this
section. In the definitions below, we adapt the ¥*-language (see [17]) to hod mice
in the obvious way. Let pg be the n*'-projectum of Q, and P4 be the n'-standard
parameter of Q.! Semantically, suppose Q is an initial segment of P, a relation
AC|Q]is El(")(Q) from p, or El(")(Q), if it is 3; from p (or ;) over the n'-reduct
(Hp, A) of Q, where HY = |Q|p3| and AP is the n'™ standard master code (with
respect to pg) of Q.

Definition 11.0.3 Suppose ¥ is an iteration strategy for a hod premouse P. Sup-
pose ' is an inductive-like pointclass. We say that 3 is locally strongly I'-fullness
preserving if 3 is I'-fullness preserving and if P is of limit type with a top window
and whenever (T,8) € I(P, ), and

Tt Pt Sb exists,

then letting m = 7T71’b, whenever S* AW S is such that for some n and some cardinal
Kk of W,

0(8%) < wpiit < K < wply,
and T : R — W 1s cardinal preserving and Zgn) and wp > cr(t) > wplptt = wpwl,

then the T-pullback of the strategy %, 7 is I'-fullness preserving.

1Other notations for the n**-projectum and n**-standard parameter of Q used elsewhere in this
book are p,(Q) and p,(Q) respectively. For this chapter, we stick to the more compact notations

p4 and pg.
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Definition 11.0.4 Suppose X is an iteration strategy for a hod premouse P. We
say that 3 has locally strong branch condensation if ¥ has branch condensation and
if P is of limit type with a top window and k is a cardinal of P such that

o(P") <k,

and Q is such that P* < Q <P, and n is such that cup’gr1 < Kk < wpg, and S s
a Yo-iterate along a stack T such that =7 exists, and 7 : Q — R s a cardinal
preserving, Z(()n)—embeddmg such that R <8 and (Q*)® = R® for some non-dropping
Yo-iterate Q* of Q. Suppose also that letting j : Q@ — Q* be the iteration map, then
j1 Q=11 Q" Then E%j_ =Y.

We seem to need to strengthen the usual notions of fullness preservation and branch
condensation (as in Definitions 11.0.3 and 11.0.4) to ensure that various phalanx
comparison arguments go through in the proof of Theorem 11.0.5. In most (but not
all) applications, the map 7 in Definitions 11.0.3 and 11.0.4, is the identity and 7 is
the uncollapse map associated to a sufficiently elementary hull. The main theorem
is the following.

Theorem 11.0.5 Suppose (P,%) is an lsa-small hod pair such that ¥ has locally
strong branch condensation and is locally strongly T'-fullness preserving for some
inductive-like pointclass T that satisfies “AD™ +SMC”. Then P E Vi O, .

Many techniques in the proof of 11.0.5 come from the Schimmerling-Zeman’s
proof in [17]. In Section 11.1, we import some results from the theory of hod mice
we need. In Section 11.2, we will import some terminology, results from [17] that we
need here. We also explain in this section why a straightforward adaptation of [17]
fails in the context of hod mice. In Section 11.3, we give the actual proof of Theorem
11.0.5.

Finally, we remark that hod pairs constructed in practice (those constructed in
sufficiently strong AD* models or in the core model induction settings) do have the
properties in the hypothesis of Theorem 11.0.5. The main application of Theorem
11.0.5 in this book is to improve the lower-bound consistency strength of various
theories such as PFA to that of LSA (see Chapter 12).

2The assumption that P is lsa-small implies that there are no subcompact cardinals in P and
all extenders on the P-sequence are short.
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11.1 Ingredients from hod mice theory

We summarize some definitions and results of the hod mice theory developed above
that we need to prove Theorem 11.0.5. Suppose (P,) is an Isa-small hod pair. P
is constructible from a sequence of extenders and a sequence of strategies of its own
initial segments. There are two ways in which an initial segment Q of P can be active:
B-active and E-active. Q is B-active the top predicate for Q (amenably) codes a
branch for some tree on an initial segment of Q. Q is E-active if the top predicate
of Q codes an extender. Otherwise, we say that Q is passive. B-active levels and
passive levels are more or less treated the same way in the proof of Theorem 11.0.5.

A few words about how the B-predicate codes up branches for an iteration tree
T in P is in order. Suppose A = Ih(7) is limit and P|y is B-active such that BP!
codes a cofinal branch b of 7. The traditional way that B codes b is that letting
Y 4+ A =7, BP = {y* +a | a € b}. While this approach is sufficient for developing
the basic theory of strategic premice and certainly is sufficient for the theory of hod
mice we have developed so far, it seems to create significant obstructions in the proof
[0 in this chapter. So instead, we use the coding method developed in [20]. Using [20,
Definition 2.26], we let P|y = B(P|v*, T, b). The reader is advised to consult [20] for
the precise definition of B(P|y*, T,b). Roughly, for every 0 < @ < A, P|(v* 4+ wa)
is B-active and BFI0"+%%) codes the branch [0, a)7 and BP!" codes b in the manner
described above. The use of the B-operator in coding branches of iteration trees will
be explained in Section 11.3.

We briefly discuss indexing schemes for extenders on the P-sequence. Suppose
k is a cardinal limit of cutpoints of P, and if F is an extender on the P’s sequence
such that cr(F) = k, then the index of E is 7 where 7 is the successor cardinal of
the least cutpoint above x in Ult(P, E) (we call this cutpoint indexing scheme). It
turns out that such extenders are all total over P. Suppose E is an extender with
critical point £ and FE is indexed according to the cutpoint indexing scheme. Then
according to [22], for all v < 1h(E), E | 7 is not on the P-sequence, though F [ v € P
(for 7 below the sup of the generators of E) and the trivial completion of E | 7 is
on the P-sequence for various «y (this is similar to the initial segment condition for
Jensen indexing). Also, the set of indices of extenders with a fixed critical point &
indexed according to the cutpoint indexing scheme is nowhere continuous. For other
extenders on P’s sequence, we use the Jensen indexing scheme (this is for convenience
of importing terminology and results from [17]; the result we prove here for hod mice
with the Jensen indexing scheme will also hold for hod mice with the Mitchell-Steel
indexing scheme by results of [3]). Suppose E is an extender with critical point &
on the sequence of P and FE is indexed by the Jensen indexing scheme, that is the
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index of E in P is the successor cardinal of ig(§) in Ult(P, E). For a summary of
the fine structure, see [17, Section 1]. A couple of remarks regarding the adaptation
of [17, Section 1] into our situation are in order. First, we still demand extenders
indexed according to the Jensen indexing to satisfy the initial segment condition
(ISC) in the sense of [17, Section 1.4]; that is for all v < 1h(E), if v is a cutpoint of
E, then E | v € |P|lh(E)|. Secondly, under this initial segment condition, using the
assumption that our hod premice are lsa-small, it’s easy to see that these extenders
E are all of type A, that is the set of cutpoints is empty; this is because there are no
superstrong cardinals in Isa-small hod mice. The initial segment condition (for both
indexing schemes) is needed to prove comparisons terminate.

If P is a hod premouse, we let A\¥ denote the order type of the Woodin cardinals
of P and (67 : a < A7) enumerate the closure of the set of Woodin cardinals in P.
If P has a largest Woodin cardinal, we denote that 6. Recall we use P’ to denote
the “bottom part” of P in the case that P has a top window [k = 67,57), where
K is either a Woodin or limit of Woodins in P. In this case, P* = Lp”* 7 (P|x),
where X = ®p<aXps- In the case a is a limit ordinal, P* = P|((x)")”. In this
case, if K happens to be measurable in P, then all extenders £ on the P sequence
with critical point x are indexed according to the cutpoint indexing scheme. Notice
that since P is Isa-small, s is a cutpoint (but not a strong cutpoint) in P, though
is a strong cutpoint in P* = P|(k*)”. Let o(k) be the supremum of the indices of
extenders on the P sequence with critical point x. If P is of limit type (k < o(k)) or
of Isa type (k < o(k) = §7), then there may be local large cardinals in the interval
(k,0(k)), e.g. there may be a v € (k,0(k)) which is Woodin in some initial segment
Q of P; such large cardinals are witnessed by the extender sequence and the short
tree strategy of initial segments of Q, but not the full strategy. This point is crucial
in many arguments given below (see Lemma 11.1.1).

Suppose (P, X) is a hod pair such that 3 is I'-fullness preserving for some inductive-
like pointclass and has branch condensation. Suppose R <P is an initial segment
of P, then we let ¥ denote the restriction of ¥ to trees based on R. Let I(P,X)
denote the set of (71, R) where T is a stack according to ¥ with last model R. In this
case, the “T—tail” of Y., denoted 27 g, 18 a strategy for R. We let B(P, %) denote
the set of (71, R) where T is according to & and R is a strict hod-initial segment of
NT, the last model of 7. We let ['(P,X) be the set of A C R such that A <,, X7
for some (7,R) € B(P,¥). Note that (P, %) is a Wadge initial segment of I'. We
say that P generates Q if I'(P,X) = Q.

The following fact will be used in many places throughout this chapter, and whose
proof is essentially that of 4.9.2.
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Lemma 11.1.1 (No strategy disagreement) Suppose (P,X) is an lsa-small hod
pair such that P has a top window [67,67) and 6T is not a strong cutpoint of P, ¥
has locally strong branch condensation and is locally strongly I'-fullness preserving
for some constructibly closed pointclass I' E “AD™ +SMC”. Suppose 7 : P’ — P* for
some cardinal preserving, E( map T such that P* QP* <P, and WPhe > €r(T) =def
v > wppt = wplpt! > O(Pb) and pptt is a cardinal of P. Then letting A = 5.,
the comparison of the phalanxz (P*,P’,~) (using A) versus P* (using Xp«) does not
involve disagreements of strategies.

Lemma 11.1.1 is useful since it reduces such comparisons to ordinary extender
comparisons. Such phalanx comparisons will appear in many places in the proof
of Theorem 11.0.5. A corollary of this is the following version of the Condensation
Lemma for hod mice (cf. [35, Lemma 9.3.2]). For notations used in the statement of
the lemma, see [17, Section 1.3].

Theorem 11.1.2 Suppose (P, X)) is an lsa-small hod pair such that P has a top win-
dow [067,67) and 6T is not a strong cutpoint of P, 3 has locally strong branch con-

densation and is locally strongly I'-fullness preserving for some constructibly closed

pointclass I' F “ADT + SMC”. Suppose P? <l M <P, M is a hod premouse, and

o: M — M is a cardinal preserving and Z embeddmg such that o | wp’f\jl =id,

where w,o"Jrl = wp”M“ > o(P®) is a cardinal of P.*>* Then M is solid and pr is

k-universal for all k € w. Furthermore, if M is sound above v = cr(o) the one of
the following holds:

(a) M =M and o = id.
(b) M is a proper initial segment of M.

(¢) M = Ult*(M||n, EM) where v < 1 < o(M), a < wn and v = (k)M where
k = cr(EM); moreover, EM has a single generator k.

(d) M is a proper initial segment of Ult(M, chf(‘o_)).

Remark 11.1.3 If 6, is a strong cutpoint of P, then it follows simply from the
definition of hod premice that for all k € [04,0), O, holds in P; this is because
P is a XL -premouse (S, is the strategy for P(a)) and the O proof of [17] adapts

3In the Mitchell-Steel language, one requires o to be a weak n-embedding such that o” Té\;‘ C
M.

4t wpx;l = wpi' = o(P?), then since o(P?) is a cardinal of P, cr(c) > o(P?). Equality can
happen in other cases.
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straightforwardly. On the other hand, if d, is not a strong cutpoint of P, then
Theorem 11.1.2 1s false if one required that the embedding o have critical point d,.
This is because of the fact that no partial extenders of critical point 0, are indezxed
on the interval [0,, 1] in P.

The proof of the theorem is essentially that of [35, Theorem 9.3.2]. The idea
is one compares the phalanx (M, M, cr(0)) against M. Depending on how the
comparison terminates, one gets one of the four possibilities in the statement of
the theorem. Using locally strong ['-fullness preservation and the fact that cr(o) >
wpﬁj{l, Lemma 11.1.1 shows that the comparison is an extender comparison (no
strategy disagreements are encountered). This puts us the in the situation to apply
the proof of [35, Theorem 9.3.2] (the Dodd-Jensen-like property we assume as part of
locally strong branch condensation is enough to carry out the proof of [35, Theorem
9.3.2]). To illustrate the main ideas, we present a proof of a special case, which often
shows up in the [J-constructions.

Proof.[Proof of a special case] We assume M is sound. Let 7 = cr(o) and let
7 = o(7). We further assume that: letting k = wpii', 7 = (k)M and hence
7 = (k). In this case, we prove that M < M. The reader can see [35, Theorem

9.3.2] for the full argument.

Claim 11.1.4 Let A = %%,. Then the comparison of the phalanz (M, M, 7) and
M using A and ¥\, respectively is successful. Furthermore, the main branch on the
phalanz side doesn’t drop (in model or degree) and is above M, and the M side
doesn’t move.

Proof. Using strong fullness preservation of 32, A is fullness preserving; so the compar-
ison can be carried out. By Lemma 11.1.1, the comparison is an extender comparison
(no strategy disagreements show up in the comparison). Now we use strong branch
condensation to prove the claim. The proof is a fairly standard argument. Let T
and U be the trees on (M,J\;l,%) and M respectively that are generated by the
comparison (via A and ¥ respectively). The comparison terminates successfully
with Q being the last model of 7 and S being the last model of U.

Let o7 be the copy tree and ¢* : Q@ — Q* be the copy map, where Q* is the last
model of oT. Note then that o7 is via X .

Suppose Q is above M. We prove this case is impossible. Suppose Q <1 S and
hence the branch embedding 77 exists. Note that (Q*)?<1Q and Q* is a non-dropping
Ym iterate. Hence by strong branch condensation,

-
o7 = XM
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The usual Dodd-Jensen argument yields a contradiction. The main point is that the
tree 7 U is via Ygy.

Suppose now S <1 Q and hence the branch embedding 7 exists. Note then that
0*(S8) < Q*. Again, by strong branch condensation,

* OTrM
Eg*(@),ﬂ = Zpm.”

The usual Dodd-Jensen argument then yields a contradiction. The main point is
that (o* [ S o m)oT is according to Yg- o7

The above arguments easily give us that: @ = S and 77, 7 both exist and they
are equal. We can then find a pair of extenders (F, F') used on T and U respectively
such that £ and F' are compatible. By a standard argument, this is not possible.

Hence Q is on the main branch above M. Note then that if 77 exists, then

cr(n”) > 7. Say b is the main branch of 7. Then b cannot drop (in model or degree)

as otherwise, we have S<1Q and 7 exists. As before, 0*(S)<1Q* and Xy, = ESAO;TFS

We get a contradiction as before.

So b doesn’t drop. Since M is k-sound, Py =h < 7 and the branch b is above 7
and does not drop in model or degree, we get that b = . And hence Q = M. Now
it’s not the case that S is a strict segment of Q = M; otherwise, 7 exists and

o*om: M — o*(S) < Q.

We get a contradiction as before.

If S = Q = M, then U’s main branch doesn’t drop. This is because M is
sound. Note also that ¢ # @ since otherwise, M = M which is impossible (after
all, 7 = (kDM > 7 = (kH)M). Now p%, = P, = k and if there is an extender
E used along the main branch of U such that v(E) > x % then S is not s-sound.
Contradiction.

So for all E used along the main branch of U, v(E) < k. If for all such E,
v(E) < K, then since M|k = M|x = Qlk, S|s # Q|x. Contradiction. If there
is some such E such that v(F) = k, then U must drop since otherwise, p¢ > k.
Contradiction.

So Q < S. We claim that Q@ = M <1 M. It suffices to show & = 0. Otherwise,
let £ = EY. Then

Ih(E) > 7 and 1h(E) < 0(Q) = o(M). (11.1)

®Note that in this case, S®* = ¢*(S)®. The last equality follows from the fact that ¢* has critical
point > 0(Q%) > o(S?).
Sv(E) is the sup of the generators of E.
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Note that Ih(E) is a cardinal of S strictly larger than x and |o(Q)|® = P = r. This

contradicts 12.2. This completes the proof of Claim 11.1.4. 0J

Using the claim, it is easy to see that M <1 M (that is, case (b) holds). This is
because the branch embedding on the phalanx side must have critical point > £ and
M is k-sound, so the branch is trivial with end model M. O

11.2 Ingredients from the Schimmerling-Zeman con-

struction
In this section, we briefly remind the reader of the O-construction in [17]. First,
the reader should recall from [I17] the notions of a protomouse and a pluripotent

level of L[E] (we give definitions of these notions in the context of hod premice in
Section 11.3.1). See the beginning of [17, Section 2] for a fairly detailed discussion
on how protomice appear in interpolation arguments. Basically, protomice arise in
interpolation arguments where the target structure is a pluripotent level. The reader
should see the definition of divisor, [17, Section 2.1], and strong divisor, [17, Section
2.4] (these notions are also defined in Section 11.3.1 for hod premice). Divisors
identify protomice in interpolation arguments and (canonical) strong divisors in some
sense are those (amongst many possible divisors of a given collapsing structure) that
one uses in the course of the construction.

We proceed to briefly outline the proof of O, in L[E] as done in [17]. To get
the main ideas across in a reasonable amount of space, we will be imprecise at
various places. The reader can see [17, Section 3] for a precise construction of the
O-sequence (C : 7 < k™). The proof starts by choosing the collapsing structure
N; for k < 7 < (kT)MEL N is the first level of L[E] that satisfies “7 = x*” and
pXr. = k. There is a club & C % of such 7 in L[E]. We further require that for
each 7 € S, JF < JE. For each 7 € S, let S; C S be the set of 7 for which the
strong divisors of N; exists (and let (u(N;), ¢(N;)) be the canonical strong divisor
and N, (u(N;), ¢(N;)) be the unique associated protomouse as defined at the end of
[17, Section 2]). Let §o =S — .

For 7 € &y, the associated club C. C 7 can be constructed by Jensen’s method
of constructing [J-sequences in L. In this case, C is a tail-end of the set B, of all
7 € Sg N 7 such that:

e N is a premouse of the same type as NV, and n- = n,, where for a 0 € S, n,

is the least n such that ij‘\z:l <Kk <wplh .
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e There is a map o5, : Nz — N that is Eé"f)-preserving with respect to the lan-

guage of premice and such that: 7 = cr(07,), 07 () = 7, 07 - (p(N5)) = p(N,),
and each « € p(N,) has a generalized witness with respect to (N, p(N;)) in
the range of o ;. Here, and later, p(N,) is the n'-standard parameter of N,.

For 7 € &, the set C will be a tail-end of the set B, of 7 € §; N7 that satisfies:

o (N, lgINZ)]) = (NS, |g(N5)|); here by definition of divisors, g(N;) is a
bottom initial segment of d(N, ), the Dodd-parameter of N;.

e There is a map o7, : Nz(uN7),q(N37)) — No(u(N7),q(N;)) that is 3o-
preserving with respect to the language for coherent structures such that:
T = CT(O';.,T), 0-?,7(77-) =T, 0-7"77((](-/\/’7")) = Q(Nr)a and eaCh o € Q(NT) has a
generalized witness (with respect to (N-(u(N5), ¢(N7)), ¢(N-)) in the range of
Oz 1.

Now we focus on the key point: the proof that B; is unbounded in 7 if 7 € S*
and cof(7) > w in L[F]. Fix such a 7 and let kK < v < 7 be arbitrary. We want
to find a v < 7 < 7 in B,. Working in L[E], fix some 6 >> x and let X < Hy be
countable such that all relevant objects are in X, in particular {x, 7,7} € X. Let
o : M — M be the uncollapse map of X N M, where M = N (u(N,), g(N;)). We
write 0~ !(x) = T for each x in the range of o. Let 7 = sup(c”7). Let 6 : M — M
come from the (cr(c0), 7)-extender derived from o. Also, let ¢’ : M — M be given by
the interpolation lemma [17, Lemma 1.2]. In this case, M= (N, 15) is a protomouse
(even if N (u(N;), q¢(N;)) = N, since in this case, N is a pluripotent level of L[F]
and the map o’ is not cofinal). The way one shows 7 € B, is as follows. Let M*
be the largest segment of A" such that F measures all sets in M*. One then shows
that Ult(M*, F) is N:. Say M = (M, F). This is accomplished by applying the
condensation lemma [17, Lemma 1.6] to ¢ : Ult(M*, F) — 77(M?*) such that

¢(mip(f)(a)) = o'(f)(mr(a))

where 7 is the F-ultrapower embedding applied to the largest initial segment of
M~ that makes sense.

The key for the proof above is that we can always compare two iterable pure
extender models; in this case, we compare the phalanx (7z(M*), Ult(M*, F), 7)
against mg(M*). If one adapted this argument to hod mice, it fails because the hod
mice mp(M*) and Ult(M* F) generally belong to two different pointclasses, and
hence cannot be directly compared (though if the map ¢’ has critical point > o(P?)

for some hod premouse P with a top window, then these objects can be compared).
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The fix for this, as done in the next section, is to sometimes allow for the collapsing
structure of 7, N, to not be an initial segment of the hod mouse and incorporate
this kind of collapsing structures into the construction. It is this aspect that forces
the construction to yield a weaker result, i.e. [, o, rather than [,.

One other new situation in the hod mouse case that does not come up in the
L[E)] case is the following. Suppose in the above, M = N, is B-active. Then the
way branches are coded into the model (using the B-operator as discussed in the
previous section) allows us to show that M is a B-active hod premouse. If one used
the traditional coding of branches, then M may fail to be a hod premouse; this is
the reason we switch to the coding of branches via the B-operator. We will discuss
this in more details in the next section.

11.3 The proof

We give a proof of Theorem 11.0.5, making use of the notions, notations, and proofs

in [17] whenever applicable. We only focus on the details that are new in our situation
and direct the reader to constructions in [17] that are obviously generalizable to our
situation.

11.3.1 Some set-up

We will use the fine-structure terminology and notations from [17, Section 1], gen-
eralized to our context in an obvious way. For example, notions in [17] that are
defined using the language of premice are defined here using the language of hod
premice; when we talk about a coherent structure in this paper, we mean a structure
M of the form (Q, F) where Q is an amenable structure in the language of hod
premice and F' is a whole extender at (k, \) (in the language of [17, Section 1] ) with
dom(F) = p(k) N Qla for some & < (k7)Y and Q < Ult,(Qla, F) = N, where n
is the least such that pg‘r&l = k. We say N is the hod premouse associated with M.
The notion of a generalized witness for some ordinal o with respect to a pair (M, s)
where M is a coherent structure, s is a finite set of ordinals (or a generalized witness
for an ordinal « with respect to a hod premouse N associated with M and some
finite set of ordinals U s) in [17] is generalized in an obvious way to our context.” A
protomouse P = (Q, F') is a coherent structure where F' is an extender with critical

"Let M, N, k, A be as above and s C A is finite. The standard witness Wy;* for v with respect to
M and s to be the transitive collapse of hps(aU{s}), where hj; is the canonical ¥1-Skolem function
of the coherent structure M. Similarly, W™ denotes the standard witness for o with respect
to N and 7 U s and is the transitive collapse of H%™'(a U {r U s}), where 5" is the canonical
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x such that F does not measure p(k)2. A pluripotent level of a hod premouse P is
an F-active initial segment Q of P such that cr(Et%p) < k and wpy = K, where £ is
a cardinal of P.

Fix (P,X) as in the hypothesis of Theorem 11.0.5. Fix x > 5Pb, a cardinal of
P. Working in P, let o = 67" and S C x* be the club of K < 7 < sT such that
P|r < P|st. Let Nf <P be the collapsing level for 7, that is A* the least initial
segment N of P such that N E 7 = k™ and p§, = k. Let v, be the sup of indexes of
extenders E on the sequence of N} such that cr(E) = p. Without loss of generality,
we may assume throughout this paper that

(v is measurable in P; x> o(P?); and sup,es(yy) > k7.5
The following follow easily from the definitions and our assumption.

Proposition 11.3.1 1. o(N}) > 7.

T

2. v > T.

Extenders £ with cr(E) = p play a special role in this construction. Recall these
extenders are indexed according to the cutpoint indexing scheme. Note that p is
a strong cutpoint of P’ that is, there are no partial extenders with critical point
1 on the sequence of P. This is the main difference between our situation and the
L[ E]-situation.

Some discussions regarding protomice and divisors are in order. Following [17],
for a hod premouse N such that ij{?“l < Kk < wplr, we say that (v, q) is a divisor of
N if and only if there is an ordinal A = A\y(v, ¢) such that letting pyr be the (n+ 1)

standard parameter of N, setting r = py- — ¢, the following hold:
(a) ¥ <Kk <A <wphs

(b) ¢g=py N X

Eg")—SkOIem function of the hod premouse N. A generalized witness for o with respect to M and
s is a pair (Q,t), where ¢t C @ is a finite set of ordinals and such that for any &1,...,& < a, if
ME ®(i,&1,...,&,8) then Q E (i,&1,...,&,5), where ® is the universal X1 -formula. A generalized
witness for « with respect to N and r U s is a pair (Q,t), where ¢ C @ is a finite set of ordinals
such that given any &1,...,§ < a, if N F ®(i,&1,...,&,rUs) then Q F ®(4,&,...,&,rUs), where
® is the universal Zgn)—formula.

81f k = 07, where 67 = 7, then since P? = P|(k+)” = Lpesﬁ@zg(ﬂ) (P|6P), then P E O, since
K is a strong cutpoint cardinal of Pb. If k > §F and sup,es(7,) < &7, then the proof is significantly
easier. One constructs the O,-sequence using points 7 € S above supres(7,-) mimicking essentially
the Schimmerling-Zeman construction and use Theorem 11.1.2.
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(c) R (v U {r}) Nwpl is cofinal in wpl;
(d) A =min(ORNA (v U {r}) —v).

As in [17], both v and A are (inaccessible) cardinals in N. Let N*(v,q) be the
transitive collapse of A7 (v U {r}).

The notion of strong divisors in [17] generalize in an obvious way to our context.
We recall it now. A divisor (u,q) of N is strong if and only if for every £ < p and
every x of the form iNLXfH(f,pN) we have x N € N*(u,q). If N is pluripotent, we
define the notion of strong divisor in the same way, but with h} (the X;-Skolem
function of A/ computed in the language of coherent structures) and dy (the Dodd-
parameter of N) in place of ﬁﬁrl and py, respectively. As in [17], if N has strong
divisors, the canonical strong divisor (upr, qxn) of N is chosen as follows: ¢u is the
shortest initial segment of pyr such that for some v, (v, qy) is a strong divisor of A/
and py is the largest v such that (v, qx) is a strong divisor of N'. Now we define our

collapsing structure N, for 7 € S.

Definition 11.3.2 Suppose P is a hod premouse and § is a Woodin cardinal in some
Q dP. We say that § is a layer Woodin in Q if there is some R € Y2 such that
§ =%,
Definition 11.3.3 Fizx 7 € S. Suppose there is a pointclass 2 C I' such that there
is a hod pair (R, %) such that

o N|v <R,

® PR =K,

o R is sound,

e 7, is a cutpoint of R and Y}, = Xpj,,,

o the order type of R’s layer Woodin cardinals above v, is a limit ordinal,

e R has a strong divisor of the form (u,q) where pr = qUr for r above the

supremum X\ of the layer Woodin cardinals of R and maz(q) is below ()%,

e Y has branch condensation, is Q-fullness preserving, and (R,%r) generates

Q; that is (R, Xr) = Q.

We call (R, Xr) with the above properties the pointclass generator of Q). Let T be the
Wadge-minimal such pointclass and N, be the pointclass generator of Ty, (pir, gry Ar)
be the (u,q, \) associated with N as above (note that N must be distinct from N*
in this case). If (T, R, u,q, \) doesn’t exist, we let N; = N*.
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The properties of pointclass generators seem technical; these properties are ab-
stracted from various situations in interpolation arguments. It seems hard to do
with much less. The following proposition justifies the uniqueness of pointclass gen-
erators.

Proposition 11.3.4 Let P, 1,2 be as in Definition 11.5.3. Let (Rq, Xo) and (Rq,%1)
be pointclass generators of Q. Then (Ro, Xo) = (R1,%1).

Proof. We compare the pair (Ro, ¥o) against (R, %), lining up the models and the
strategies (as done in Section 4.6). The comparison is possible by the assumption
and is above 7,. The end model is, say, S and the tail strategies of ¥, and ¥; on
S are the same. The usual proof using the fact that Ry and Ry are v,-sound and
the comparison is above 7, shows that S = Ry = R; (the comparison is trivial) and
Yo = 21. O

We simply use the notations from [17, page 49] in the definition of our square
sequence below. For instance, (i, q,) denotes the canonical strong divisor of N, (if
exists) in the case N, = N* and denotes the (p,,¢,) in Definition 11.3.3 in the case
N, # N (note that (., ¢,) is the unique strong divisor of A, with the properties as
in Definition 11.3.3). If A, = N* is a pluripotent level that has no strong divisors,
then (pr,¢q,) denotes (cr(E\"), p(N;)) -

Suppose (v,q) is a divisor of A,; let r,\,n be as in the definition of divisor.
Let 7 : N*(v,q) — R (v U {r}) be the uncollapse map. We let the associated
protomouse N; (v, q) be the coherent structure (N;|¢, F) where € = w((v*)™") and
F =FE. | (p(v) NN (v,q)), if v > p. If v = p, in which case N, # N}, then we
let N (v,q) be the coherent structure (N;|¢, F) where &€ = (v)V* and F = E, |
(o) N M)

The following proposition is easy to see and justifies that the structure N, (v, q)
are protomice (and not hod premice). See [17, Section 2.1] for a detailed discussion
and proof.

Proposition 11.3.5 Suppose (v,q) be a divisor of Ny and 7 : N} (v,q) — ﬁﬁtl(u U
{r}) be the uncollapse map (and in the case N, # N*, assume v = p). Then
o(W)NN*(v,q) € p(v)NN,. Furthermore, v is an (inaccessible) cardinal of N*(v, q)
and a limit cardinal of N, and M. (v, q) is an (inaccessible) cardinal of N.

We let M, = N, (u,,q,) be the protomouse associated with (ji,,q,).

Definition 11.3.6 Let S' C S be the set of T such that (pir,q.) is defined and
S§'=8-8t.
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Suppose N, = NV, then no divisors of NV, are of the form (u,¢). This is because
otherwise, A = M. (i, ¢) is a limit of Woodin cardinals. Let 79 < 71 be consecutive
Woodin cardinals in the interval (1, \); then by definition of P, P|y; is a A**-mouse
where A is the strategy of M (P|yg). On the other hand, by elementarity, P|y; is a
A-mouse. Contradiction. ?

A similar argument applies to show that no divisors for N, are of the form (&, q)
for & < p; though we don’t need this fact in our construction as no divisors (v, q)
in this paper will have the property that v < u. So if (v,q) is a divisor of N;, then

v > p. This allows us to simply quote results of [17, Section 2] in this case (in light
of Theorem 11.1.2). In the case that pu, = u (so N; # N), more care needs to be
taken since it’s not obvious that all results in [17, Section 2.4] can be generalized to
this case.

Using the remarks above, it is easy to see that if N, # N, then 7 € S and in
fact AV, is not an initial segment of P (though N, € P by Proposition 11.3.7); also,
if N, = N* is pluripotent, then 7 € 8. For 7 € §°, N, = N is not pluripotent and
does not admit a strong divisor.

The following lemma allows us to define our [l;-sequence in a uniform manner.

Proposition 11.3.7 Suppose N; # N*. Then N is definable over P (in fact, over
any /\/’g or N¢ for & > 1) unformly from {7,~,}.

Proof. Fix £ > 7. We first claim that v¢ > ~;. To see this, note that 7 < ~, <
o(N¥) < & This is because ¢ is a cardinal (successor of k) in M while there is a
surjection from s onto v, in Me. Since € < 4, the claim follows.

Now let E be the extender on the Ng-sequence such that cr(E) = u, 1h(E) > v,
and is the least such.’® Let & = Ult(Ng, F) (this is a Yp-ultrapower). Let i : S — S
be an R-genericity iteration (above 7,). Now it is easy to see that in the derived
model of S, (at the sup of its Woodin cardinals), the pointclass €2 in the definition
of N, is a strict Wadge initial segment of p(R) and is definable there from {7,;}.
Then N, € S, and in fact is definable there from parameters {7,7,}. The same
holds in § by elementarity and the fact that cr(i) > .. Finally, N; € N, and is
definable there from parameters {7,7,, F}. But E is definable in N from {r,~,}.
So N is definable in N¢ from {7, ~,}. O

9 Another argument is as follows. Note that each Woodin cardinal in the interval (p,\) is
> (u*)P, and hence p is strong to A (in P) by the initial segment condition. This contradicts the
definition and smallness assumption on P since one can easily find an active w Woodin lsa mouse
in P (as defined in Definition 8.2.2).

10We note that the set of indices for extenders with critical point y is nowhere continuous.
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Remark 11.3.8 By our smallness assumption on P, the set A = { | vk < £ <
kT AN P|E is E-active} is non-stationary in P. The reason is A = g UAy. Here Ay
consists of £’s such that the top extender of P|& has critical point 1 and Ay = A —2Ay.
o in nonstationary by Footnote 10. 2y is nonstationary because otherwise, Kk s
subcompact by [17]. As in [17], the fact that 2 is nonstationary is crucial in our
construction. We use this fact in various arguments to follow.

11.3.2 Approximation of a [],» sequence

We use the notation established in the previous section. Below, as in [17], n, is the
unique n such that ,0"+1 =k < pi. and p; is the standard parameter of N.. Let also
p* be the standard parameter of N*.

Definition 11.3.9 Suppose 7 € 8, let B, = {B°} be the set of T € SO satisfying:
e N; is a hod premouse of the same type as N. ™
o n.=n-.

e There is a map o2 : N — N, that is Z( ) -preserving with respect to the
language of hod p?"emzce such that

(a) T=cr(cl) and 0 (T) =T.

(b) 03.(p7) = p--

(c) for each o € p,, there is a generalized witness for a with respect to N
and p, in the range of o=,.

Note that if 7 € S, then N = A, and either crt(ERF) > £ or P\ > k. Recall
the definition of (i, q;), pr,d, for 7 € 8! in Section 11.3.1. Below, m, is |g.|. We
also let r, = d, — ¢, be the top part of d,.

Definition 11.3.10 Suppose 7 € S*. Let B! be the set of 7 € S' N7 satisfying:

o (:u‘??m?) = (M.,—,TTLT).

UTn this case, it simply means: N, is E (B)-active if and only if A is E (B)-active. If A is
E-active (equivalently, N> is E-active), then E/t\‘} is indexed according to the cutpoint (Jensen)
indexing scheme if and only if E}“\(}p is indexed according to the cutpoint (Jensen, respectively)
indexing scheme. Recall that all E-active hod mice, where E is indexed according to the Jensen
indexing scheme, in our paper will be of type A.
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e There is a map ot : Mz — M, that is Sy-preserving with respect to the
language of coherent structures such that

1

(b) O—’Tl'T(qf) =dr-
(¢) for each « € q., there is a generalized witness for o with respect to N
and g, in the range of ol..

(a) T =cr(ol) and ol (7) =T.

Suppose in addition that either crt(E\Z) > k or pjlv: > k, let B? be the set of
T € SN T satisfying:

e N> is a hod premouse of the same type as N*.
o N, =n;.

e There is a map o2 : N — N7 that is Eém)—preserving with respect to the
language of hod premice such that

(a) T =cr(c2) and o2 (7) = .
(b) o2 () = p,.
(¢c) for each o € p,, there is a generalized witness for o with respect to N*
and p, in the range of o2 .
Finally, if BY exists, let B, = {B°, B}. Otherwise, let B, = {BL}.

As in [17], it is easy to see that in both cases o-.,02 ol _(if exist) are uniquely

determined, ¥y (and not ¥;), and non-cofinal. By | ,%Een:na 3.3], for each 7 € S
such that BY is defined, and 7 € BY,

B’N7 = BY - minB’. (11.2)
And similarly, if B! is defined, then for all 7 € Bl,

B!N7 = Bl —minB. (11.3)
The following is the key lemma (cf. [17, Lemma 3.5]).

Lemma 11.3.11 For each 7 € S of uncountable cofinality, for i € {0,1}, if B s
defined, then Bt is a club subset of T on a tail end. That is, there is a T < T such
that BL — 7 is closed and unbounded in 7. If i = 0, we can take 7 = 0.
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Using the lemma and 11.2, 11.3, by the argument on [17, pg 52-55] , we can construct
a [0, ,-sequence on §. We summarize the construction next. First for 7 € S, for i
such that B! is defined, let

o TH(0)=T;
o T(j+1)= min(Bi(jH));

0.

o [ = the least j such that B
Now let

° BZ,* — B;L—z(o) U PN U B:—’(l;ﬁ—ly
o olt = Aaii(l)ﬂ.(o) 0---0 Jii(j)ﬂ-(jfl) o U;Ti(j) whenever 7 € B%* and j is such that

By the exact same proof as in [17, Lemma 3.4], we get the coherency of the B-*
sets.

Lemma 11.3.12 For 7 € S, for i such that Bt is defined, suppose T € B-*. Then
Bt is defined and B:* = BX* N 7.

For each 7 € S, for ¢ such that B! is defined, let 3% be the least 8 in B&* U {7}
such that B%* — 3 is closed in 7. Using Lemmata 11.3.11 and 11.3.12, we easily get
that letting

Ch* = B — B (11.4)

then for 7 € gi*, 7 > 3,,
Bt =B and C* N7 = CL*. (11.5)

Now note that if C%* is defined, then o.t.(C%*) may not be < r, while if C1*
is defined then 0.t.(C%*) < k. As in [I7, pg 54-55], we can shrink C%* to a set
C%" C C%* such that

e 0.t.(CY) < k;

e C% is a closed subset of SN 7 and if cof(a) > w, then C% is also unbounded

T

in 7;

’ _ 0./
e OV NT=0CF.
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So letting C. = {C% | i € {0,1} A C*" is defined}, we get that the sequence
(C |7 <rk)isa ;. ,-sequence on S. Since S is club subset of x*, by a standard
combinatorial argument (cf. [2]), the OJ, ,-sequence on & can be turned into a O, o-
sequence. Our main task is to prove Lemma 11.3.11. This will take up the rest of
the section.

Remark 11.3.13 [t’s clear from [17, pg 54-55], Definitions 11.3.9 and 11.3.10 and
Proposition 11.5.7 that the square sequence U, o is definable from k in P and the
definition is uniform in K.

11.3.3 When 7 € S°

Fix 7 € 8 Assume 7 is a limit point of & uncountable cofinality. Recall B? is
defined to be the set of 7 € S such that

o N, =n;.
e N is a hod premouse of the same type as N..

e There is an embedding 62, : N* — A such that ¢2_ is ") -preserving (in the
language of hod premice) and
(a) T =cr(c2) and 02 (7) = 7.
(b) 02 (p%) = p,, where recall p2 is the standard parameter of N7Z.
(c) for each v € p,, there is a generalized witness for « with respect to N

and p, in the range of o-,.

To simplify the notation, let D denote By and oz, denote o .
Lemma 11.3.14 D is unbounded in 7.

Proof. Given 7/ < 7, we find 7 > 7/ in D. In P, form an elementary hull of {\, 7', S}
in H,++) (in which everything relevant is present). Let H be the transitive collapse
of the hull and o : H — H,++ be the uncollapse map. Set:

e 7 =0, '(x) for any x in range of oy,

e oc=09 | N, N. = N,

o 7 =sup(c”7).
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Note that since 7 € 8% N, = N and either Cr(E/t\?f) > K or wpy, > K. Set
n = n,. Using the interpolation lemma (Lemma [I7, Lemma 1.2]), we can find a
map & : N — N which is E(()n)—preserving and cofinal (the map & is the ultrapower
map via the (cr(0), 7)-extender derived from o). Note that 7 = (s™)V. Also, by the
interpolation lemma, there is a map o’ : N — N satisfying o/ | 7 = id, o/(7) = 7,
and 0’ 0o = 0.

We have that

e N is a hod premouse of the same type as N;.
e N is sound.
o wpt =wp <k

The above follow from the proof of [17, Lemma 3.7] for the most part, except for
the first item in the case when N, is B-active. In this case, the first item follows
from [20, Lemma 2.36] and hull condensation of ¥.'2

It remains to see that A is indeed NZ. We apply Theorem 11.1.2. (a) cannot
hold since 7 = cr(o’) = (k)Y < 7 = (k7). (c) cannot hold because A is sound.
(d) cannot hold since 7 is a cardinal in Ult(N,, EA7) while N definably collapses 7.
So (b) holds. This easily implies N = N7 O

Lemma 11.3.15 D 1is a closed subset of 7.

Proof. Let T be a limit point of D. We show that 7 € D. Form the direct limit
(N,o:+ | 7 € DNF) of the system (N 0.7 | 78 < 7 AT, 7 € DN 7). The
direct limit is well-founded and there is a ¥y embedding o : N' — N- (defined by
o(o7#()) = 07 ,(x)). It is easy to check that:

(a) 000 = 077
(b) T =0::(T), 07-(T) = 7, and T = cr(0).

(c) o is Zén) preserving where n = n, (with respect to the language of coherent
structures).

2Tndexing branches using the B-operator allows the proof of [20, Lemma 2.36] to go through in
this situation. The traditional approach to indexing branches does not seem to imply that N is a
hod premouse.
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We need to see that N’ = NZ. First, we show that A is a hod premouse of
the same type as N.. Note that II,-properties which hold on a tail end are upward
preserved under direct limit maps (cf. [17, pg 8-9]). Furthermore, N* is of the
same type as N, for each 7 € DN 7. So N is of the same type as N, (as either
a passive hod premouse, or a B-active hod premouse, or an E-active hod premouse

with Cr(Ejt\f;p) > u, in which case N is of type A, or else an E-active hod premouse

with cr(EJt\f;p) = i, in which case w,ajl\7 > K; these statements can be expressed in a
I1,-fashion).

Recall that for 7 € D, we use h- to denote hy' 7, the ¥ ("*)_Skolem function
of N;i Here note that n- = n, = n. Let p = O'TT(pT) for 7 € DN 7. Given any
x € N, there is 7 € DN 7 and T € N} such that z = 07,(Z). There is £ < k such
that Z = h-(£,p-). This Zgn)—statement is preserved by ozz, so x = ﬁ%ﬂ(é}ﬁ). So
N =i (s U {}).

n+1 __

(nT—l-l

ThlS gives wp'c" = wpY < K. But « is a cardinal in P, so we indeed have equality.
For each a € p;, there is a generahzed witness for a with respect to (N, p,) in range
of 0. This is because rng(c) contains rng(o-,) for any 7 € D N7 and rng(oz,)
contains such a witness. This takes care of (c) in the definition of D. This easily
implies that A is sound and p is the standard paramter of A'. We can now apply
Theorem 11.1.2 as in the proof of Lemma 11.3.14 to conclude that N = NZ. O

Lemmata 11.3.14, 11.3.15 together complete the proof of Lemma 11.3.11 in the
case 7 € S°.

11.3.4 When 7 € S!

Fix 7 € 8! a limit point of S of uncountable cofinality. If B? is defined, then as
in the previous section, using the fact that crt(E%) > & or pjl\/f > K, we can show

that BY is closed and unbounded in 7. So let us now focus on the case B} is defined.
Define D C 7 to be the set of 7 € S such that

o (i, q:) is a strong divisor of M- where ¢Z is the bottom segment of p- of length
m, (recall m, is the length of ¢,).

e Letting MZ be the protomouse of N; associated with (i, %), there is a map
Oz : ME — M., that is Xg-preserving (with respect to the language of coherent
structures) such that

(a) T =cr(os) and 07,(T) = 7.

)
(b) orrla) = g
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(c) for each a € ¢, there is a generalized witness for o with respect to N
and ¢, in the range of oz, (in the language of coherent structures).

We will show that there is some 7 < 7 such that B, — 7 = D — 7. Part of this is to
show that for all sufficiently large 7 € D, (ur,q%) = (s, ¢z ).

Lemma 11.3.16 D is unbounded in 7.

Proof. Let 7" < 7. As before, we find 7 € D above 7/. We note that M, may be N;
this happens when N, = N* is pluripotent. Since protomice are present, we carry
out the argument in the language of coherent structures.

We let g, H be defined as in Lemma 11.3.14. Again, we denote z for o, ' (z). We
let ¢ : M, = M, and 7 = sup o”7. As before, 7/ < 7 < 7. Let 6 : M, — M be
the (cr(o), 7)-ultrapower map derived from ¢ and o : M — M., be the factor map.
Asin [17, Lemma 3.10], we have:

Q

(R, T) = (K, T).
o cr(0) =7 and o(T) = 7.

o h(kU{q}) = M where § = (¢ ); in other words, M is ¥;-generated by
K013}

° Wyl = wp}\;[ =k and ¢ € Ry, the set of very good parameters for M.

e The range of & contains a generalized solidity witness for a with respect to
(M, q,) for each a € ¢,.

® §=py and M is solid and sound.

Note that as in Lemma 11.3.14, & is 3¢ (but not ;) and is not cofinal. This
implies that M is a protomouse, even if M, is a hod premouse (in which case,
M, = N, is pluripotent).

We show M = N:(iir, G). Let Rg, Ry be the hod premice associated with M., M,
respectively. We have that Rg = Ult,(Nj, F'), where F' is the top extender (frag-
ment) of M, and N is largest (strict) segment of M, such that wp”*oll < cr(F) and
F measures all sets in N; in the other case, Ry = Ulty (N7, F ), where F' is the top
extender (fragment) of M and N is the largest (strict) segment of M (equivalently,
of M) such that wpk?l < cr(F) and F measures all sets in N. Let m; : N — R,
be the ultrapower maps and m : Ry — mo(N7) be the factor map

ma(mi(f)(a)) = mo(f)(a(a)).
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Note that my [T =06 [ T = id.

Note that pr, = m1(par)Up,g (cf. [17, Lemma 2.16, 2.19]). In the case N} # N,
and hence p, = u, m(py;) is the part of pr, above 71(x), the supremum of R;’s
layer Woodin cardinals, and p ; is the part below 7 ().

The argument in [17, Lemma 3.10] then shows that (p., ) is a strong divisor of
R1."® To show M = N;:(iir,§), we show Ry = N:. This then will show 7 € D as
desired. There are two cases to consider.

Case 1. N, = N>

If cr(F) = cr(F) > p, then it is easy to see that P <t Ry, Ry. Note that in this
case, Ro = N, = N*. So we can apply Theorem 11.1.2 as in the proof of Lemma
11.3.14 and conclude that Ry = N; = NZ. Now suppose cr(F) = p (S0 pur = p).
Recall from the discussion above that we know (u,, ¢) is a strong divisor of Ry and ¢
is the bottom part of the standard parameter of Ry below m (cr(F)). We show that
R1 = N; # N by the following claims (note that we already know that (u,q) is a
strong divisor of Ry). We also will get then that (u.,§) = (uz, ¢z) in this case.

Let 7, be defined as in Definition 11.3.3 for A; let 7z, be defined similarly for
NZ Rq, respectively. Let A be Ry’s iteration strategy.

Claim 11.3.17 7 = ;.

Proof. Suppose not. Assume 4 < ~:z (the other case is similar). Let E be least on
the extender sequence of A; such that

o cr(E) = p,
o Ih(E) > 7.

Let & = Ult(Ro, E). Note that 7 is a cutpoint of S and ig(p) is a limit of I-full
Woodin cardinals above 4. By SMC in I', we can conclude that R’ € S, where R’ is
a sound hod premouse extending R4|¥, having 7 = kT, 4 as a cutpoint, and projects
to k. 14

13The proof of this fact does not depend on whether g, > p.

14 By genericity iterations, without loss of generality, we may assume that a real witnessing the
Wadge reduction of A™ to A is generic over §. In S’s derived model at ig(u), we can find R;.
This means, in the derived model of S, there is some hod mouse R extending R1|7, having 7 = s,
% as a cutpoint, and projects to s; furthermore, we can demand that (u,,q) is a strong divisor
of R and ¢ is the bottom part of the standard parameter of R below the supremum of R’s layer
Woodin cardinals. Let €2 be the Wadge-minimal pointclass that has a pointclass generator with
these properties. Note that this determines the unique pointclass generator S for 2. This implies
that Sg € S.



266 CHAPTER 11. A PROOF OF SQUARE IN LSA-SMALL HOD MICE

Fix R' € § as above. R’ defines a surjection f from k onto 7. Since R’ € S,
f € 8. This contradicts the fact that SE 7 = k™. O

Claim 11.3.18 There is a pointclass €2 with pointclass generator a sound hod mouse
that projects to k, extends P|y, having T = k*, 4 as a cutpoint, and the set of layer
Woodin cardinals above 7 has limit order type. Ry is the generator for the Wadge
mintmal such pointclass.

Proof. Clearly, such Q exists since the pointclass generated by Rq is such. Let €
be the pointclass R, generates and €2, be a pointclass satisfying the hypothesis of
the claim. Let N generate Q; with the properties in the statement of the claim.
Note that at this point, we know R; and N are: sound, projects to , extends P|vz,
satisfies k™ = 7, and have ~v; as cutpoint.

We claim that Qy = ;. Suppose for contradiction that Qy C 2y (the other
case is similar). Then, using R-genericity iteration and elementarity, in the derived
model of A/ (at the supremum of its Woodin cardinals) there is a pointclass with a
generator S that is sound, projects to , extends P|vyz, satisfies k™ = 7, and have
v; as cutpoint. Some such S is in N by a similar argument as in Footnote 14. This
implies as in Claim 11.3.17 that 7 is not a cardinal in A/. Contradiction.

Now we can compare R against /. The comparison is an extender comparison,
is successful, and is above ;. Since both models are x-sound, projects to k, and
Kk < 7vz. We conclude that N' = R;. O

Using the claims and the fact that (u.,q) is a strong divisor of Ry (note that
max(§) < (74)®* and § is the bottom part below ; (cr(F)) of the standard parameter
of Ry) we easily verify that R; = N; and hence M = N:(pr,q). Hence 7 € D as
desired.

Case 2. N, # N>

In this case, u, = p. As above, Ry = N, and (u,, ¢,) is a strong divisor of N;.
We aim to show that Ry = Nz. As above, (1, q) is a strong divisor of R; by the
proof of [17, Lemma 3.10]; also max(q) < (7)%* = (yF)®* and ¢ is the bottom part
below Ry’s limit of layer Woodin cardinals m (cr(F)) of the standard parameter of
Ry. This easily implies, using Claim 11.3.18, that N; # NZ, Ry = Nz, u = us,
¢ = ¢ and hence M = Nz(pz,qz). So 7 € D as desired. O

Lemma 11.3.19 D is a closed subset of T.
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Proof. Let 7 be a limit point of D. We show that 7 € D. As in Lemma 11.3.15, form
the direct limit (M, ol. | 7 € DN7) of the system (M%, ol | 7% < TAT*, 7 € DN7).
The direct limit is well-founded (so we identify M with its transitive collapse) and
there is a ¥y embedding o : M — M, (defined by o(ot:(z)) = ol (z)). It is easy
to check that (cf. [I7, Lemma 3.11]):

the range of 0. Hence ¢ = p, = 07 '(¢,) and M is sound and solid.

The first four clauses are clear. The last follows from the fact that the direct limit
M satisfies II,-statements which hold on a tail-end of D N 7.

Note that M is always a protomouse (this is because o is not cofinal). If p, > u
(or equivalently N, = N*), we can appeal to the proof of [I7, Lemma 3.11] to get
that M = Nz(per, G) and (ur,q) is a strong divisor of M. Otherwise, the same
conclusion follows from the proof of Claim 11.3.18.

The previous paragraph gives 7 € D as desired. 0

Lemma 11.3.20 There is a T < 7 such that for all ™ € D—7, (s, ¢&) = (prr, ¢57)-
Consequently, Bl — 7 =D — 7.

Proof. 'We need to prove that there is 7 < 7 such that for every 7/ € D — T,
(tryq2) = (f4rr, qrr). Assume for contradiction that there is a sequence (7; | i < §)
that is increasing, cofinal in 7 such that (i, ¢-,) # (itr, ¢%,). We may assume without
loss of generality that the sequence (u,, | i < d) is monotonic and all ¢;,’s have the
same length, say m.

If i = p, then we claim that for each i < 9, (ir,,qr,) = (itr, ;). This follows
from the proof of Lemma 11.3.16, where we prove that in this case, N, # N* and
so for each i < 6, N, # N} and p,, = pp = pi; and ¢, = ¢;. This contradicts the
assumption that (pir,,qr) # (ttr,¢%). So we must have that pu, > p, so N; = N
This implies that for each i < §, N, = /\/';fl (again, by remarks in Section 11.3.1
and the argument in Lemma 11.3.16). So it must be the case then that p, > u
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(recall that N} cannot have divisors of the form (u,q) for some ¢) and so (fir,, ¢x,),
by definition, is the canonical strong divisor of N,.

By the definition of (jr,, ), each ¢y, is a bottom part of ¢}, say ¢;. = ¢-,Usr, (57,
may be empty). Recall we have shown p., i, > 1 (so we can freely quote results of
[17, Section 2.4 and Lemma 3.12] in the arguments that follow). Now we observe that
fr;, > pr for all ¢ < 0. This is because the argument in [17, Lemma 3.12] shows: if
Gr, = ¢}, then p,, must be > pi, by maximality of y,, for A7, and the assumption that
(tryqr) # (Hr, qr,); otherwise, ¢, is a strict bottom segment of ¢;., and hence[l7,
Lemma 2.26] shows that no v < . is such that (v, ¢,,) is a strong divisor of N,.

Set for some (equivalently for all sufficiently large) i < d, ¢ = 0,,,(¢r), s =
Orir(87,), 7' =17, V= SUpPi<sptr,. Now (v, q) is a divisor of N, (see [17, Lemma 3.12]).
Since v > u, > p, (v,q) cannot be a strong divisor of ;. Then a calculation as in
[17, Lemma 3.12] shows that for some i < ¢, (ur,,¢-,) is not a strong divisor of NV,.
Contradiction. O

Lemmata 11.3.16, 11.3.19, 11.3.20 together complete the proof of Lemma 11.3.11 in
the case 7 € S



Chapter 12

LSA from PFA

For a cardinal &, let po(k) = K; @nii(k) = 2970 for all n < w. We prove the
following theorem.

Definition 12.0.21 A sequence (6a | v € \) is a O(k, \) sequence if it satisfies the
following properties.

(i) 0 < |Cy| < & for all limit o € X
(i) C C o is club in o for all limit « € X and C € C,.
(iii) C N B e Cy for all limit o« € \, C € Cy and 3 € Lim(C).
(iv) There is no club D C X such that D N € Cy for all o € Lim(D).
We say that O(k, A) holds if a O(k, X)-sequence exists.

Clearly, Oy <, implies O(k, A") and if k < &/, then O(k, A) implies O(x/, A). T(2, A)
is O(A).

Theorem 12.0.22 Suppose k is a cardinal such that k¥ = k. Suppose for all a €
[(po(k))T, (ps3(k))T], "O(3,c). Then there is a model M containing OR U R such
that M E LSA.

As in [31], we immediately have the following corollary.
Corollary 12.0.23 Assume one of the following theories.
1. PFA.

2. There is a strongly compact cardinal.

269
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3. There is a cardinal X > (p3(N2))* such that the set {X < Hy+ | X¥ C
X A X is wy-guessing N\ |X| = RN} is stationary.

Then there is a model M containing OR UR such that M F LSA.

Proof. For (1) and (3), let kK = Ny. It is well-known that both (1) and (3) imply
the hypothesis of Theorem 12.0.22 (cf. [32] and [33] for (3)). For (2), let x be a
strong limit cardinal of uncountable cofinality above a strongly compact cardinal.
The hypothesis for Theorem 12.0.22 holds at x by the construction in [21]. O

Theorem 12.0.22 obtains models of LSA from a combinatorial principle that does
not involve large cardinal properties. Therefore, in contrast to the previous chapter
where one shows there are LSA models inside the derived model at some limit of
Woodin cardinals, here we use the core model induction method to construct some
model of determinacy (which plays the role of the derived model in the previous
section) that satisfies LSA. The proof of Theorem 12.0.22 is built on that of [31],
which in turns is inspired by [25] and [11].

The rest of the chapter is dedicated to proving Theorem 12.0.22. We assume the
hypothesis of Theorem 12.0.22 along with the following simplifying assumption on
cardinal arithmetic:

Va € [k, k7] 2% =a™. (12.1)

Note that assumption 12.1 implies that
Va € [T, k7], a¥ = a.

This is because k¥ = k. We will use this fact many times later on. Later, we show
how to get rid of assumption 12.1. Our smallness assumption throughout this section
is:

(t): in V[G], there is no model M containing R U OR such
that M E “ZF + ADT+O = 0,5 + 0,41 is the largest Suslin
cardinal below 6,1 ”

Before plunging in the the details, we give a very rough outline of the proof
of Theorem 12.0.22. Fix k as in the hypothesis of Theorem 12.0.22. We operate
under assumptions () and 12.1. Let P = Col(w, k). In V¥, let Q be the “maximal
pointclass of determinacy” (as defined in [31]). Let P~ be the direct limit of hod
pairs (M, ) such that 3 [ HC € Q and ¥ is Q-fullness preserving and has branch
condensation. Let P be the appropriate “Lp”-closure of P~ (defined in Section 12.1).
So P~ is an initial segment of P. [31] shows that P F o(P~) is a regular limit of
Woodin cardinals. In V¥, we carry out a hybrid K°-construction over P (to be
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explained in Section 12.2). Either the construction stops prematurely (before stage
kT for various reasons to be specified in Section 12.2), in which case we show that
a model of LSA has been reached; otherwise, we reach a model P (extending P) of
height x™**. Then we consider the stack S of (appropriately defined hod) mice over
P+. Using the proof of [5, Theorem 3.4], we show that cof(o(S)) > k***. Using the
fact that S € V, we show that cof(o(S)) < k. Contradiction.

12.1 Some core model induction backgrounds

We continue to assume (f) and 12.1 in this section. We recall some notions and
results from [31]. In V[G], where P = Col(w, k) and G C P is V-generic, let

QO ={p(R)NM |RUORC M A M E AD*}.

[31] shows that, under (1),! the Solovay sequence (6 | a < ) of € is of limit length.
Furthermore, if A € Q, then there is a hod pair (or sts hod pair) (P, %) € 2 such
that A € T*(P,%).

Let P~ be the direct limit of all hod pairs (M, ¥) such that M is countable in
VE and ¥ is an (w;,w; + 1)-strategy of M that is Q-fullness preserving, positional,
commuting, has branch condensation, and ¥ [ HC € Q. We will say that a pair
(P, X) with these properties is nice and let F be the direct limit system of all nice
hod pairs. [31] shows that if (M,X [ V) € V, then X can be uniquely extended to a
(kT, k™)-strategy X7 (and hence =% | V € V). Say M iterates (via XT) to P~ («)
for some o < v = A7, we let ¥, be the ¥*-tail of ¥*. ¥, only depends on o and
does not depend on any particular choice of (M, X1) as long as ¥ is nice. Let

Y= @a<)\7’2a’
and
P = Lp*(P7).

That is P is the collection of P~ <4 M such that M is sound, p,(M) < o(P~),
then M is a 3-premouse over P~ and for every countable, transitive M* embeddable
into M via m, M* is (w; + 1)-iterable as an (anomalous) hod mouse with strategy
A such that A | HC € Q.

1[31] uses a stronger assumption, namely no models of “ADg+© is regular” exist. But the same
proof works using (f); the main point is that the HOD analysis now can be carried out up to models
of LSA.
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Lemma 12.1.1 Let A be the ordinal height of 0, so A = o(P~) = 6”.
1. No levels of P projects across A. Hence p,(P) = o(P) and P E ZFC™.
2. P E S is a reqular limit of Woodin cardinals
3N KkTT.
4. In'V, o(P) < At and cof(o(P)) < k.

Proof. (1) and (2) follow from [31, Lemma 3.78]. (3) follows from 2" = xk* and the
fact that w; = (k7)Y in V|[G].

For (4), first note that P € V. Let C be the Oy-sequence built in P, where
A = o(P~) is the ordinal height of  as defined above. C is not threadable (by the
maximality of P). Soif o(P) = AT or cof(o(P)) > k™, then using our hypothesis Vo €

[k+, k1], ~0(), we can find a thread for C' by standard arguments. Contradiction.
0

Remark 12.1.2 As in Chapter 9, we let ¢(U, V') be the formula that expresses the
fact that U is a mousefull pointclass with all the properties that €2 has and V is a hod
pair (Q, ) such that Code(A) € U and A is U-fullness preserving and has branch
condensation. Then the F above is Fyq etc. From this point on, we will often
suppress ¢, €2 from our notations,; this should not be confusing since all the notations
that come into the following constructions are relative to (¢, ().

In V[G], as done in the previous section, for each X C g, (P), we let Qx be the
transitive collapse of X, dx = 09X, and mx : Qx — P be the uncollapse map. Let
Yx be the mx-pullback strategy for Qx.> For X CY € g, (P), let mxy = 7y omx
and oxy : Qy — P be given by

oxy(q) = mx(f)(7g" ()

where a € (Qy|d9Y)<¥ and ¢ = mxy(f)(a).

Let & € V be the set of X < H,+++ such that X* C X, k+1 C X, | X| = &,
X NP is cofinal in o(P). Note that & is stationary.

Recall the notions of ((¢,€2))-condensing sets and honest extensions discussed in
Chapter 9. The following facts follow easily from [31] and Chapter 9.

2Typically, X = X* NP for some countable X* < H,+++. And Xy is the 7x«-realization map,
where mx- is the uncollapse map of X*.
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Lemma 12.1.3 (i) Lower part covering holds for (¢,Q). (¢,9)) is maximal, ho-
mogeneous, and captured by a stationary set Sy C &.

(1)) V*X' € G40, X = X' NP is a condensing set.

(111) Suppose Y is an honest extension of a condensing set X and there are maps
1:Qy >R and o : R — P such that 0 o1 = 7wy and every x € R has the form
i(f)(a) for f € Qy and a € [§®]<¥. Then letting A be the T-pullback strategy
of R, and 7(i(f)(a)) = ’/Ty(f)(ﬁ%wn,oo(a)), then 7 is well-defined, (sufficiently)
elementary, and T | R|6% = ﬂ%léﬁ’m P R|OR.

(iv) Suppose X is condensing and Y,Z are honest extensions of X such that Qy =
QZ, then Ey = Zz.

Remark 12.1.4 Let X be as in (i) of the lemma. Then it is easy to se that any
Y =Y*NP where Y* < Hy+v+ is such that Y* is countable (in V[G]) is an honest
extension of X.

12.2 Hybrid K°constructions and stacking mice

In this section, we proceed to describe the hybrid K°-construction over P. We use
the notations and definitions from the previous section. We fix a condensing set
X € V (X exists by the previous section); and we assume that X = X’ NP where
X' < Hys++ is of size £ in V. We build in V[G] a sequence (N, Ne : £ < T) of
levels of our K“-construction such that Ny = Ny = P, Ng = C,(N¢) for all £ < T
and T < k***. Though it is clear from the construction that N, NF € V for all ¢.

Before defining the sequence, we discuss the kind of background extenders being
used in this construction. Suppose N; has been constructed and is in V', is passive,
p(6FYNe = o(67)F, and suppose F is a (cr(F),o(Nz))-extender that coheres the
sequence of M. Suppose Y < H,+++ (or Y < Hy for A > x77) is in V and is
countable (in V[G]) and Y contains all relevant objects. Let my be the corresponding
uncollapse map. We say Y is good if Y* CY in V, kUX CY and Y is an honest
extension of X.* Let (PY,NY) = Ty (P, Ng). Suppose NY has a unique 7y-
realization strategy ¥y such that X}’ | HC € Q (these properties will be maintained
during the course of our construction). We say that F' is correctly backgrounded if
one of the following holds:

3Technically, we should write Y NP is an honest extension of X, but we will be sloppy here and
from now on.
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e if cr(F) = 67 and the least cutpoint above 67 is the largest cardlnal in MV, then

(a, A) € F if and only if for all good Y such that (a, A) € Y, 7@\/ OO( )e A In
this case, we say that F is wy -certified over (N, X} ).

o if cr(F) > 67, then say, A = F(cr(F)), F is certified by a collapse in the sense

of [7], that is, thereis Z < HY,,, (in V) such that |Z] is x*, where k* = |o(P),

( )+ 1C Z, Z¢ C Z* and letting 7 : My — Z be the uncollapse, we have:
Nelcr(F) € My, cr(nz) = cr(F), and

F is the trivial completion of (7 [ p(cr(mz)) NNe) [ A

We continue with the notations of the previous paragraph. Let v¢ be the supre-
mum of indices of extenders on the Ng-sequence with critical point 67. Suppose
ve < 0o(Ng) and let v¢ < A¢ < 0(N)® be such that p,(Ng) > A¢ and there is a stack
T € N based on N[\ according to the internal strategy Ef\\f such that EJ/\\E(T')
is undefined. Suppose also 7T is such that the theory developed above (Chapter 3)
dictates that a cofinal branch b for 7 needs to be added to Ne and M is so that
(N, By) is amenable.® We call such a tuple (N, A¢, 71) appropriate.

We now discuss how a branch b is chosen to extend N for an appropriate tuple
(/\/’5,)\5, _)). Suppose Y < H,+++ is good and contains all relevant objects. Let

(VA Y TY) = 77 (Ne, Ae,%e, T). Then the B-sequence of N T above A is
accordmg to:

(a) either a short tree strategy of M|\, which we denote ¥ if 7 is definably
- Y [\Y.
Woodin over N7 [Af;

(b) or the strategy Yy, of N, Y| A/, where Yy is the canonical Q-structure guided
strategy of N[\ if o(NY) < o(,/\/lzyﬁ’ﬁ)’

(c) or else the canonical Yy -strategy Aye of N[\ = M;YE ﬁ(J\/g/|e), where Yy ¢
is the canonical Q-structure guided, my- reahzatlon strategy of Afgy]e.

“Note that |o(P)| = || < k™. Futhermore, Z|G]* C Z[G] in V[G].

°In fact, the theory developed in Section 2, 3 dictates that A\¢ > v¢. This is because we don’t
activate new strategies above ~¢ until we reach the first E-active N¢|A above 7¢. At that point, we
activate the short-tree strategy of Ne|A.

6By is a code for b as done in [20, Section 2] and outlined in Chapter 11. We only note that this
amenable coding ensures condensation under very weak hull embeddings, cf. [20, Lemma 3.10] and
this fact is in turns used to show that [, » holds in hod mice.

"Recall, this is the sequence of branch predicates that codes up some internal strategy of ./\/'gy.
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We let Wy, denote ¥3/7 in case (a), Ly, in case (b), and Ay, in case (c).

Remark 12.2.1 We will discuss the construction of Wy in the next section. At
this point, we assume it exists and just want to extend the internal strategy of N
one more step.

—

Let 0¥ = Wy (TY) and ¢ be the downward closure of 7y [0*] C 7. We remind
the reader that in case (a), the stack TV has the form (Ro, T, Ry,U) and is an
N -authenticated stack (of length 2), where Ry = N[\ and U is a stack on
M?Rl(“)’ﬁ for some a < §®* — 1. The branch b¥ in this case is given according to
the canonical strategy of M?Rl(a)’ﬁ . We note that at this point of the construction,

the my-realization strategy for Ri(«) and that of M?Rl(“)’ﬁ have been constructed.
Similarly, in cases (b) and (c) we have constructed Wy, and hence can define b*.

Remark 12.2.2 The reason we have case (¢) as well as feeding in stacks on M?Rl(wﬁ

in case (a) is because we want our hod mice to be g-organized in the sense of [20].
g-organization ensures that S-constructions go through as discussed in Chapter 6.

In the following, we write V*Y to mean “for some club €, Y € €N S, q”. Now, [31,
Lemma 3.62] shows that for any v < [h(T),

either V*Y v € ¢¥ or V'Y v ¢ .
We then define b as follows: for all v < [h(T),
v € bif and only if V*Y v € Y.

We say that b is suitable for (N, A, 7). Letting R = (Ng, By), we say b is according
to Zi, which is a “one step extension” of X )\j.

The procedure above allows us to define the object Lp™e (Ng) in the case 7 <
e = 0(N) as follows.

Definition 12.2.3 Suppose ¢ < A\¢ = o(Ng). We let Lp™e(Ne) be the union of
Ne <M such that p,(M) < o(Ng) and for a club of good Y that contains all relevant
objects, Ty (M) < Lp\PY@’Q(/\/'gY).

Now suppose N is such that either ¢ = o(Ng) or ¢ < A\e = o(Ne). If 7¢ = o(Ng),
we let V& = J,[N¢] for v being least such that J,[N] is not sound or else N," =
(NVe)f, the least E-active mouse extending Vg (so N is the least mouse of the form
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(JolNgl, E) for some E). Otherwise, let N" be the largest sound (not just Ne-

sound) M <1 Lp™¢ (N;) such that either M defines a failure of Woodinness of ¢ or
else p,(M) < pu(N) if such an M exists, or else, we let N be the largest sound

level of Lp™Ve (N) (V¢ may be Lp™e (N)).

Definition 12.2.4 The models N¢, N¢ are defined as follows: for all § <Y,
(a) if € is limit, let Ne be limes eNes;

(b) if £ =€+ 1, there are a couple of cases:

(i) if Ne« is passwe and there is a correctly backgrounded extender F that
coheres the Ne--sequence, then let N = (N, F)®

(i) if Ne« is passive and case (i) does not hold, then Ne = N..

The N, N¢ constructed above are hod (sts)-premice in the sense of the previous
chapters.
Let Y < ./\/5’k be an honest extension of X. Let /\/gy be the transitive collapse of
Y and my be the uncollapse map. We say that A is the my-realization strategy of
N if whenever i = 7 : N} — Q is the iteration map along stack 7T according to
A, then the map &k : Q@ — ./\/’5* defined as: for f € NY, a € (§9)<¥,
A

k(i(f)(@) = mv (/) (7gl2 ()
is well-defined, elementary”, koi = 7y, and k | < = W/Q\Z’OQ I 6<.
We maintain as part of the construction the following:

L. For every Y countable substructure of N (in V[G]) that contains all relevant
objects (e.g. X) and Y is an honest extension of X, let 7ry,./\f§Y be defined as
above, then if ./\/'gy is Isa-small and is not of Isa type, then there is a unique
my-realization strategy E? for /\/'éy. Additionally, E? | HC € Q and is locally
Q-fullness preserving,'® has local strong branch condensation (in the sense of
Chapter 9). We will define ng in the next section.

8If there are Iy such that cr(Fy) = 67 and Fy such that cr(Fy) > 67 such that (Ne-, Fy) and
(Ng«, Fy) are both hod premice, then we give priority to Fj. The uniqueness of extenders F' with
crt(F) = 6% is clear from the definition of F. The uniqueness of extenders I with crt(F) > 6% is
proved by the usual bicephalus argument.

9By this, we mean if 7 is a k-maximal stack then k is a weak k-embedding in the sense of [3].

100)-fullness preserving means whenever i : ./\fgy — @ is an iteration map according to E?, then
Qb is Q-full.



12.2. HYBRID K°-CONSTRUCTIONS AND STACKING MICE 277

2. pu(Ng) > o(P) for all £ < T. In other words, o(P) is (67)" in N and in N
forall £ < T.

3. N? is solid and universal for all £ < Y. So AN is sound for all such &.

Definition 12.2.5 (Relevant extender) Suppose F is on the N¢-extender sequence
for some £ < Y. We say that F' is relevant if the resurrection of F' (in the sense of
[8]) is correctly backgrounded.

Granting that (1)-(3) are maintained for each £. We say the construction stops
prematurely when T is the least such that Ny satisfies the following:

(i) There is an increasing sequence (J, : n < w) of Woodin cardinals above §”
such that 67 is the least < dp-strong and (0, : m > 1) are the Woodin cardinals
above dg.

(ii) There are no (relevant) extenders E on the Ny-sequence such that there is
some n such that cr(E) < ¢; < lh(E).

(iii) T am a sts hod premouse over M™ (N |dy) =det(Ny|do)*.
(iv) I am E-active with top extender F' such that cr(F) > 4, for all n < w.
From this, we then show that there must be a model of LSA.

Remark 12.2.6 In (1)-(8) above, suppose now ./\/'gy is such that AQY E “the largest
cardinal & is Woodin and 67 is strong to 87, and Wy, is the short tree strategy of
(NVE10)F QN That is, N is of Isa type. Then it is not clear that there is a my-
realization strateqy for ./\/EY. Howewver, if the construction above ./\/%Y does not define
a failure of Woodinness of v¢ = & (the construction will be the construction with
respect to the short tree strategy of N¢), then we can still carry on the construction
until it stops (perhaps prematurely) because we can still use iterability above § to prove
solidity and universality for the models of the construction. If this were the case, then
there will be no (relevant) extenders E such that cr(E) = 67 or cr(E) < § < 1h(E)
being added during the course of the construction.

Remark 12.2.7  (I) The extender sequence of Ne utilizes two indexing schemes:
the cutpoint indexing scheme (for extenders with critical point 67 ) and the
Jensen indexing scheme (for extenders with critical point > 87 ). This follows
from the definition of correctly backgrounded extenders for relevant extenders;
if E is non-relevant (so E is on the sequence of a “level of Lp”), our convention
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1s E 1s indexed according to the Jensen indexing scheme. The Jensen indexing
scheme could be replaced by the Mitchell-Steel indexing scheme, but we choose
not to do so out of convenience; we want to quote direct results from [5] and
[1] as well as using results of Chapter 9.

(I1) If v¢ = o(Ng), then the construction above (as dictated by the theory in Chap-
ters 2, 3) does not immediately activate the strategy for Ne. Instead, it con-
structs an E-active N, where € > £ is the least such that N is E-active before
activating the strateqy for N.. It is easy to see that cr(ENE) > Y.

(IIT) If N¢ is not of lsa type, then (3) follows from (2) and (1) by what has been
proved in Chapters 3 and 9.

(IV) Suppose E? is as in (2) and J\/%Y is not of lsa type. Then EZC/ is positional and
commuting by results of Section 4.5.

Suppose the construction does not stop prematurely. Let N' = Nvy. So o(N) =
kTt by Lemma 12.4.2. Let & > 67 be the unique ~ such that N E “57 is strong
to v and v is Woodin” if it exists; otherwise we let & = 0. Note that by the
remarks above, which is a consequence of our smallness assumption (1), 0V is a
strong cutpoint of A/. Following [5], we define the following stack of hod mice above
N. The following definition takes place in V[G] but it is easily seen that S(N) € V.

Definition 12.2.8 Let S(N) be the stack of sound hod premice M if 6 =0 or else
S+ sy mice extending N such that p,(M) = o(N) and for every countable M*
embeddable into M via wae such that X U{X,P~, P, N} C rng(mp), tng(ma) is
an honest extension of X, M* is (wi+1)-iterable above § via a strateqy Ay« such that
if N =0, then A= | HC € Q, A is locally Q-fullness preserving and has local strong
branch condensation. Furthermore, if E is on the M-sequence such that cr(E) = 67
and IW(E) > o(N), then for every such M* as above such that E € rng(ma), letting
v be the length of my.(E), then for any a € W]<*, A € p(0%)l* NP such that
(a,A) € ENrng(mam-), then Wj\\/[/‘fﬁyyoo(ﬂﬁ* (a)) € A.

The following facts about S(N') more or less follow immediately from results in

]

Lemma 12.2.9 Suppose T = s and N' = N~.
(i) For Mo, My € S(N), either My <My or My I My. In other words, S(N)

is a hod premouse (and is w-small).
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(ii) For all M QS(N), there is some R <1 S(N') such that M < R. In particular,
S(N) E ZFC.

(iii) cof(o(S(N))) > kT,

Proof. (i) and (ii) are analogs of [5, Lemma 3.1] and [5, Lemma 3.3| respectively and
follow straightforwardly from the condensation lemma, Theorem 11.1.2. The point
is that if & = 0, then the theory developed above allows us to perform comparisons
(and shows that no strategy disagreement can occur); otherwise, the construction
above 0 is with respect to a fixed (short-tree) strategy predicate, so the comaprison
is again an extender comparison. (iii) follows from the proof of [5, Theorem 3.4],
noting that x*++ > s, is countably closed and 2°"" = k¥ in V[G]. O

12.3 Iterability of lIsa-small, non-lsa type levels

Now we inductively prove (1)-(3) hold for all £ < Y. First, we verify that (1)-(3)
holds for ¢ = 0. By Lemma 12.1.1, no P~ <M <P projects across 6" ; also P E ZFC™,
and hence p,(P) = o(P). By definition, P = Nf.

Lemma 12.3.1 (1)-(3) hold for £ =0. Hence Ny = Nj =P

Proof. Fix Y as in the statement of (1). Let &y = 69 . By definition, %} has
branch condensation as it is the join of strategies with those properties. Furthermore,
note that XY acts on NV in the following way. Let (Q,7) € I(NY,2Y) and let

i: Ny — Q be the iteration map and Yo7 be the T -tail of Y.
Suppose x € Q, then there is some f € NY and a € i(dy )<“ such that

z =i(f)(a).

Let k : @ — N, be defined as follows:
5

kGi(F)(@) = 7y (/) (T giiyy).00(@):

for any f € Ny and any a € i(dy)<*. Note that since X is a condensing set and
iomx.y | dx is according to X, rng(k) is an honest extension of X. By Lemma 12.1.3,

k is well-defined, ¥;-elementary (and cofinal), koi = my, and k | §¢ = WZ‘ZQQ [ 6<.

It is clear that this is the only way to define k; the uniqueness of ¥} also follows.
We remark that local strong branch condensation is just branch condensation in
this case. Now to see that X} is Q-fullness preserving, it suffices to show Q is Q-full.
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But this follows from the definition of condensing sets and the fact that Y and rng(k)
are honest extensions of X. Also, we get local strong Q)-fullness preservation.

We have shown (1). (2) holds by the remark immediately before the lemma and
(3) follows from (2) and (1) by Remark 12.2.7. O

Verifying that (1)-(3) hold at limit £ is easy; we leave it to the reader. Next, we
verify that (1)-(3) hold for £* implies (1)-(3) hold for £ = £* + 1. This is the main
case.

Let Y € V be an honest extension of X; we assume also Y =Y* N ./\fg* for some
Y* < H;QH. We assume ./\/'g (and hence J\/gy) is lsa-small and is not of lsa type;
more precisely, we assume that letting 7¢ be the supremum of indices of extenders E
on the /\/’5* sequence such that cr(E) = ¢, then some M < /\/’5* defines the failure of
Woodinness of 7. We now define the strategy %} for NY'.'' We write 2% for ' (x)
for » € N Ning(my).

Definition 12.3.2 (Normal form) An iteration (Pa,Ta) | @ < 1) on Py = N
1s said to be in normal form if the following hold:

(i) fl s a stack of normal trees with base model P, and last model Py 1.
(11) If X < nis limit, Py = lima<\Pa.

(i11) Either ’f; uses no extenders in the top block of P, or its images or Poi1 =
Ull(Pa, E) for some extender E on the P,-sequence with cr{E) = 67 or else

T is completely above 67«

() If n = a+ 1 for some «, then for all f < a, 7% does not drop.

We define %} for stacks in normal form. We say that a stack ((Pa, T.) | a<n)
in normal form, where P, = J\/%Y, is according to Z? if: letting 79 = 7wy [ Po,
iy : Py — P; be iteration maps, and k%7 be the cutpoint cardinal that begins the

top block of P,

(A) there are maps 7, : Py — N¢ for all a < ;

HTechnically, since we construct Eg/ in V[G], we should denote it E?’G. But in fact E?’GQV ev
and Z?G does not depend on the choice of G. This will be clear from the construction of E?’G. So
in effect, we are constructing an invariant name Zg in V' whose interpretation in V[G] is Zz’G for

any G. For notational simplicity, we will simply write ZZ{ without the “G”.
12,.Py — iO,w(a’P)-
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(B) forall y <a <n, 7y = T4 0lya;

Ao _
Pal|kPe 00

(C) for all & < n, the P,-tail of ng*, A, is the T.-pullback strategy and 7

To | PaltP;

— —

(D) if n = a + 1 and 7T, drops and say 7, is k-maximal, then either T, is “Lp-
based”, that is there is some Q < P, such that T, is based on Lp®=22(Q) (or
Lp*2(Q)) and is above o(Q) or else there is a (unique) branch b of 7, some
¢ < &, and a weak-deg(b)-embedding 7, : MZ:) — Ng. Otherwise, there is a
(unique) branch b and map 7, : MZ:’ — N such that 7, = 7, 0 iqy.

It is clear how to extend E? to all stacks of normal trees. This is because all
stacks of normal trees on ./\/’gy can be decomposed into stacks in normal form. We
will need to define maps 7, in the definition of ¥} in such a way that makes ¥} a
my-realization strategy.

The next lemma shows that if R is a ¥ -iterate of N} via map i, letting 6™ =

i(épy) and F is an extender on the R-sequence with critical point 6%, then F is
certified. The lemma proves something a bit more general.

Lemma 12.3.3 Suppose Y is a countable, elementary in N¢ and is an honest ex-
tension of X. Suppose i : ./\fgy — R and 0 : R — N¢ are such that Ty = o o1, and
letting Z be tng(o), then Z is an honest extension of Y. Let A be the o-pullback
strategy on R. Then:

(a) If j : R — S is a A-iteration based on R® and suppose 6° = sup j[67] = j(67),
then letting T : S — Ng¢ be the map: 7(j(f)(a)) = O'(f)(ﬂg\'is’oo(a)); where
fER, ac k], and As is the tail of A. Then 7 is well-defined, elementary,
and Wéﬁ{s,w =7 | (S|x%).

(b) Suppose F is an extender on the R-sequence with cr(F) = k™ = i(6”). Then F
is o-certified over (R||Ih(G), Arjinc))-

Proof. (a) follows from Lemma 12.1.3 and the fact that the iteration map j is
continuous at 6%,

For (b), first, note that i is continuous at (5+)N€Y and is cofinal in ((k®)*)®. This
is because 7y is continuous at (5): ¢ and is cofinal in (67)7. Finally, F is total over
R; this follows from the continuity of i.

Now, let § = Ult(R, F), ir be the ultrapower map. Let Z be countable, honest

extension of X such that Y < Z and rng(o) C mg(nz) . Let oy = 7," o 0. Let
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iz

Figure 12.3.1: Hypothesis of Lemma 12.3.3

G = 0z(F) " and ig : N = Ult(NZ,G) =qe¢ W be the ultrapower map. Let
77 : S — W be the copy map and 1 : Ult( £Z, G) — Ng¢ be the map

EZ

vlic(f)(a) = m2(f)(myz . (a)).
Since G is mz-certified over (NZ||IR(G), (E?)Ng||lh(G)), 1 is well-defined, elementary,
and ¢ oig = mz. Now,
o=1oTz0ip,

so letting Ag be the 1 o Tz-pullback strategy for &, then by strategy coherence for
hod mice, Ag agrees with Az on R||Ih(F). Now let 7 : S — N be defined as follows:
for all @ € [[h(F)]<% and f € R,

FR()(@) = 0 (F) (T ().

By Lemma 12.1.3, 7 is well-defined, elementary, and agrees with Wé\io up to 6° and
hence with o up to R||Ih(F'). This proves part (b). O

The following remarks summarize how we can inductively define maps 7, and
hence define Eg on stacks in normal form.

Remark 12.3.4 (i) If T, = (E) for cr(E) = 6P, then

Ta+1 (Zga(f)(a)) = Ta(f) (777/;§||lh(E)7oo(a))-

Lemma 12.5.3(b) shows that 7,41 is well-defined, elementary,**, agrees with 7,

up to Ih(E), and Wpaﬁllh( B)oo = Ta+1 | Pal[lA(E), 00

I31f F is the top extender of R, then by oz(F), we mean oz[F].
141f 7, is a weak k-embedding for some k, as is typical of realization maps, then so is 7, 1.
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W =Wy,
" Nez
L 70 Ta+1 = T
//” Ta
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Figure 12.3.2: Sketch of Remark 12.3.4(ii)

(ii) With the exact same situation as i and suppose cof” (o(NF)) < k," we claim
that the S = gef Poy1-tail of ¥ =g E?—1 1s W, the T,y 1-pullback strategy of S.
This is strategy coherence at o + 1. Suppose not. Write T for 7,41 and i for
i0.a. This is basically the proof of Theorem 2.7.6 in [10] (see Figure 12.3.2).
We briefly sketch it here. LetY < Z and Z € V is countable (in V[G]), honest
extension of X. Let Wy be a V-hod mouse with w many Woodin cardinals and
Wy = UltOWy, E), where E is the (crit(my),o(NZ))-estender derived from
Tyz. So letting j = ig o, j extends to j© : Wy — W and 7 extends to
T W — Wy, where N7 Wy (this is because o(NY) is a cardinal cutpoint
in Wy and my z is cofinal in o(Nez)). Let m : M — H;/H be the inverse of
the transitive collapse of some countable elementary substructure of H;/H inV
containing all relevant objects. For any a € HY., Nran(r), let a =7 '(a). Let
g C Col(w,k) be M-generic with g € V and S, j, T be the objects in M|g]
witnessing the failure of the claim in M|g]. Since M is countable, there is a
map € : Wy — Wy such that 1 | Wy = eomy | Wy. Let ® be the e-pullback
of V. By the proof of Theorem 2.7.6 in [10], working in M|[g|, the uB code
for U gets moved to the uB code for its S-tail and also to the uB code for the
T-pullback of ®. This is a contradiction.

(111) Ifﬁ is below 67> then it is according to A, and so T,y is given by the inductive

'5Cofinally many ¢ has the property that cof” (o(N¢)) < k. In our case, & = £ + 1, this holds
because Ne« E Vi, by Chapter 9.
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assumption on A,. Strategy coherence at o+ 1 is maintained here. See Lemma

12.3.3(a).

]f’f; is above 87 and is not Lp-based, then the map To41 is given by the K°-
construction theorem (cf. [1, Theorem 3.2]) and our smallness assumption on
the hod mice that we are constructing. ]f7_2 is above 6% and is Lp-based, then
72 drops and we can’t undo the drop, so no more realizations are needed.

Suppose A < n s limit. Let for a < A
TA(tax (7)) = To().

So we get Ty : Py — J\ffy is such that for all « < X\, T, = Tx 0 g . Using
the above argument, we get strategy coherence at A. Finally, we verify that
letting 7 : PA|6T™» — N7 be the iteration maps by the Ty-pullback strategy Ay,
7 =1\ 6. Letv < §™. We note that Ay is the A,-tail by strategy coherence
at \. Let io\(v*) = v for some a < X and v* < §. Then

(V) = Taliap (V7)) = Tp,nPa o0 (V7) = Tian (V")) = 7 (v).

The following lemma gives some useful consequences regarding uniqueness of
strategies, whose proof is essentially the proof of Lemma 10.3.6.

Lemma 12.3.5 (i) Suppose m : Q — P is elementary such that X C rng(r).

(i)

Suppose i : Q — R is such that i | 07 is according to the m-pullback strategy
and 179,71 : R — P are such that 7ooi1 = 71 01 = 7. Then the to-pullback
strateqy is the same as the T-pullback strategy.

Suppose Y is countable, elementary in N¢ and is an honest extension of X.
Suppose k is a cardinal of Ne and wpr? <K< wprgy. Let U = E?.

(a) Suppose (T,R) € I( 2, W) is such that 7T exists and T : N = Sis
Eén) and cardinal preserving and S I R. Suppose (Z/_i, Q) € I( {Y,\If) is
such that 7 exists, Q®* =Sb, and 7 | P = 7 [ P, then \st =V,

(b) Suppose (’f', R) is such that 7T exists and is according to V. Suppose U is
a normal tree of limit length on R(B3) according to Wz -, where 3 < AR 1.
Suppose ¢ are cofinal branches of U (considered as a tree on R) and there is

a map 7. : MY — N such that my | P = r.0n o Then ¢ = Uiz n(U).
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Figure 12.3.3: Lemma 12.3.5 (ii)(a)

Proof. (i) follows straightforwardly from Lemma 12.1.3 (iv). The main point is that,
letting A; be the 7;-pullback strategy (for i = 0,1), then letting o; : R — P be

o(i(f)(a) = 7(f)(7% ()

for f € Q and a € 6%. Then o;[R] is an honest extension of X.
(ii) (b) follows easily from (i) and Remark 12.3.4(ii). For (ii)(a) (see Figure 12.3.3),
suppose \II; s # W, then by results of Section 4.4.1, there is a low-level disagreement,

that is there is (W, Ro, W*) such that:
e Wis according to both strategies.
e Ry is the last model of W.
e W+ is a tree of limit length on Ry (3) for some g < ARo — 1.

Let b= (W W*) and ¢ = \I/}_S(VT/“W*) Let 0 : Q@ — N be the realization map;
hence |

my [P=cor’=gor | P. (12.2)
Note that there are embeddings 7, : MZV*’b — P and 7. : MV"* — P such that:

JOTrP:TCOWW (12.3)

and

my [ P=mnor". (12.4)
By (i) and Equations 12.2, 12.3, 12.4, b = ¢. Contradiction. O
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Figure 12.3.4: Branch condensation

Lemma 12.3.6 E? has locally strong branch condensation, and is Q-fullness pre-
Serving.

Proof. Q-fullness preservation follows from the construction of ¥} (see Lemma 12.3.3
and the subsequent remarks). We first prove branch condensation (see Figure 12.3.4).
Suppose not. Let N = ./\/'gy and ¥ = E? and suppose the following hold: there are

stacks 7"U and W on N such that
e 7 is via ¥ with end model R.
o U is according to ¥ and ¢ = M P — Qs the iteration map.

e There are cofinal branches b, ¢ of U and 7 : MY — Q such that

l.i=moioil.
2. ¢c= V(T U).

3. b#c.

Let Wy be the m-pullback strategy of W3 5 and Wy be W, . Recall M*(U) =
M(U)*. We may assume:

Ao =det (\Ijo)j\ifﬂu) = (\1’1)f\zs+(u) =qef A1. (12.5)
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In the case there is Q IM™ () which is a @-structure for 6(U) then (Vo)3fs ¢y =
(Yo) pm+@y and similarly for ¥;. We assume this is not the case; otherwise, the

argument is similar and simpler.
Let o : Q° — P be the my-realization map, so that

Ty [ P=conl Ub

T7Ub exists and is the same as 77 ¥ ¢ and this map does
T~ ~7 g~ b
T UL T U bb _ 21 o 7TT

In the above, we note that 7
not depend on the choice of the cofinal branch; i.e. 7
(even though b may drop).

By results of Section 4.4.1, if 12.5 fails, then there is a minimal disagreement
(W*,Y) € BIMH(U), AO)QB(M+( ), A1) in the sense of Definition 4.4.2. Note that
Y is of successor type and (Ao)yp- yia) = (A1)ype y(q) for all o < AY —1. Furthermore,
there is a stack &* on Y such that there are distinct branches b* = (Ao)w*y # " =
(A1)yp- y- Note that

g{boﬂ'T[”P:WZC’{Oﬂ'T [ P.

Note further that there are 7« : ./\/lz;:’b — P and 7. : M?b — P such that

— -, -

Ty [P =mpomd o Por!lor | P, (12.6)
and
Ty r’P:JOﬂu’b:TC*O’]TZC/i o™V ’bowg’boWT['P. (12.7)
This is because
W%i* ogVb — ﬂzc{j omVhb,

Equations 12.6 and 12.7 contradict Lemma 12.3.5 (which implies that b* = ¢*).

So 12.5 holds. By our assumption, Q(c,U) <MY and is a A;-mouse and Q(b,U) <
MY and is a Ag-mouse. Results of Chapter 6 imply that Q(b,U) = Q(c,U) (by
comparisons) and hence b = ¢. Contradiction.

The argument above shows branch condensation. The other clause of strong
branch condensation follows from a very similar argument, so we leave it to the
reader. O

Lemma 12.3.7 E? 18 locally strongly Q-fullness preserving.
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(R*)"

Nb Rb
Figure 12.3.5: Strong -fullness preservation

Proof. Q-fullness preservation follows from the previous lemma. We now prove
the other clause of locally strongly (2-fullness preservation (see Figure 12.3.5). Let

N =N} and ¥ = 5. Suppose (T,S) € I(N, W) is such that 77 exists. Suppose
S W < S is such that for some n and some cardinal x of W,
0(S%) <wpit! <k < wpl,.
(n) n—+1

Suppose 7 : R — W is cardinal preserving, is X", and wply > cr(7) > wpp' = =

wpii . We want to show the 7-pullback of the strategy Y7y is Q-fullness preserving.

Note that 7 | R’ = id and R® = W". This implies rng(wﬁb) C rng(7). Let
o : Wb = 8% - P be the my-realization map, so that my [ A = oo 774 Since
X C rng(o) and rng(o) is an honest extension of X.

We now show Z%W is Q-fullness preserving. To see this, let W*,U) € I(W, E%W)

be such that 7 : Rb — (R*)b exists and let 724 be the copy tree on W with last
model W*. So 77U . Wb (W*)P exists. Let ¢ : (R*)® — (W*)® be the copy
map and ¢* : (W*)? — P be given by the construction of ¥, so * o b
ot or U0 =1y | NP

Note that ¢ = id and rng(c*) is an honest extension of X. So (W*)® is Q-full.
This is our desired conclusion. U

= o and

An easy corollary of the above Lemmata is the following.

Corollary 12.3.8 Suppose Y < Z < N¢ are countable (in V[G]), honest extensions
of X, Y, Z eV, andY =Y* NN, Z =2Z*NN¢ for some Y* < Z* < HY..,. Let
Ty,z = 7r§1 omy. Then Z? = (EEZ)”Y’Z.
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Proof. Let 0y = my'(0%) and 65 = 7,"(67). By our assumption on Y and Z, we
have:

x¢
Tz [0z = 7TN§Z7OO [0z,

and

EY
Ty r(SY:ﬂ-,/\fiy,oo r5Y:7TZO7TY,Z [ Oy.

Using the above equations, Lemma 12.3.5, and the proof of Lemma 12.3.7 (espe-
cially the idea that if two strategies disagree, then there is a lower-level disagreement),
we obtain the desired conclusion.

O

Corollary 12.3.9 ZSY 15 positional and commuting.

Proof. This follows from Lemmata 12.3.6, 12.3.7, and results of Section 4.7. U

Now, we discuss how to lift ¥ = Xt to a (necessarily unique) (x*, x7*)-strategy
¥ with branch condensation and show Code(¥}) € Q.

Recall ¥ is an (wq,w,)-strategy for /\/gy with branch condensation, is positional
and 2-fullness preserving. Furthermore, NV € V and is independent of the choice
of generic G. By arguments in [31], Weyq x NV can be uniquely extended to an
(k™, k™) strategy with branch condensation and is positional. We also call this
extension W. We briefly give a sketch as to how to obtain a (k, k™)-strategy U
extending U with branch condensation and is positional in V[G].

In V[G], suppose T is of limit length < x** and is according to ¥*. We show
how to define W (T) (stacks of normal trees can be handled similarly). In V| let
A C kT code H,+++ and a (nice) Col(w, k)-name T € H,+a for T (here we use
our cardinal arithmetic assumption 12.1). Let

My = LA, My

where A is the unique (k+4, kt4)-strategy for 9 =gor My*, the minimal E-active
U-mouse with two Woodin cardinals. We note that the existence of My* follows
from [31, Section 3.2]. By —0O(k™),

M 4 E there are no largest cardinals.
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In particular (((x™F)V)")Ma < k™ so in M4, which is closed under A, we can use
A to perform a generic genericity iteration to make A-generically generic (see [10] or
[20] for more on generic genericity iterations). Let Q € My be the result of such an
iteration. There is a Q-generic h C Col(w, 62) such that H,i++,G, T € Q[h], where
50Q is the first Woodin cardinal of Q. Since Q is closed under ¥; we can generically
interpret W on any generic extensions of Q (as done in [20] or in Chapter 6).'% This
allows us to define ¥*(7) as the branch chosen by the interpretation of ¥ applied
to T in Q[h]. The well-definition and uniqueness of U* follow from hull arguments
in [31, Section 3.2].7

Using U, now suppose ¥ is a strategy, we can define the stack of ©-g-organized
mice over R, Lp ¥" (R, Code(¥)), in V[G] (cf. [20, Definition 4.23]),"® and show
that there is a maximal initial segment M < Lp°¥" (R, Code(¥)) such that M is
constructibly closed and M F AD" + SMC + © = fy. This implies Code(¥) € Q.

Remark 12.3.10 If V¥ is a short-tree strateqy, we hold off on showing that ¥ € Q.
The idea is that we’ll wait until we reach a level N (if exists) extending Ne such that
some QSU\/7 s a Q-structure for oNe and then we can show (Z?)Q € Q by the above
discussion (for'Y as above). If we never reach such a level Ny, then we’ll see in the

next section that the construction stops prematurely. This will allow us to conclude
that a model of LSA exists.

Corollary 12.3.11 Let N' = NY'. Then p,(N) > o(N®) = o(P) and N is n-solid

and n-universal for all n € w.

Proof. By induction, we prove for all n < w, p,(N) > o(N?) and N is n-solid and
n-universal. For n = 0, clearly N is 0-sound. We just prove this for the case n = 1;
the case n > 1 is similar (one just has to work with the n — 1-reduct).

Without loss of generality, we assume that W is a strategy; otherwise, p,(N) >
& > o(N?) and there is nothing to prove.

I6Tf U is a strategy, we could have simply let 9t = M%”n; but if ¥ is a short-tree strategy, then
one seems to need M;Ij’ﬁ to apply results in Chapter 6. Relevant results in [20] can be applied to
M‘QM as well.

"Let M, M* be such that 7 € MNM?*; let 7, 7* be nice Col(w, x)-terms for M, M* respectively. In
V[G], let X[G] contain all relevant objects and X < H,+4 is good. Let a = 7y (a) for all a € X[G].
Then letting by, b; be the branches of U given by applying [20, Lemma 4.8] in L [tr.cl.(7), <1
O], LA [tr.cl.(7%), <o, 9] (built inside Mx[G]), where <; is a well-ordering of 7 and < is a well-
ordering of 7*. Then by = b; as both are according to A, since (91, A*) generically interprets A in
VIG].

18[31] shows that Code(¥) is self-scaled in the sense of [20, Definition 4.22] if ¥ is a strategy.
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Claim 12.3.12 p;(N) > o(N?).

Proof. Suppose not. Let &y = my'(67), ¥ = XY Let Q = Ultg(N, ) where v is the
order 0 total measure with critical point dy. Let ¢ = i,(p) where p = p;(M). Hence

(i) N?is a cutpoint initial segment of Q and o(N?) is the cardinal successor of &y

in Q.

ii) We can regard Q as a hod premouse over (N?, U b)) with strategy Yo € Q2 that
Q
is commuting and is Q-fullness preserving.'”

(iii) There is some A C dy such that A is ¥;-definable over Q from ¢ and A ¢ N°.

We say that a triple (Q, Xg, q) satisfying (i)-(iii) is minimal if there is no g iteration
7 with iteration map i : Q — R and some r < i(¢) (in the reverse lexicographic
order) such that (R, ER;?,Z'(NI’),T) satisfies (i)-(iii).

Fix two minimal triples (R, Y%, ) and (S,Xs,s). We can then compare them
above N*. Letting i : R — W and j : & — W be iteration maps. Note that
i(r) = j(s) and so

ThE (0y U {r}) = Thg (0y U {s}).
This means ThE (6y U {r}) is ODJS\If”,\Ibe for any minimal (R, Xz, 7). By MC(Un»),

ThE (6y U {r}) € N*.20

This contradicts (iii).
U

The claim and Theorem 11.1.2 (which is built on the results of Section 4.9) imply
that A is 1-solid and 1-universal. By similar arguments, we get the conclusion for
all n € w.

Now if W is a short-tree strategy, then the first conclusion holds as p,(N) > N >
o(N?) discussed above. Furthermore, N is iterable above p,,(N') and hence the proof
that N\ is n-solid and n-universal for all n € w is as usual.

O

Finally, we show that there are (enough) extenders with critical point §” being
put on the extender sequence of the N¢’s during the course of the construction.

19We can take Yo be the Q-tail of U. By Lemma 12.3.7, X is Q-fullness preserving. By Corollary
12.3.9 and results of Section 4.7, ¥ is positional and commuting.
20Note that we take Y so that N’ = Lp¥~isy S(N|dy ).
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Definition 12.3.13 (Extender-ready levels) We say that N¢ is extender-ready
if for a V-club C¢ of Y < Ng¢ which is an honest extension of X andY € V is count-
able in V|G|, letting ./\/%Y =1y (Ne), ¥ = ng and ”yg/ be the supremum of the
indices of extenders on the J\/'éy—sequence with critical point 0y =qemy " (07) (we let

" = ((5y)+)N5Y if N&' has no such estenders on its sequence), we have that no
sound M< Lp‘I”Q(/\/'gY) projects across vg/ and every M< Lp‘I”Q(J\/'&Y) is sound.

Remark 12.3.14 Euztender-ready levels are those N¢’s that are eligible to be ex-
tended to a hod premouse (Ng, F') where F has critical point 6¥. Let Y, M be as in
the above definition, it is easy to see that M also does not project across 0(./\/2/).

The lemma below shows that the collection of correctly-backgrounded extenders
with critical point 6 is sufficiently rich. For instance, if Py = 7' (P), and /\/'gy =
Lp”?v?(Py), then N is extender-ready (Corollary 12.3.11 shows that no level of

&Y projects below o(Py) and Theorem 11.1.2 and Corollary 12.3.11 show that every
level of Lp”?v*?(NY) is sound). Lemma 12.3.15 shows that if N is extender-ready
then for every Y € C¢, there is an a correctly backgrounded extender £ with critical
point dy such that ( §Y, E) is a hod premouse.

Lemma 12.3.15 Suppose N is extender-ready. Fiz'Y < N¢ in Ce. Let N =
NE by = 7' (07), and ¥ = XY be the my-realization strategy for N'. Then there is
an extender Ey with cr(Ey) = 6" such that Ey is wy-certified over (N, ¥).

Proof. Let v = o(N). Let E = Ey be the following extender over N: for a € [y]<¥
and A € p(dy) M NN,

(a,A) € E & 7y (a) € my(A).

FixaY < Z € C¢ such that Z = Z’NHY, ., and Z' < HY,,. contains all
relevant objects. Naturally, Mz [G] < H,+++[G] and 7z extends to act on all of
My [G]. Let @ = 7y, and 7' = (w3 . )M#'. Let my : My — Z' be the uncollapse
map (we also denote the extension map 7). Recall that U is Q-fullness preserving,
commuting, and has branch condensation; furthermore, 7 | N* = 7y | N and
i f./\/’b:ﬂ'yyz be

It is easy to see that E is the extender E’ defined as follows: for a € v<“ and
Aep(dy) NN,

(a,A) € E' & 1'(a) € my z(A).
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We need to see that (N, E) is a hod premouse.
Amenability: Let n < v and € < o(N?), we show: E N (n<* x N|€) € N.
Let A = (A, | @ < dy) enumerate N|§. Let

B =my(A) N (7(n) x 7(n)).

Then B € N¢|67 and so is OD®. Now for all a € n=¥, for all a < dy,
(a, Aa) cl & 7T(CL) € Bﬁ(a)

This shows EN (1< x N[€) is ODg. By SMC and the fact that N is extender-ready,
En(n xN|§) e N.
O x-completeness: Let € < 0y, ¢ € v<¥, A = (A, | @ < €) € N be such that
Aa € E, for all o < e. We need to show: m(c) € Ty (Nyee 4a) = Nacry (o T (Aa-
Since 7y (e) = 7w(e), let o < my (e) and M be a U-iterate of N such that letting
i : N — M be the iteration map and W, be the M-tail of ¥, then there is some
a* <i(€) such that Wf,{‘j‘oo(a*) = a. Now,

Vv < e(m(c) € Ty (A)rwy)-

Note that letting 7 : M — 7y (N') be given by the construction of ¥ then W, is
the 7-pullback strategy, by Lemma 12.1.3, we get

W < i(e)(m (i(c)) € my (A)

wf,{tgo(u))‘
In particular,

Tt (i(e)) = m(c) € my(Aa.

Since « is arbitrary, we’re done.

Normality: Let ¢ € v<¢, f : [6y]l?l — 6y be such that f € N and Viu flu) <
max(u) or equivalently my (f)(m(c)) < max(n(c)). We want to find a £ < max(c)
such that

Ty (f)(m(c)) = (&) = my (ce)(7(c)),

where ¢ is the constant function with range {{}.

Let M be a W-iterate of N such that Wj‘{’/’M = Ty .m exists, and let, Wy be
the M-tail strategy of M induced by ¥, and 7o : M — N¢ be the my-realization
map given by the definition of W. Let Exs be the extender that is 7ps-certified over
(M, U ,y), that is:
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(a,A) € Ep & W/\I\’/ﬁoo(a) € Tm(A).

It is easy to see that my m[En] C Eu.

Let My = My (N, ¥) be the direct limit of all non-dropping W-iterates and
7 : N — Mg be the direct limit map. Let g = 7(f). Then by the construction of
U and Lemma 12.1.3, the natural map k : My, — N¢ has critical point 7(dy) (and
y [N =kom). So Ep, is defined as:

(a,A) € Ep, < a € k(A).
In particular,

k(g)(m(c)) = my (f)(m(c)) < max(w(c)).

Since cr(k) = w(dy), it is easy to see that Eaq_ is normal. By normality and
amenability of Fp_, there is £ such that

TE.. (9)(§) = 7(c).

So by elementarity, the desired ¢ exists and £ = 7(§).
Coherence: We now show:

L. Ulto(N, E)|y = N.
2. Let v = max{(0y")", 7 }. Then v is a cutpoint of Ulto(N, E) and v = ((v)*+)UHtoN:E),
For 1), let 7 : Ultg(N, E) — N¢ be the natural map:

7(ip(f)(a)) = 7y () (TN o (@)

for all f € HE and @ € v=*. It’s clear that 7 | v = 7@%}700 [ v. This implies
Ulto(N, E)|y is isomorphic to 7y [N] and hence isomorphic N.
For 2), suppose not. Using the fact that N is extender-ready, we first observe
that,
NEW<a<y (o <v). (12.8)

Let F be on the sequence of Ulty(N, E) such that
(i) crit(F) = dy.
(i) Ih(F) > v.

(iii) 1h(F') is the least such that (i) and (ii) hold.
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//\

Ut(NZ, 7(F))
7' i k[
/\/l F t Ult(M, F)

Figure 12.3.6: Coherence

We have then that Ih(F) > + by the definition of v and the fact that Ultg(N, E)|y =
N2

Let 7 and Z be defined as above. Let M = Ulty(N, E), i be the correspond-
ing ultrapower map. Let ¢t : M — Ult(M, F) be the ultrapower map by F and
w NZ — UIt(NZ, 7(F)) be the ultrapower map by 7(F). Let k : Ult(M, F) —
Ult(NZ, 7(F)) be the natural map and o : Ult(NZ,7(F)) — N¢ be the realiza-
tion map The existence of o comes from the fact that 7(F') is mz-certified over

(Ngz\ h(7(F)), (EgZ)Ngulh(r(F)))-

Claim 12.3.16 W(F) = 7.

Proof. Note that £ is a cutpoint in Ult(M, F') and is the least such > dy. So by 12.8,
Ih(F) = (pF)UME)

Suppose 1h(F') > 7. Let Q@ << M||Ih(F') be least such that
NJAIQOANQE |y =v.

Note that W is a level of Lp¥*(N). This is by by SMC and the fact that
mzoT [N =7y .

This contradicts the assumption that (N, V) is extender-ready. UJ

Now we show F' is my-certified over (N, ¥). This would give £ = F € Ult(N, E).
Contradiction.
Let A = %7, First note that

21f v is not a cutpoint of Ulty (N, E), then there is some extender H on the sequence of Ulty(N, E)
such that cr(H) < v < Ih(H). This easily implies that there is some extender F' on the sequence of
Ultg(N, E) such that cr(F) = dy and 1h(F) > v
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Let ¢ € [o(N)]=, A € Py, we have:

AeF, & cet(A)
cet(i(A)) (because i(A)Ndy = A)

7(c) € uo7(i(A)) (Corollary 9.2.9)

7(¢) € u(my,z(A))

o(r(c)) € my(A) (because Ty (A) = o(u(my.z(A))))
Tr 00(C) € Ty (A).

ﬁﬁiﬁﬁii}

This finishes the proof of the lemma. U

Lemma 12.3.15 implies that if N is extender-ready then J\/%* 1 = (N, E) where
using the notation of Lemma 12.3.15

(a,A) € E = VY €C((a,A) €Y — 7' (a, A) € Ey).

We continue by proving another condensation lemma for relevant extenders with

critical point 67. This condensation property does not seem to follow from Theorem
11.1.2.

Lemma 12.3.17 Suppose N¢ is E-active, say N is of the form (N, F), where
cr(Fe) = 6%, Suppose m : M = (M~ F) — N is %y and cofinal, or o, with
cr(m) > o(P) and suppose further that M~ IN;. Then E is on the sequence of N.

Furthermore, let Y be a good hull that contains all relevant objects, let my :
My[G] — H+++[G] be the uncollapse map, and let x¥ = 7y'(x) for all x in the
range of wy. Let U be the my-pullback strateqy for MY and suppose that W,y =
(B ) -y = (EY)M v, then W = (5F) v = (Z?)“Myy, where 3 is the strategy for
NY defined above.

22NZ is not literally a P-iterate of A, but A iterates into a hod initial segment of NZ. By
W%’Ng, we mean (wj‘{’/’oo)MZ’.
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Proof. The preservation of m guarantees that M is a hod premouse. Recall that
o(P) is the cardinal successor of 87 in both At and M and the models agree up to
P.

We work with MY and AV} and first show that FY is on the sequence of N
Let A = \I[M—,Y = (Zz)/\/{ﬂy'

Claim 12.3.18 For A € p(0”) NP and a € [o(MY)]<¥, (a, A) € FY if and only if
Wﬁ/l_,yyoo(a) € my(A).

Proof. First, note that FY is total over N and hence it makes sense to apply FY
to N Also, UIt(N, FY) embeds into Ult( ¢, FY') via the natural map 7:

7(ipy (f)(0) = igy () (7" (b)),

and
7 | MY|[IR(FY) = 7% | MY |[Ih(EFY).
Now,
(a,4) € ¥ & (r(a) =7"(a),A) € FY (7" (A)=71(A) = A)
& ﬂj\\/l_,yyoo(ﬂy(a)) € my(A) (definition of ng)
& Wﬁ,l,,ypo(a) € my(A). (Corollary 9.2.9)
This finishes the proof of the claim. 0

The claim and Lemma 12.3.15 imply that FY is on the N -sequence. By ele-
mentarity, F is on the Ne-sequence.

U= (S )y = (BY)7%,y follows from Lemma 9.1.9 and the proof of Lemma
12.3.6 (the main point is the fact that if the strategies disagree then we can find a
lower-level disagreement).

O

Now suppose N7 is a sts hod premouse, that is there is some ¢ such that
MF(NEO) < N and N E 6 is Woodin and 67 is the least < d-strong cardinal.
Let Y be as above. Suppose N/ defines a failure of Woodinness of 4, then N is
iterable via the my-realization strategy and this is also the Q-structure guided strat-
egy for stacks above pw(/\/:sy). Suppose /\/’5* does not define a failure of Woodiness
of ¢ then it is not clear that for Y as above, ./\/'SY is iterable via a my-realization
strategy. However, in this case, p,(NZ) > 0 and N is iterable above 0" via the
my-realization strategy. This is enough to show that 'MEY is solid and universal, hence
/\/'é* is solid and universal. In either case, N¢ is defined and sound. If £ < Y, we can
then define NV}, and go on with our construction.
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12.4 K€ breaks down and a model of LSA

We have shown in the previous section that the construction lasts T+ steps if every
MNe is Isa-small and is not of lsa type (or more accurately speaking, every Woodin
cardinal 0 in NV eventually fails to be Woodin with respect to the short tree strategy
in NV, for some v > £). Suppose the construction lasts 7+ steps; as in the previous

subsection, let N' = N, +++. We also let S = S(N).
Lemma 12.4.1 cof(S) < k7.

Proof. Let A\ = k™", As shown in Chapter 9, S F O, 5. Also, S € V by definition.
Working in V', =0J(3, ™) implies then that o(S) < £™* and =0J(3, k™) now implies
that cof(o(S)) < kT+F since otherwise, the canonical [y y-sequence C of S (as defined
in Chapter 9) has a thread D. The thread D will produce a hod mouse M such that
o(M) > o(S) and p,(M) < A. This contradicts (ii) of Lemma 12.2.9. O

Lemma 12.4.1 contradicts (iii) of Lemma 12.2.9. Now we assume the construction
stops prematurely. We obtain a model of LSA from this assumption. Recall in this
case, T is the least such that Nv is a sts hod premouse that satisfies:

(i) There is a unique Woodin cardinal &y > 67 such that 67 is the least < dy-strong.

(ii) There are w many Woodin cardinals above dy, say these Woodin cardinals are
(0p:1<n<w).

(iii) There is an extender F' with crt(F') > sup,, 0,, such that Ny = (R, F) for some
R.

(iv) N is a sts hod premouse over M (Ny|dy) =aet(Nr|do)?.

(v) For every countable Y < Ny (Y is an honest extension of X), letting Q =
(Nr[6)* and Qy = my'(Q), then VY is wy + l-iterable above Qy via the my-
realization strategy.

(1)-(iv) follow easily from the assumption that the construction stops prematurely.
(v) follows from results in [1] (we tacitly assume that 7y is minimal relative to some
enumeration of N§¥ — Qy of order type w; otherwise, just replace my with such an
embedding that agrees with 7y [ Qy). Let A = sup,d,, and for every Q@ << M < Ny,
let M be the internal sts strategy of Q as defined in M.

Lemma 12.4.2 Suppose the construction stops prematurely. Then T < kT,
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Proof. 1If the construction stops prematurely, then Ny is E-active. This clearly
implies that T < ™ because if T = k™", then N7 is the lim inf of N, for o < T
and hence is passive. 0

Now suppose there is some M < Ny satisfying Definition 8.2.2, then the results
of Section 8.2 show that the derived model of M (at the sup of its Woodin cardinals)
satisfies LSA. Suppose this is not the case. We would like to produce an active w
Woodin Isa mouse as in Definition 8.2.2 from M.

Lemma 12.4.3 Let M be the transitive collapse of HullN* (P U p(Ny)) and let 7
be the transitive collapse. Then there is a countable substructure of some N < M
satisfying Definition 8.2.2.

Proof. First, note that we have the following:
po(Ny) > 0o(P) and p,(M) < o(P) (in fact, p,(M) = o(P)).
Now we claim that

Claim 12.4.4 (i) if Y < M is an honest extension of X, letting my be the uncol-
lapse map and x¥ = w1 (x) for x in range Ty or x = M, then MY is iterable
via the 7 o wy -realization strategy.

(i) SupposeY is as in (i) and 7 : M* — MY is either ¥y cofinal or ¥q elementary
and cr(t) > o(PY), then the comparison (MY, M* cr()) against MY does
not use extenders with critical point (67)Y.

(111) M is w-sound.

Proof. For (i), we just check that every iteration tree 7 on MY above (67)Y has a
unique 7 o my-realizable branch. Suppose without loss of generality that 7 is not
Lp-based, so in this case T is above P¥. By [l], there is a maximal 7 o my-realizable
branch b for 7, but this branch is precisely the cofinal branch guided by the O-
structure Q(7T), i.e. b is the unique such that Q(b,7) = Q(T).?> The case that
T uses extenders < (67)Y is similar and has been treated in details in the previous
section; the general case that T is a stack can be treated as follows: decompose T
into a sequence of stacks <7_j .1 < a) where for each 1, 7; is either strictly below (67)Y

23The theory developed about for sts hod mice shows that there cannot be another cofinal, Tomy-
realizable branch ¢ # b. This is because we can compare Q(c,T) against Q(b, T), the comparison
does not involve strategy disagreement, and hence is successful. This implies Q(c,T) = Q(b,T)
and hence ¢ = b.
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or its images, or only uses extenders with critical point (67)Y or its images, or else is
strictly above (67)Y or its images; inductively on i, we construct 7 o my-realization
maps g; on MTi using the above discussion.

(ii) follows from Lemma 12.3.17. For (iii), the point is that the relevant phalanx
comparisons in the proof of solidity and universality are successful and by (ii), no

extenders with critical point (67)Y are used. O

Suppose without loss of generality, no countable substructures of any N' <1 M
satisfies Definition 8.2.2. We claim that for Y as in (i) of the above claim, My
does. Again, let Y be as above and it suffices to show MY satisfies Definition 8.2.2.
Everything is clear except, perhaps, for (1). So let ¥ be the 7 o my-realization
strategy for MY and Q = MY|((6Y)*)M”. By the argument as in Claim 12.4.4
and Lemma 12.3.6, X3¢ has (locally) strong branch condensation. Similarly to 12.3.7,
3g¢ is also (locally) strongly Q-fullness preserving and hence is (locallly) strongly
I'(Q, X¢¢)-fullness preserving.*

O

Again, Lemma 12.4.3 and results in Section 8.2 show that the new derived model
of N as in the conclusion of Lemma 12.4.3 (at the sup of its Woodin cardinals)
satisfies LSA.

Now by boolean comparisons, there is some (M, X) € V satisfying Definition
8.2.2. By taking a countable hull of M if necessary, we may assume M is countable
(in V). Let M~ be the class model obtained by iterating the top extender of M
OR many times and M, be the result of an R-genericity iteration of M~ via X.
Then (new) derived model N of M., satisfies LSA as shown by Section 8.2. By
homogeneity of Col(w, k), there is in V' a model M containing R U OR such that
M E LSA.

Proof.[Proof of Theorem 12.0.22] The arguments above prove the consistency of
LSA from the hypothesis of Theorem 12.0.22 plus the simplifying assumption 12.1.
To eliminate 12.1, simply note that the constructions above can be done in V©,
where Q = Qg * Q; and Qg = Col(k*, k™) * Col(kTT, k™) x Col(kT+, kTTT) and
Q1 = Col(w, k). It’s easy to see that in V@ 12.1 holds and continues to hold in V©,
Furthermore, the models N (built by the construction above inside V@) are in V.
The arguments above then can be applied in V¢ to obtain the consistency of LSA.
O

24We don’t need (ii) to prove (iii); we just need the phalanx comparisons are successful. (ii) gives
that the comparison is above (67)Y.
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