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New results on Whitehead groups

plus some old results
and some new questions

Joint work with László Fuchs, Saharon Shelah and Jan Trlifaj
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The Whitehead class

Let S be a class of modules.

⊥S = {N | Ext1(N,M) = 0 for all M ∈ S}

S⊥ = {N | Ext1(M,N) = 0 for all M ∈ S}

Example

The class of Whitehead groups
W = ⊥{Z}
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The Whitehead cotorsion pair

Definition. (Salce 1979)

A cotorsion pair is a pair of classes of modules (A,B) such that A = ⊥B
and B = A⊥

The Whitehead cotorsion pair

(W,W⊥) = (⊥Z, (⊥Z)⊥)
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Deconstructing cotorsion pairs

Definition.

The cotorsion pair (A,B) is said to be κ-deconstructible if every A ∈ A
can be written as the union of a continuous chain of submodules

A =
⋃
α<σ

Aα

such that A0 = 0 and for all α < σ, Aα+1/Aα belongs to A and is
≤ κ-generated.

Note. If A =
⋃

α<σ Aα s.t. A0 = 0 and for all α < σ, Aα+1/Aα ∈ A, then
A ∈ A.

(A,B) is deconstructible if it is κ-deconstructible for some κ.

We will sometimes say “A is .(κ-)deconstructible.”
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Consequences of deconstructibility

1. If (A,B) is κ-deconstructible, and every member of A which is
generated by ≤ κ elements is free (projective), then every member of A is
free (projective).

Example. Baer modules
THEOREM. (Fuchs, et al.) The cotorsion pair (A,B) is
ℵ0-deconstructible provided: B is closed under arbitrary direct sums and A
consists of modules of proj dim ≤ 1.

Corollary. If every countably generated Baer R-module is projective, then
every Baer R-module is projective.

THEOREM. (Angeleri Hugel-Bazzoni-Herbera 2005) Every countably
generated Baer module over an arbitrary ID is projective.
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Consequence 2: completeness

2. If (A,B) is deconstructible, then it is cogenerated by a set, that is,
there is a set S such that S⊥ = B; equivalently, there is a module P such
that {P}⊥ = B.

Hence: (E - Trlifaj 2001) (A,B) is complete, i.e., has enough projectives
and injectives, i.e., special precovers exist.

Example (R = Z)

THEOREM. (E-Trlifaj) (A,B) is deconstructible, and hence complete, if
every member of B is cotorsion.

THEOREM. (E-Shelah-Trlifaj 2004) It is consistent with ZFC + GCH
that for every N which is not cotorsion, the cotorsion pair
(⊥{N}, (⊥{N})⊥) is not cogenerated by a set, hence not deconstructible.

THEOREM. (E-Shelah 2003) It is consistent with ZFC + GCH that
(W,W⊥) is not complete.
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Consequence 3: tensor products

3. If (W,W⊥) is κ-deconstructible and the tensor product of two
members of W of cardinality ≤ κ is again in W, then the same is true for
the tensor product of any two members of W.

Proof. (E-Fuchs) Let A and B be W-groups, i.e. elements of W. Without
loss of generality, we can assume that A has cardinality > κ. Let
{Aν : ν < σ} be a continuous chain as in the definition of
κ-deconstructible.
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Case: |B | = κ

Assuming |B| = κ, we prove A⊗ B is a W-group.
{Aν ⊗B : ν < σ} is a continuous filtration of A⊗B. Suffices to show that
for all ν < σ, Aν+1 ⊗ B/Aν ⊗ B is a W-group.
There is an exact sequence (Cartan-Eilenberg)

0 → Aν ⊗ B → Aν+1 ⊗ B → (Aν+1/Aν)⊗ B

and by hypothesis, the right-hand term is a W-group (of cardinality κ).
But then the quotient Aν+1 ⊗ B/Aν ⊗ B is a subgroup of a W-group and
hence a W-group.
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General case

Next suppose that |B|>̀κ. Again we use the continuous filtration
{Aν ⊗ B : ν < σ}and the exact sequence

0 → Aν ⊗ B → Aν+1 ⊗ B → (Aν+1/Aν)⊗ B

The right-hand term (Aν+1/Aν)⊗ B is a W-group by the first case (and
the symmetry of the tensor product) so we finish as before.
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Models of set theory

Theorem

If ♦λ(E ) holds for every regular cardinal λ > κ and every stationary subset
E of λ, then W is κ-deconstructible (and hence (W,W⊥) is cogenerated
by a set and thus complete).

Examples.
(I) A model of V = L. Then every member of W is free (cf. Consequence
1).

(II) A model of GCH + Ax(S) + ♦∗(ω1 \ S) plus
♦λ(E ) holds for every regular cardinal λ > ℵ1 and every stationary subset
E of λ.
Then there are non-free Whitehead groups. In fact, an ℵ1-free group of
cardinality ℵ1 is Whitehead iff Γ(A) ≤ S̃ .

Claim

In Model (II) every tensor product of Whitehead groups (of arbitrary
cardinality) is Whitehead.
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Model (II)

Claim

In Model (II) every tensor product of Whitehead groups (of arbitrary
cardinality) is Whitehead.

We will use

Consequence 3

If (W,W⊥) is κ-deconstructible and the tensor product of two members of
W of cardinality ≤ κ is again in W, then the same is true for the tensor
product of any two members of W.
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Proof of Claim

By Consequence 3, it suffices to prove that the tensor product of two
Whitehead groups of cardinality ℵ1 is a Whitehead group.
In this model, a group A of cardinality ℵ1 is Whitehead if and only if
Γ(A) ≤ S̃ i.e., it has an ω1-filtration {Aν : ν < ω1} such that

{ν < ω1 : ∃µ > ν s.t. Aµ/Aν is not free} ⊆ S .

It suffices to prove that Γ(A⊗ B) ≤ S̃ if A,B ∈ W. Fix ω1-filtrations
{Aν : ν < ω1} and {Bν : ν < ω1} as above.
Then {Aν ⊗ Bν : ν < ω1} is an ω1-filtration of A⊗ B. For each µ > ν
there is an exact sequence

0 → Aν ⊗ Bν → Aµ ⊗ Bµ → (Aµ ⊗ (Bµ/Bν))⊕ ((Aµ/Aν)⊗ Bµ)

If ν /∈ S , then the two summands on the right are free, and hence the
quotient Aµ ⊗ Bµ/Aν ⊗ Bν is free. Thus we have proved that
Γ(A⊗ B) ≤ S̃ .
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Question

Is it provable in ZFC (+ GCH) that the tensor product of two Whitehead
groups is always a Whitehead group?
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Dual Groups and Reflexive Groups

A dual group is one of the form A∗ = Hom(A, Z).

B is reflexive if the natural map B → B∗∗ is an isomorphism.

Theorem. (Huber) If B is ℵ1-coseparable, i.e., Ext(B, Z(ω)) = 0, then B
is reflexive.

Model (III)

Theorem. (Eklof-Shelah 2002) There is a model of ZFC + GCH with a
non-free strongly ℵ1-free Whitehead group B of cardinality ℵ1 such that
B∗ is free of infinite rank.
Hence B is not reflexive.
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W-test groups

A W ∗ group is one of the form A∗ where A is a Whitehead group.
If A is a W-group, A∗ is non-zero and separable, so Ext(B,A∗) = 0 implies
B is a Whitehead group.

Definition and Question

G is a W-test group if Ext(B,G ) = 0 if and only if B is a Whitehead
group.
Is it provable in ZFC (+ GCH) that every W ∗ group is a W-test group?
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Equivalence of the questions

Lemma

For any Whitehead groups A and B,
Ext(B,A∗) ∼= Ext(A,B∗) ∼= Ext(A⊗ B, Z).
Hence A⊗ B is a Whitehead group if and only if Ext(A,B∗) = 0.

Proof We use the fact (Cartan-Eilenberg) that

Ext(A,Hom(B, Z))⊕Hom(A,Ext(B, Z)) ∼= Ext(A⊗B, Z)⊕Hom(Tor(A,B), Z)

In our case this reduces to

Ext(A,B∗) ∼= Ext(A⊗ B, Z)

Since A⊗ B ∼= B ⊗ A, this suffices. �
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Another model of set theory

Conclusion

The tensor product of two Whitehead groups is always Whitehead if and
only if every W ∗ group is a W-test group

Models (I) and (II): these equivalent statements are true.

Model (III)

A model of ZFC + GCH with a non-free Whitehead group B of cardinality
ℵ1 such that B∗ is free of infinite rank.
Claim: In this model, B∗ is not a W-test group,
In fact, Ext(B,B∗) 6= 0, and hence B ⊗ B is not Whitehead.

Proof. Since B is a non-reflexive W-group, the theorem of Huber implies
that B is not ℵ1-coseparable, i.e., Ext(B, Z(ω)) 6= 0. Thus Ext(B,B∗) 6= 0.
�
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Open Questions

Is it consistent with ZFC (+ GCH) that there is a Whitehead group B
such that

B is ℵ1-coseparable, but Ext(B,B∗) 6= 0?

B is ℵ1-coseparable, but B∗ is not W-test?

B is reflexive, but B∗ is not W-test?
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Open Questions rephrased

Is it provable in ZFC (+ GCH) that for every Whitehead group B

B ℵ1-coseparable implies Ext(B,B∗) = 0?

B ℵ1-coseparable implies B∗ is W-test?

B reflexive implies B∗ is W-test?
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One final model

Model (IV) A model of MA + 2ℵ0 = ℵ2 plus
♦λ(E ) holds for every regular cardinal λ > ℵ1 and every stationary subset
E of λ.

Theorem

In Model (IV) every W ∗-group is a W-test group and hence the tensor
product of any two W-groups is a W-group.
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Martin’s Axiom

For every κ < 2ℵ0 and for every c.c.c. poset P and every family
D = {Dα : α ∈ κ} of dense subsets of P, there is a directed subset G of P
such that for all α ∈ κ, G ∩ Dα 6= ∅.

Theorem. (Shelah) Assuming MA + 2ℵ0 > ℵ1, the following are
equivalent for an ℵ1-free group A of cardinality ℵ1

A is Whitehead;

A is a Shelah group;

A is ℵ1-coseparable.
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Model (IV)
By Consequence 3, it suffices to prove the result for groups of cardinality
≤ ℵ1.
We will prove that if A and B are W-groups of cardinality ≤ ℵ1, then
Ext(A,B∗) = 0

Fix a short exact sequence

0 → B∗ ι
↪→ N

π→ A → 0

We may assume that ι is the inclusion map. We also fix a set function
γ : A → N such that for all a ∈ A, π(γ(a)) = a. We will show that the
short exact sequence splits by proving the existence of a function
h : A → B∗ such that the function

γ − h : A → N : a 7→ γ(a)− h(a)

is a homomorphism. The function h will be obtained via a directed subset
G of a c.c.c. poset P.
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The partial order

P is the set of all triples p = (Ap,Bp, hp) where

Ap (resp. Bp) is a pure and finitely-generated summand of A (resp.
B);

hp is a function from Ap to B∗
p .such that the function which takes

a ∈ Ap to γ(a)− hp(a) is a homomorphism from Ap into
N/{f ∈ B∗ : f � Bp ≡ 0}.
p = (Ap,Bp, hp) ≤ p′ = (A′

p,B
′
p, h

′
p) if and only if Ap ⊆ A′

p, Bp ⊆ B ′
p,

and h′p(a) � Bp = hp(a) for all a ∈ Ap.
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The dense sets

Let

D1
a = {p ∈ P : a ∈ Ap}

for all a ∈ A and
D2

b = {p ∈ P : b ∈ Bp}

for all b ∈ B.

If these sets are dense and P is c.c.c., then MA + 2ℵ0 > ℵ1 yields a
directed subset G which has non-empty intersection with each dense
subset.
We can then define h by: h(a)(b) = hp(a)(b) for some (all) p ∈ G such
that a ∈ Ap and b ∈ Bp. It is easy to check that h is well-defined and has
the dcsired properties.

() October 11, 2006 25 / 30



verification of denseness

Claim

Given a basis {xi : i = 1, ..., n} of a finitely-generated pure subgroup A0 of
A, a basis {yj : j = 1, ...,m} of a finitely-generated pure subgroup B0 of
B, and an indexed set {eij : i = 1, ..., n, j = 1, ...,m} of elements of Z,
there is one and only one p ∈ P such that Ap = A0, Bp = B0 and
hp(xi )(yj) = eij for all i = 1, ..., n, j = 1, ...,m.

Given p, there is a finitely-generated pure subgroup A′ of A which contains
Ap and a. Now Ap is a summand of A′ so we can choose a basis
{xi : i = 1, ..., n} of A′ which includes a basis {xi : i = 1, ..., k} of Ap;
choose a basis {yj : j = 1, ...,m} of Bp. Then by the Claim there is an
element p′ of P such that Ap′ = A′, Bp′ = Bp, and hp′(xi )(yj) = hp(xi )(yj)
for all i = 1, ..., k. Clearly p′ extends p and belongs to D1

a .
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verification of c.c.c.

Lemma

If G is a Shelah group of cardinality ℵ1 and {Sα : α ∈ ω1} is a family of
finitely-generated pure subgroups of G, then there is an uncountable
subset I of ω1 and a pure free subgroup G ′ of G such that Sα ⊆ G ′ for all
α ∈ I .

We must prove that if {pν = (Aν,Bν , hν) : ν ∈ ω1}. then ∃µ 6= ν such
that pµ and pν are compatible. By the Lemma we can assume that there
are a pure free subgroup A′ of A and a pure free subgroup B ′ of B such
that Aν ⊆ A′ and Bν ⊆ B ′ for all ν ∈ ω1. Choose a basis X of A′ and a
basis Y of B ′. By density we can assume that each Aν is generated by a
finite subset, Xν, of X and each Bν is generated by a finite subset, Yν , of
Y . Moreover we can assume that there is a (finite) subset T of X (resp.
W of Y ) which is contained in each Xν (resp. each Yν) and is maximal
w.r.t. the property that it is contained in uncountably many Xν (resp.
Yν). Passing to a subset, we can assume that hν(x)(y) has a value
independent of ν for each x ∈ T and y ∈ W .
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verification of c.c.c., continued

By a counting argument we can find ν > 0 such that Xν ∩ X0 = T and
Yν ∩ Y0 = W .
We define q ∈ P ≥ p0, pν .
Let Aq = 〈X0 ∪ Xν〉 and Bq = 〈Y0 ∪ Yν〉. Clearly these are pure subgroups
of A (resp. B).
Use the Claim to define hq : Aq → B∗

q such that for x ∈ T

hq(x)(y) =


the common value if y ∈ W
h0(x)(y) if y ∈ Y0 −W
hν(x)(y) if y ∈ Yν −W

and for x ∈ X0 − T

hq(x)(y) =

{
h0(x)(y) if y ∈ Y0

arbitrary if y ∈ Yν −W

and similarly for x ∈ Xν − T .
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Proof of Claim

Claim

Given a basis {xi : i = 1, ..., n} of a finitely-generated pure subgroup A0 of
A, a basis {yj : j = 1, ...,m} of a finitely-generated pure subgroup B0 of
B, and an indexed set {eij : i = 1, ..., n, j = 1, ...,m} of elements of Z,
there is one and only one p ∈ P such that Ap = A0, Bp = B0 and
hp(xi )(yj) = eij for all i = 1, ..., n, j = 1, ...,m.

Proof of uniqueness. Suppose there are p1 and p2 in P such that for
` = 1, 2, hp`

(xi )(yj) = eij for all i = 1, ..., n j = 1, ...,m. It suffices to
prove that for all a ∈ A0,

hp1(a)(yj) = hp2(a)(yj)

for all j = 1, ...,m. Let a =
∑n

i=1 dixi . Then

γ(a)−
n∑

i=1

diγ(xi ) = hp`
(a)−

n∑
i=1

dihp`
(xi ).

for ` = 1, 2.
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Proof of Claim continued

Claim

Given a basis {xi : i = 1, ..., n} of a finitely-generated pure subgroup A0 of
A, a basis {yj : j = 1, ...,m} of a finitely-generated pure subgroup B0 of
B, and an indexed set {eij : i = 1, ..., n, j = 1, ...,m} of elements of Z,
there is one and only one p ∈ P such that Ap = A0, Bp = B0 and
hp(xi )(yj) = eij for all i = 1, ..., n, j = 1, ...,m.

γ(a)−
n∑

i=1

diγ(xi ) = hp`
(a)−

n∑
i=1

dihp`
(xi ).

Applying both sides to yj ∈ B0, we obtain that

hp`
(a)(yj) =

n∑
i=1

dieij + (γ(a)−
n∑

i=1

diγ(xi ))(yj)

for ` = 1, 2. Since the right-hand side is independent of `, we can
conclude the desired identity.
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