
SHELAH’S SINGULAR COMPACTNESS THEOREM

PAUL C. EKLOF

Abstract. We present Shelah’s famous theorem in a version
for modules, together with a self-contained proof and some ex-
amples. This exposition is based on lectures given at CRM in
October 2006.

0. Introduction

The Singular Compactness Theorem is about an abstract notion
of “free”. The general form of the theorem is as follows:

If λ is a singular cardinal and M is a λ-generated
module such that enough < κ-generated submodules
are “free” for sufficiently many regular κ < λ, then
M is “free”.

Of course, for this to have any chance to be a theorem (of ZFC)
there need to be assumptions on the notion of “free”. These are
detailed in the next section along with a precise statement of the
theorem (Theorem 1.4), including a precise definition of “enough”.
Another version of the Singular Compactness Theorem—with a dif-
ferent definition of “enough”—is given at the start of section 3. The
proof of Theorem 1.4 is given in sections 3 and 4; some examples and
applications are given in sections 2 and 5.

First a few words about the history of the theorem.
0.1 History. In 1973 Saharon Shelah proved that the Whitehead
problem for abelian groups of cardinality ℵ1 is undecidable in ZFC;
in particular he showed under the assumption of the Axiom of Con-
structibility, V = L, that all Whitehead groups of cardinality ℵ1 are
free (see [13]). His argument easily extended, by induction, to prove
that for all n ∈ ω, Whitehead groups of cardinality ℵn are free. But
for Whitehead groups of cardinality ℵω, the first singular cardinal, a
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new ingredient was needed. In fact, that ingredient already existed
for singular cardinals of cofinality ω or ω1, by theorems of Paul Hill
(see [9] and [10]); these imply that if an abelian group has singular
cardinality λ where λ is of cofinality ω (or ω1) and has the property
that every subgroup of smaller cardinality is free, then the group itself
is free. In 1974 Shelah proved a general theorem which applied not
only to arbitrary singular cardinals but to a general notion of “free”
defined axiomatically. The case of the ordinary notion of freeness
for abelian groups, combined with the argument in his first paper on
Whitehead’s problem, led immediately to the conclusion that V = L
implies that Whitehead groups of arbitrary cardinality are free. (See
5.4 below.)

Shelah’s theorem was applicable to much more than abelian groups,
or even modules; in fact, there was another application that Shelah
had in mind when he proved his theorem in a general form: that
of transversal theory; the parallels between results there and results
about “almost free” abelian groups had already been noted. (See
[12]; see also [5] for more on the history.)

Wilfrid Hodges [11] later wrote up and generalized another proof
(due also to Shelah) of the Singular Compactness Theorem, one
which is more user-friendly than the original. A version of this proof,
adapted to modules, is given in [7].

Recently the Singular Compactness Theorem (for Q-filtered mod-
ules, as in part III of section 2) has proved an essential tool in the
study of Baer modules and tilting modules (see the references in sec-
tion 5). So it seems useful to give a self-contained and streamlined
exposition, based on the one in [7].

0.2 Notation and terminology. An infinite cardinal λ is singular
if it is the supremum of a set S of fewer than λ cardinals each less
than λ; the smallest possible cardinality of such an S is the cofinality
of λ. If it is not singular, λ is called regular. Every successor cardinal
is regular. For any sets X and Y , X \Y denotes their difference, i.e.,
{x ∈ X : x /∈ Y }.

A chain of sets {Xν : ν < ρ} is continuous if for each limit ordinal
σ < ρ, Xσ =

⋃
ν<σ Xν .



SHELAH’S SINGULAR COMPACTNESS THEOREM 3

Throughout we consider left R-modules, where R is an arbitrary
ring. Given a module M and a subset Y of M , 〈Y 〉 denotes the sub-
module of M generated by Y . M is λ-generated if it has a generating
set of cardinality λ, and it is ≤ λ-generated if it has a generating set
of cardinality ≤ λ.

These notes are a revised and expanded version of lectures given
at the CRM in early October 2006, as part of the Programme in
“Discrete and Continuous Methods in Ring Theory”. I would like
to thank the organizers for the invitation to participate, and the
CRM, and especially Professor Dolors Herbera, for their support and
hospitality.

1. Statement of the theorem

Given a class F of modules containing the zero module, a module
M is called F-free if and only if M belongs to F . Since F will be
fixed, we will usually simply say M is “free” when we mean M is
F-free. Some examples of F are given in the next section.

The following is a precise version of enough < κ-generated sub-
modules of M being “free”.
1.1 Definition. For any regular uncountable cardinal κ, define M to
be κ-F-free, or simply κ-“free” if there is a set C of < κ-generated
submodules of M such that:

(1) every element of C is “free”;
(2) every subset of M of cardinality < κ is contained in an element

of C; and
(3) C is closed under unions of well-ordered chains of length < κ.

Now we can state the general form of the Singular Compactness
Theorem a little more precisely as follows:

If λ is a singular cardinal and M is a λ-generated
module which is κ-“free” for sufficiently many regular
κ < λ, then M is “free”.

As was said in the introduction, some conditions must be imposed
on the notion of “free”, that is, on the class F . So our next task is to
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introduce the assumptions on F ; the reader may want to study these
in parallel with the examples given in section 2.

The hypotheses (specifically 1.2(iii)) involve a parameter µ, an
infinite cardinal which occurs in the statement of Theorem 1.4 below.
They also involve two other primitive notions. One is that of a “basis”
of an F-free module. More precisely, we are given for each M ∈ F , a
non-empty set, B(M), of sets of subsets of M (so if Y ∈ X ∈ B(M),
then Y is a subset of M). Each member X of B(M) is called a “basis”
of M .

We say that a submodule A of M is a “free” factor of M if A =
〈Y 〉 for some member Y of a “basis” X of M . For each “free” factor
A of a “free” module M , we are given a set D(A,M) of pairs of bases
of A and M respectively; we write X′ = X � A if (X′,X) ∈ D(A,M).

1.2 Hypotheses on F . For each M ∈ F and each “free” factor A
of M , there are non-empty sets B(M) ⊆ P(P(M)) and D(A,M) ⊆
B(A) × B(M) satisfying for some infinite cardinal µ the following
conditions for all X ∈ B(M):

(i) ∅ ∈ X; if Y ∈ X, then 〈Y 〉 is “free”;

(ii) X is closed under unions of chains, i.e., if C ⊆ X such that for
all Y , Y ′ ∈ C, Y ⊆ Y ′ or Y ′ ⊆ Y , then

⋃
C ∈ X;

(iii) if Y ∈ X and a ∈ M , there exists Y ′ ∈ X such that Y ⊆ Y ′,
a ∈ 〈Y ′〉 and |Y ′| ≤ |Y |+ µ;

(iv) if Z, Y ∈ X and Z ⊆ Y , then Z is a member of a “basis” of
〈Y 〉, so 〈Z〉 is a “free” factor of 〈Y 〉;

(v) if A is a “free” factor of M , then for any “basis” X′ of A, there
is a “basis” X of M such that X′ = X � A, i.e., (X′,X) ∈ D(A,M);

(vi) if {Mα : α < ρ} is a continuous chain of “free” modules and
for each α + 1 < ρ, Mα is a “free” factor of Mα+1, then

⋃
α<ρMα is

“free”;

(vii) given a chain {Mn : n ∈ ω} of “free” modules s.t. for each
n ∈ ω Mn is a “free” factor of Mn+1, and given a “basis” Xn of
each Mn such that Xn = Xn+1 � Mn for all n ∈ ω, then

⋃
n∈ω Xn is

contained in some “basis” of
⋃

n∈ω Mn.
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1.3 Proposition. If F satisfies 1.2 for µ and M is a λ-generated
F-free module where λ is an uncountable cardinal, then for any reg-
ular cardinal κ such that µ < κ ≤ λ, M is κ-F-free.

Proof. Let X be a “basis” of M . Let C = {〈Y 〉 : Y ∈ X and |Y | <
κ}. One can check easily that Definition 1.1 is satisfied for this C. �

This Proposition shows that the hypothesis in the following theo-
rem is necessary for M to be free. The theorem says that the condi-
tion is sufficient when λ is singular; it will follow immediately from
the two theorems (3.1 and 4.1) proved in sections 3 and 4.

1.4 The Singular Compactness Theorem. Suppose that F sat-
isfies 1.2 for µ. Let λ be a singular cardinal > µ and let M be a
λ-generated module such that M is κ-F-free for all regular cardinals
κ such that µ < κ < λ.
Then M is F-free.

2. Some examples

We give three different types of examples; there is a non-empty
intersection between the different classes of examples.

I. The usual notion of free. F is the class of free modules, that
is, modules which have a linearly independent generating set, or,
equivalently, are isomorphic to a direct sum of copies of R. Here
µ = ℵ0.

If M ∈ F , we let B(M) consist of all X such that there is a basis
B of M (in the usual sense) such that X is the set of all subsets of
B. If A is an F-free factor of M , let (X′,X) ∈ D(A,M) if and only if
X′ = {Z ∈ X : Z ⊆ A}. It is easy to verify the conditions in 1.2.

II. Modules defined by direct sum decompositions. For a
given set L of ≤ µ-generated modules, let F consist of all modules
which are isomorphic to a direct sum of the form

(†)
⊕
i∈I

Li

where each Li ∈ L, and I is an arbitrary (possibly empty) set. (When
I is empty, we obtain the zero module.) In particular, when L is the
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set of countably-generated projective modules (and µ = ℵ0), F is the
class of all projective modules, by a theorem of Kaplansky.

For each L ∈ L, fix a generating set SL of cardinality ≤ µ for
L. For M ∈ F , let B(M) consist of all sets X such that there is an
isomorphism ϕ of M with a direct sum of the form (†) and

(∗) X = {Y : ∃J ⊆ I s.t. Y = ϕ−1[
⋃
i∈J

SLi ]}.

(Here we abuse notation by identifying SLi with its image under the
canonical embedding of Li as the ith summand of M .) Note that if
Y is as in (∗), then ϕ induces an isomorphism of 〈Y 〉 with

⊕
i∈J Li.

If A is an F-free factor of M , let D(A,M) consist of all pairs
(X′,X) ∈ B(A)× B(M) such that

X′ = {Z ∈ X : Z ⊆ A}

.
Then one can check that 1.2 is satisfied for the parameter µ. In-

deed, 1.2 (i), (ii) and (iii) are clear; regarding 1.2(iv), note that if Y
is as above, Z ∈ X, and Z ⊆ Y , then Z = ϕ−1[

⋃
i∈J ′ SLi ] for some

J ′ ⊆ J . So Z is a member of the “basis” of 〈Y 〉 determined by the
isomorphism ϕ of 〈Y 〉 with

⊕
i∈J Li.

Regarding 1.2(v), if A = 〈Y 〉 is a “free” factor of M , then there is
an isomorphism θ of M with

A⊕
⊕

i∈(I\J)

Li

which is the identity on A; if X′ is a “basis” of A, we can define a
“basis” X of M to consist of all W such that

W = Z ∪ θ−1[
⋃
i∈K

SLi ]

for some Z ∈ X′ and some subset K (possibly empty) of I \ J . The
last two parts of 1.2 are also easy to check.

III. Q-filtered modules For a set of modules Q such that 0 ∈ Q,
define M to be Q-filtered if M is the union of a continuous chain
{Mα : α < σ} s.t. M0 = 0 and Mα+1/Mα ∈ Q for all α+ 1 < σ. For
a fixed set Q, let F consist of all Q-filtered modules. A continuous
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chain {Mα : α < σ} with M0 = 0 which demonstrates that M is
“free”, i.e., Q-filtered, will be called a “free” chain for M .

We claim that if Q consists of ≤ µ-presented modules, then F
satisfies 1.2 for µ. (We follow the proof in [7].)

First we need to define the auxiliary notions B(M) and D(A,M).
For M ∈ F , let B(M) consist of all sets X such that there is a “free”
chain {Mν : ν < σ} for M such that Y ∈ X if and only if Y ⊆M and
for all ν + 1 < σ, 〈Y 〉 ∩ (Mν+1 \Mν) 6= ∅ implies Mν+1 ⊆Mν + 〈Y 〉.
If A is an F-free factor of M , let D(A,M) consist of all pairs (X′,X)
such that there is a “free” chain {Mν : ν < σ} for M with A = Mν0

for some ν0, X is the “basis” for M determined by this chain, and
X′ = {Z ∈ X : Z ⊆ A}.

To prove 1.2(i), assume Y ∈ X and let A = 〈Y 〉. Suppose that
X is determined by the “free” chain {Mν : ν < σ}; for all ν < σ,
let Aν = A ∩Mν . Since Y ∈ X, for all ν < σ, either Aν+1/Aν = 0
or Aν+1/Aν is isomorphic to Mν+1/Mν ; in either case, the quotient
belongs to Q, so {Aν : ν < σ} is a “free” chain witnessing that
A ∈ F . Notice also that the “basis” of A determined by this chain is
{Z ∈ X : Z ⊆ A}, so 1.2(iv) follows.

Condition 1.2(ii) is obvious. For 1.2(iii) we use the assumption that
the members of Q are ≤ µ-presented. Suppose that X is determined
by the “free” chain {Mν : ν < σ}, as in the definition of “basis”.
Let Mσ = M . We prove by induction on ν ≤ σ that for any Y ∈ X
and any subset S of Mν of cardinality ≤ µ, there is an element Y ′

of X such that Y ⊆ Y ′, |Y ′| ≤ |Y | + µ and S ⊆ 〈Y ′〉, and such
that Y ′ = Y if S ⊆ 〈Y 〉. If ν = 0, there is nothing to prove. If ν
is a limit ordinal, define by induction on β < ν a chain of sets Yβ

in X of cardinality ≤ |Y | + µ such that Y ⊆ Y0 and 〈Yβ〉 contains
S ∩Mβ+1; since X is closed under unions of chains, we can do this
by the inductive hypothesis, and Y ′ =

⋃
β<ν Yβ will be the desired

set. If ν = β + 1, suppose first that 〈Y 〉 ∩ (Mβ+1 \Mβ) 6= ∅; then
Mβ+1 ⊆ Mβ + 〈Y 〉 by the definition of a “basis”. For each a ∈ S
(⊆Mβ+1) such that a /∈ 〈Y 〉, choose ya ∈ 〈Y 〉 such that a−ya ∈Mβ.
By induction there exists Y ′ ∈ X such that Y ⊆ Y ′, |Y ′| ≤ |Y | + µ
and {a− ya : a ∈ S} ⊆ 〈Y ′〉; hence S ⊆ 〈Y ′〉. If 〈Y 〉∩ (Mβ+1 \Mβ) =
∅ and S * 〈Y 〉, it suffices to show that there exists Ỹ ⊇ Y in X

such that |Ỹ | ≤ |Y | + µ and
〈
Ỹ

〉
∩ (Mβ+1 \Mβ) 6= ∅, for then we



8 PAUL C. EKLOF

are reduced to the first case. Since Mβ+1/Mβ is isomorphic to a
member of Q, there exists a generating set, G, of Mβ+1 over Mβ of
cardinality ≤ µ such that 〈G〉 ∩Mβ is ≤ µ-generated. By induction
we can choose Y ′′ in X containing Y such that |Y ′′| ≤ |Y | + µ and
〈G〉∩Mβ ⊆ 〈Y ′′〉. If 〈Y ′′〉∩(Mβ+1\Mβ) 6= ∅, let Ỹ = Y ′′. Otherwise,
let Ỹ = Y ′′∪G; in this case we must show that Ỹ ∈ X, in other words,
for all ν < σ,

〈
Ỹ

〉
∩ (Mν+1 \Mν) 6= ∅ implies Mν+1 ⊆ Mν +

〈
Ỹ

〉
.

For ν = β the conclusion follows by construction. In general suppose
that y + g ∈ Mν+1 \Mν where y ∈ 〈Y ′′〉 and g ∈ 〈G〉. If ν < β,
then y + g ∈ Mβ so y belongs to Mβ+1 (since g ∈ Mβ+1) and hence
y ∈ 〈Y ′′〉 ∩Mβ+1 ⊆ Mβ; but then g ∈ Mβ ∩ 〈G〉 ⊆ 〈Y ′′〉; thus y + g
shows that 〈Y ′′〉∩(Mν+1\Mν) 6= ∅ and we are done since Y ′′ ∈ X. The
final case is when ν > β; then y ∈Mν+1 \Mν since g ∈Mβ+1 ⊆Mν

and therefore Mν+1 ⊆ Mν + 〈Y ′′〉 since Y ′′ ∈ X. This completes the
proof of 1.2(iii).

As for 1.2(v), suppose that A = 〈Y 〉 where Y belongs to the “basis”
determined by the “free” chain {Mν : ν < σ}. Suppose that X′ is
a “basis” for A determined by a “free” chain {A′ρ : ρ < τ} for A.
We will define by induction an extension {A′ρ : ρ < τ ′} of the chain
{A′ρ : ρ < τ} which will be a “free” chain for M . The extension will
be defined to have the property that for all ρ ≥ τ and ν < σ,

(†) A′ρ ∩ (Mν+1 \Mν) 6= ∅ implies Mν+1 ⊆Mν +A′ρ.

Let A′τ = A. If A′ρ has been defined for all ρ ≤ β for some β ≥ τ ,
choose γ minimal such that Mγ+1 * A′β . (If there is none, then
A′β = M and we stop the construction.) Then, by continuity, Mγ ⊆
A′β. Set A′β+1 = A′β + Mγ+1. It follows from the choice of A′β+1

and the inductive property (†) for ρ = β and ν = γ that the natural
map Mγ+1/Mγ → A′β+1/A

′
β is an isomorphism, so A′β+1/A

′
β ∈ Q.

(Note that the map is one-one because otherwise (†) implies Mγ+1 ⊆
Mγ + A′β ⊆ A′β, a contradiction.) One can then check that (†) holds
for ρ = β + 1 and all ν. Finally, if X is the basis determined by the
chain {A′ρ : ρ < τ ′}, then (X

′
,X) ∈ D(A,M).

The proof of 1.2(v) shows that whenever A is a “free” factor of
M , any “free” chain for A can be extended to a “free” chain for M .
This allows us, given {Mα : α < ρ} as in 1.2(vi), to inductively define
a continuous chain {Bν : ν < τ} whose union is

⋃
α<ρMα and such
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that for every α < ρ, some initial segment of the chain {Bν : ν < τ}
is a “free” chain for Mα.

Finally, for 1.2(vii), we will show that there is a chain {Bν : ν < τ}
such that for all n ∈ ω, some initial segment {Bν : ν < αn} is a “free”
chain for Mn which determines Xn. It is then clear that the “basis”
determined by this chain contains

⋃
n∈ω Xn. Suppose that we have

constructed {Bν : ν < αn} for some n ∈ ω; by assumption, there is
a “free” chain {Kν : ν < σ} for Mn+1 which determines Xn+1 and is
such that Mn = Kν0 for some ν0 and Xn = {Z ∈ Xn+1 : Z ⊆ Mn}.
Let

Bαn+` = Kν0+`

for all ` ≥ 0 such that ν0 + ` < σ.

3. Proof of Theorem 1.4, part 1

In this section we will prove the following version of a singular
compactness theorem:

3.1 Theorem. Suppose that F satisfies 1.2 for µ. Let λ be a singular
cardinal > µ and let M be a λ-generated module such that M is
strongly κ+-F-free for all cardinals κ such that µ < κ < λ.
Then M is F-free.

This theorem involves the following notion:
3.2 Definition. For a cardinal κ, define M to be strongly κ+-F-
free, or simply strongly κ+-“free” if there is a family S of ≤ κ-
generated “free” submodules of M containing 0 and such that for any
subset X of M of cardinality κ and any N ∈ S, there exists N ′ ∈ S
such that N ′ ⊇ N ∪X and N is a “free” factor of N ′.

Remark. A module which is strongly-κ+-F-free is not necessarily
κ+-F-free. (See [17] for a counterexample.) The terminology origi-
nally arose in the context of abelian groups, where the implication
does hold.

The rest of this section is devoted to the proof of the theorem. Let
τ = cf(λ); so τ < λ since λ is singular. Choose and fix a continuous
increasing sequence of cardinals 〈κν : ν < τ〉, each strictly less than
λ, whose supremum is λ and such that κ0 > max{τ, µ}. Choose a
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generating set G for M of cardinality λ and a continuous increasing
chain {Gν : ν < τ} of subsets of G whose union is G and such that
the cardinality of Gν equals κν .We will define by induction on n ∈ ω
simultaneously, for all ν < τ , the following:

• a subset Cn
ν of M of cardinality κν ;

• a “free” submodule Fn
ν of M which is ≤ κν-generated;

• Xn
ν ∈ B(Fn

ν );
• Y n

ν ∈ Xn
ν+1 of cardinality κν .

We require the following for all n ∈ ω and ν < τ :
3.3 Properties

(0) Gν ⊆ Fn
ν ⊆ 〈Cn

ν 〉 ⊆ Fn+1
ν ;

(1) Fn
ν is a “free” factor of Fn+1

ν , and Xn
ν = Xn+1

ν � Fn
ν ;

(2) Cn−1
ρ ⊆ Cn

ν for all ρ ≤ ν.
(3) Y n

ν ⊆ Y n+1
ν ⊆ Cn+1

ν ⊆
〈
Y n+3

ν

〉
;

If we let Cν =
⋃

n∈ω 〈Cn
ν 〉, (2) implies that the Cν form a chain. We

require also that
(4) {Cν : ν < τ} is a continuous chain.

Assuming, for the moment, that we can do the inductive construc-
tion, we will finish the proof.

By 3.3(0), Cν =
⋃

n∈ω F
n
ν and

⋃
ν<τ Cν = M . By 1.2 (vi) and (vii)

and 3.3(1), Cν is “free” and
⋃

n∈ω Xn
ν is contained in a “basis” of Cν ;

call this “basis” Xν . By 3.3(3), Cν is generated by
⋃

n∈ω Y
n
ν and by

1.2(ii),
⋃

n∈ω Y
n
ν ∈ Xν+1. Therefore, Cν is a “free” factor of Cν+1.

But then, by 1.2(vi) and 3.3(4), M =
⋃

ν<τ Cν is “free”.

It remains to do the inductive construction. For each ν < τ , fix a
set Sν of ≤ κν-generated “free” submodules of M which witness that
M is strongly κ+

ν -“free”, as in Definition 3.2; we will choose Fn
ν to be

a member of Sν . At stage n we choose Fn
ν , Xn

ν , Cn−1
ν , and Y n

ν as well
as a set {un

ν,α : α < κν} of generators of Fn
ν . We begin with n = 0:

Pick F 0
ν ∈ Sν so that it contains Gν and is ≤ κν-generated. Pick

X0
ν ∈ B(F 0

ν ). Let C−1
ν = ∅ = Y 0

ν .
Now suppose n ≥ 0 and F k

ν , Xk
ν , C

k−1
ν , and Y k

ν have been chosen for
all k ≤ n and all ν < τ , along with a set of generators {uk

ν,α : α < κν}
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for F k
ν . Define

Cn
ν = Y n

ν ∪
⋃
ρ≤ν

Cn−1
ρ ∪ {un

ρ,α : ρ < τ , α < κν}.

Note that 〈Cn
ν 〉 contains Fn

ν because Cn
ν contains {un

ν,α : α < κν}.
Now choose Fn+1

ν ∈ Sν containing Fn
ν ∪ Cn

ν which is ≤ κν-generated
and such that Fn

ν is a “free” factor of Fn+1
ν ; this is possible by 3.2.

By 1.2(v) we can select Xn+1
ν ∈ B(Fn+1

ν ) such that the second part
of 3.3(1) holds. We can choose Y n+1

ν ∈ Xn+1
ν+1 containing Y n

ν and such
that

〈
Y n+1

ν

〉
contains Cn

ν ∩ Fn+1
ν+1 . (Add one element of Cn

ν ∩ Fn+1
ν+1

at a time using 1.2(iii) and take unions at limit stages, using 1.2(ii).)
It is easy to see that 3.3(0), (1), and (2) are satisfied. The first two
inclusions in 3.3(3) are clear from construction. For the last one,
note that Cn+1

ν ⊆ Cn+2
ν+1 ⊆ Fn+3

ν+1 and Cn+1
ν ⊆ Cn+2

ν , so Cn+1
ν ⊆

Cn+2
ν ∩ Fn+3

ν+1 ⊆
〈
Y n+3

ν

〉
.

It remains to check 3.3(4). Suppose that γ is a limit ordinal less
than τ . We must prove that Cγ ⊆

⋃
ν<γ Cν . But

Cγ =
⋃
n∈ω

Cn
γ =

⋃
n∈ω

Fn
γ

by 3.3(0), which, by construction, equals⋃
n∈ω

〈
un

γ,α : α < κγ

〉
=

⋃
n∈ω

⋃
ν<γ

〈
un

γ,α : α < κν

〉
since κγ = sup{κν : ν < γ}. But the latter is contained in⋃

n∈ω

⋃
ν<γ

〈Cn
ν 〉

by construction of Cn
ν . (Note that in defining Cn

ν we include un
ρ,α for

all ρ, as long as α < κν .) Finally⋃
n∈ω

⋃
ν<γ

〈Cn
ν 〉 =

⋃
ν<γ

Cν

by definition of Cν . This completes the proof of Theorem 3.1.
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4. Proof of Theorem 1.4, part 2

The proof of Theorem 1.4 will be complete once we prove the
following result.

Theorem 4.1 For any infinite cardinal κ > µ, if M is κ++-F-free,
then M is strongly κ+-F-free.

We begin the proof of Theorem 4.1. Fix a cardinal κ such that
M is κ++-“free”. For any ≤ κ-generated “free” submodule N of M
define the N -Shelah game. This is a game between two players, I
and II, who take turns making moves. For each n ∈ ω, player I plays
first a subset Xn of M of cardinality κ; Player II replies with a ≤ κ-
generated submodule Nn of M (containing N). So after n+ 1 moves
by each player, we have a sequence

X0, N0, X1, N1, ..., Xn, Nn

The game may go on for ω moves by each player. Player II wins if
at each move he plays a “free” submodule Nn containing Nn−1 ∪Xn

(where N−1 = N) such that Nn−1 is a “free” factor of Nn. Otherwise
player I wins; that is, I wins if and only if after some move Xn, player
II is unable to respond with a legal move.

A winning strategy for player I in the N -Shelah game is a function
sN which gives a first move sN (N) for player I, and then for all n ∈ ω
gives a move sN (N0, ..., Nn−1) to follow the play

sN (N), N0, sN (N0), N1, sN (N0, N1)..., sN (N0, ...Nn−2), Nn−1

such that player I will eventually win the game played according to
the strategy, i.e., player II will be unable to move at some stage.

We claim that player I does not have a winning strategy in the
0-Shelah game. Assuming this is the case for a moment, we can com-
plete the proof. Let S consist of all ≤ κ-generated “free” submodules
N ofM such that I does not have a winning strategy for the N -Shelah
game. We must check that S satisfies the conditions in Definition 3.2.
By the claim, 0 belongs to S. Suppose that N ∈ S and X is a subset
of M of cardinality κ. Consider a play of the N -Shelah game where
player I’s first move is X. Since I does not have a winning strategy
for the N -Shelah game, player II must be able to respond with a
legal move N ′ such that I does not have a winning strategy for the
N ′-Shelah game, for otherwise player I would have a winning strategy
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for the N -Shelah game (whose first move is X). But then N ′ belongs
to S and (because N ′ is a legal move) N ∪X ⊆ N ′ and N is a “free”
factor of N ′.

So it remains to prove the claim. Given a strategy s = s0 for player
I in the 0-Shelah game, we show how player II can defeat the strategy.
Let C be a set of ≤ κ+-generated submodules as in the definition
of κ++-“free” (cf. Definition 1.1). We will construct by induction
on ν a continuous chain {Nν : ν < κ+} consisting of ≤ κ-generated
submodules of M . At each stage we will also pick an element Fν of
C which contains Nν , and a set {uν

τ : τ < κ+} of generators of Fν .
We also fix a bijection ψ of κ+ with κ+ × κ+ such that for all ν, if
ψ(ν) = (α, τ) then α ≤ ν. Let N0 = 0 and let F0 be any member of
C. Suppose that Nα, Fα, and {uα

τ : τ < κ+} have been chosen for each
α < ν for some ν. If ν is a limit ordinal we simply take unions. If ν
is a successor, choose Nν so that it contains uα

τ where ψ(ν − 1) = (α,
τ), and such that it also contains s(0) and s(Nα1 , . . . , Nαk

) whenever
k ≥ 1 and α1 < · · · < αk < ν and s(Nα1 , . . . , Nαk

) is defined. (This
is possible since there are at most κ such sequences.) Choose Fν in
C to contain Nν ∪ Fν−1. This completes the inductive step in the
construction.

Now let F =
⋃

ν<κ+ Nν . Then F =
⋃

ν<κ+ Fν by construction; so
F ∈ C since C is closed under unions of well-ordered chains of length
< κ++, so F is “free”; let X be a “basis” of F .

Let D be the subset of κ+ defined by α ∈ D if and only if Nα is
generated by an element Yα of X. Then D is an unbounded subset of
κ+. Indeed, given any γ < κ+, we can choose an increasing sequence

γ = ν0 < ν1 < .... < νn < ...

of elements of κ, and a chain of elements of X

Y0 ⊆ Y1 ⊆ ... ⊆ Yn ⊆ ...

such that for all n, Yn (⊆ F ) has cardinality κ and

Nνn ⊆ 〈Yn〉 ⊆ Nνn+1 .

This is possible by properties of a “basis”. Then α = sup{νn : n ∈ ω}
is an element of D where Yα =

⋃
n∈ω Yn.

Now player II’s strategy to defeat s is to play Nα where α ∈ D;
thus a play of the game according to this strategy will look like

s(0), Nα1 , s(Nα1), Nα2 , s(Nα1 , Nα2), . . .
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where each αk ∈ D and α1 < α2 < . . . . Player II will win because for
each k, Nαk

is a “free” factor ofNαk+1
by 1.2(iv) because Yαk

⊆ Yαk+1
.

Thus the claim is proved, and the proof of 4.1 is finished.

4.2 Remark. Examination of the proofs of Theorems 3.1 and 4.1 will
show that the following weaker notion of “sufficiently many” suffices
for the conclusion of Theorem 1.4: there is a continuous increasing
sequence of cardinals 〈κν : ν < τ〉, each strictly less than λ, whose
supremum is λ, such that κ0 > max{τ, µ} and such that M is κ++

ν -
F-free for all ν < τ .

5. Applications to deconstruction

The purpose of this section is to illustrate the role of the Singular
Compactness Theorem in some applications. Complete proofs will
not be given. Recall that the notion of Q-filtered is defined in III of
section 2.

5.1 Definition. A class A of modules is κ-deconstructible if
every module in A is Q-filtered, where Q is the set of ≤ κ-generated
elements of A. A is deconstructible (or bounded) if it is κ-
deconstructible for some κ.

We want to explain the role of the Singular Compactness Theorem
in proving the deconstructibility of certain classes A. The Singular
Compactness Theorem will be applied for F the class of Q-filtered
modules, where Q is as above. The classes A we consider will be of
the form

⊥B = {N | Ext1R(N,M) = 0 for all M ∈ B}

for some class B (which could be a proper class or a set).
The proof that every member M of A is κ-deconstructible (for a

fixed κ) proceeds by induction on the minimal number of generators,
λ, of M . When λ is regular, a result of the following type is used:
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5.2 If M is λ-generated and is the union of a con-
tinuous chain {Mα : α < λ} of < λ-generated sub-
modules belonging to A = ⊥B, then there is a con-
tinuous increasing f : λ → λ such that the contin-
uous chain {Mf(α) : σ < λ} has the property that
Mf(α+1)/Mf(α) ∈ A for all α < λ.

Such a result can be obtained under either a set-theoretic hypothe-
sis (the so-called “diamond” principles which are consequences of the
Axiom of Constructibility, V = L) or (in ZFC) under a hypothesis on
B (that B is closed under direct sums). Once one has the conclusion
of 5.2, one can apply the inductive hypothesis to Mf(α+1)/Mf(α) and
“fill-in” between Mf(α) and Mf(α+1) with a chain whose successive
quotients are ≤ κ-generated.

When λ is singular, the Singular Compactness Theorem is applied.
The conclusion sought is exactly that M is F-free (where F is as
described above) but some argument must be made to obtain the
hypothesis of Theorem 1.4. We give an example where it is easy to
verify the hypothesis of 1.4.

5.3 Theorem. Assume V = L. Suppose N is an R-module of
injective dimension 1. Then ⊥N is deconstructible.

Proof. Let µ = |R| + |N | + ℵ0. We will prove that ⊥N is µ-
deconstructible. It is a fact, which we will not prove here, that 5.2
holds when λ is a regular cardinal > µ (under the hypothesis V = L).
The proof that a λ-generated M ∈ ⊥N is µ-deconstructible proceeds
by induction on λ. For λ ≤ µ, there is nothing to prove. When λ > µ
is regular, we use 5.2 as discussed immediately after 5.2. Suppose
that λ is singular. We apply the Singular Compactness Theorem, 1.4,
with F the class of Q-filtered modules, where Q is the set of ≤ µ-
generated elements of ⊥N . (Note that since µ ≥ |R|, a ≤ µ-generated
module is ≤ µ-presented.) Since N has injective dimension 1, every
submodule of M also belongs to ⊥N . By inductive hypothesis, ev-
ery < λ-generated submodule is F-free; so the hypothesis of 1.4 is
satisfied and we conclude that M is F-free. �

As a special case, we have the conclusion about Whitehead groups
mentioned in 0.1. The Whitehead groups are, by definition, the mem-
bers of ⊥Z. (For more on Whitehead groups, see [7, Chaps XII and
XIII].)
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5.4 Corollary Assume V = L. Then every Whitehead group is ℵ0-
deconstructible. Hence, since every countable Whitehead group is
(provably in ZFC) free, every Whitehead group is free.

Proof. The first assertion is a special case of Theorem 5.3 and
its proof. It is a classical theorem of K. Stein that every countable
Whitehead group is free, so the last assertion follows because when-
ever {Mν : ν < σ} is a continuous chain such that M0 = 0 and every
quotient of successive members is free, we can inductively find a basis
for the union of the chain. �

Theorem 5.3 has been extended by J. Saroch and J. Trlifaj ([15])
to the more general assumption that ⊥N is closed under pure sub-
modules. Other applications of the Singular Compactness Theorem
in a deconstructibility argument can be found in:

(1) [6], for Baer modules over arbitrary domains;
(2) [2], for 1-tilting modules;
(3) [16], for n-tilting modules.

In all of these, the deconstructibility is a theorem of ZFC, and
not all submodules of smaller cardinality are “free”, so some effort is
involved in showing that there are enough “free” submodules.

These deconstructibility results are a key step in obtaining struc-
tural information about the modules in question. In particular, the
first result implies that every Baer module (over an arbitrary in-
tegral domain) is projective provided that the countably-generated
Baer modules are projective. The latter has been proved by Angeleri-
Hugel, Bazzoni and Herbera (see [1]). The second and third results
are used to prove that all tilting modules are of finite type. The case
of 1-tilting modules was settled by Bazzoni and Herbera [3] and the
general case by Bazzoni and Šťov́ıček [4].
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