SOME USES OF SET THEORY IN ALGEBRA

Stanford Logic Seminar February 10, 2009

Plan

- I. The Whitehead Problem early history
- II. Compactness and Incompactness
- III. Deconstruction

ALAN MEKLER 1947–1992

Ph.D. Stanford University, 1976

Asst., Assoc., Full Professor Simon Fraser University, 1980–1992

P. Eklof and A. Mekler, Almost Free Modules, North-Holland (1990); Preface begins:

"The modern era in set-theoretic methods in algebra can be said to have begun on July 11, 1973 when Saharon Shelah borrowed László Fuchs' *Infinite Abelian Groups* from the Hebrew University library. Soon thereafter, he showed that Whitehead's Problem — to which many talented mathematicians had devoted much creative energy — was not solvable in ordinary set theory (ZFC)."

"One day I have come and see the second volume of László; its colour was attractive green. I take it and ask myself isn't everything known on [abelian groups]... I start to read each linearly; after reading about two thirds of the first volume I move to the second volume and read the first third. I mark the problems (I think six) which attract me—combination of being stressed by László, seem to me I have a chance, and how nice the problem look"

"I have thought the most important is to build indecomposable abelian groups in every cardinality. I thought the independence of Whitehead's problem will be looked on suspiciously. As you know abelian group theorists thought differently." [communication from Shelah]

I. The Whitehead Problem

"module" means left R-module, where R is a ring "group" means abelian group, i.e. \mathbb{Z} -module A module is **free** if it has a basis

A module is **free** if it has a basis or, equivalently, is isomorphic to a direct sum of copies of R.

Fact: A subgroup of a free group is free. (This is not true for modules in general.)

The Whitehead Problem

Is every Whitehead group (of arbitrary cardinality) free? (Ehrenfeucht 1955)

Fact: Every free group is a Whitehead group.

Classic result: Every countable Whitehead group is free. (Stein 1951;

Ehrenfeucht 1955)

Fact: A subgroup of a Whitehead group is a Whitehead group.

Hence, if A is a Whitehead group of cardinality \aleph_1 , then every countable subgroup of A is free, i.e., A is \aleph_1 -free.

S. Shelah, *Infinite abelian groups, Whitehead problem and some constructions*, Israel J. Math **18** (1974)

Theorem (Shelah)

- (1) Assuming V = L, every Whitehead group of cardinality \aleph_1 is free;
- (2) Assuming MA $+ \neg$ CH, there is a Whitehead group of cardinality \aleph_1 which is not free.

The proof of (1) requires $\diamondsuit_{\omega_1}(S)$ for *every* stationary subset S of \aleph_1 .

In Math. Reviews, a review of L. Fuchs' **Infinite Abelian Groups, vol II** states:

Since Volume II was written, S. Shelah [Israel J. Math. 18 (1974), 243–256] has shown that the statement "Every W-group of cardinal \aleph_1 is free" is independent of ZFC (Paul Hill has shown that GCH implies that every W-group of cardinality \aleph_Ω is free and J. Rotman has an easy proof that CH implies that every W-group is free).

The mathematical assertions in parenthesis are wrong, as Shelah later showed:

Devlin-Shelah (c. 1977): weak CH $(2^{\aleph_0} < 2^{\aleph_1})$ implies "weak diamond" implies that Whitehead groups are $L_{\infty\omega_1}$ -free.

But

Shelah (c. 1977): It is consistent with ZFC + GCH that there are Whitehead groups of cardinality \aleph_1 which are not free.

IIa. Compactness

Shelah's original paper proves:

Theorem. Assuming V = L, if κ is a regular uncountable cardinal and every Whitehead group of cardinality $<\kappa$ is free, then every Whitehead group of cardinality κ is free.

(The proof uses $\Diamond_{\kappa}(S)$ for every stationary subset S of κ .)

An inductive argument shows that every Whitehead group of cardinality \aleph_n is free for all $n \in \omega$.

To go further one needs a result for singular cardinals.

Shelah's Singular Compactness Theorem

Let λ be a singular cardinal and A a group [abelian or non-abelian] of cardinality λ such that every subgroup of cardinality $<\lambda$ is free. Then A is free.

Hence: assuming V = L, every Whitehead group is free.

Shelah's Singular Compactness Theorem was much more general.

Let ${\mathcal F}$ be a class of modules; the members of ${\mathcal F}$ will be called " ${\mathcal F}$ -free".

Shelah's Singular Compactness Theorem-more general version

Suppose λ is a singular cardinal and M is a module of cardinality λ such that for all $\kappa < \lambda$, enough submodules of cardinality κ are \mathcal{F} -free; then M is \mathcal{F} -free.

This is a template for a theorem. A specific example will be given later.

Ilb. Incompactness

Question: For which regular uncountable cardinals κ is there an abelian group of cardinality κ which is not free, but such that every subgroup of cardinality $<\kappa$ is free? Such a κ will be called **incompact**.

FACTS: (1) A weakly compact cardinal is not incompact.

- (2) Assuming V = L, a regular uncountable κ is incompact only if it is not weakly compact.
- (3) [Magidor-Shelah] Every regular uncountable cardinal $< \aleph_{\omega^2}$ is incompact. Moreover, if \aleph_{α} and \aleph_{β} are incompact, then so are $\aleph_{\alpha+1}$ and $\aleph_{\alpha+\aleph_{\beta}+1}$.
- (4)[Magidor-Shelah] It is consistent with ZFC + GCH (assuming the consistency of certain large cardinals) that \aleph_{ω^2+1} is not incompact.
- (5) [Shelah] An uncountable cardinal κ is incompact if and only if there is a family of size κ of countable sets which does not have a transversal (a one-one choice function) but every subfamily of size $< \kappa$ does.

III. Deconstructibility

Let A be a class of modules.

Definitions

 $\mathcal A$ is μ -deconstructible if every module in $\mathcal A$ is the union of a chain of submodules $\{A_{\alpha}: \alpha<\sigma\}$ which are members of $\mathcal A$ such that:

- (1) $A_{\beta} = \bigcup_{\alpha < \beta} A_{\alpha}$ for all limit ordinals $\beta < \sigma$; and
- (2) for all $\alpha < \sigma$, $A_{\alpha+1}/A_{\alpha} \in \mathcal{A}$ and has cardinality $< \mu$.

 \mathcal{A} is deconstructible if it is μ -deconstructible for some μ .

We will restrict to classes of the form

 $\mathcal{A} = {}^{\perp}\mathcal{B} = \{A \mid \mathsf{Ext}^1(A,B) = 0 \text{ for all } B \in \mathcal{B}\} \text{ for some set or class } \mathcal{B}.$

Recall: $\operatorname{Ext}^1(A,B)=0$ iff every short exact sequence

$$0 \rightarrow B \rightarrow M \rightarrow A \rightarrow 0$$

splits, i.e., up to isomorphism the only one is

$$0 \to B \to B \oplus A \to A \to 0$$

If $\mathcal{B} = \{\mathbb{Z}\}$, then \mathcal{A} is the class of Whitehead groups.

Lemma.

Fix A and μ . If \mathcal{F} is the class of μ -deconstructible members of A, then the Singular Compactness Theorem applies to the notion of \mathcal{F} -free (for sufficiently large singular cardinals); i.e.,

If λ is a sufficiently large singular cardinal and $M \in \mathcal{A}$ has cardinality λ and enough submodules of cardinality $<\lambda$ are μ -deconstructible, then M is μ -deconstructible.

Theorem.

Assuming V = L, the class of Whitehead groups is \aleph_1 -deconstructible.

Corollary.

Assuming V = L, every Whitehead group is free

The proof uses the homological fact:

If $A=\bigcup_{\alpha<\sigma}A_{\alpha}$ and $A_0=0$ and $A_{\alpha+1}/A_{\alpha}$ are free for all $\alpha<\sigma$, then A is free.

Baer modules

Let R be an integral domain. Let $\mathcal T$ be the class of torsion-free R-modules.

Let
$$A = {}^{\perp}T = \{A \mid \operatorname{Ext}^1(A, B) = 0 \text{ for all } B \in T\}.$$

Say A is a **Baer module** if it belongs to A.

Question (Kaplansky): are all Baer modules over an arbitrary ID projective (i.e., a direct summand of a free module)?

Theorem. (Eklof-Fuchs-Shelah 1990)

The class of Baer modules is \aleph_1 -deconstructible.

Question: Are the countably-generated Baer modules projective?

Theorem. (Angeleri Hugel-Bazzoni-Herbera 2005)

Every countably-generated Baer module over an arbitrary ID is projective. Hence, *every* Baer module is projective.

Definition

A module *T* is *n*-tilting if:

- (1) T has proj. dim. $\leq n$;
- (2) Ext $^i(A,B)=0$ for all $i\geq 2$ and all $A\in {}^\perp(\{T\}^\perp), B\in \{T\}^\perp$; and
- (3) $\{T\}^{\perp}$ is closed under direct sums.

Tilting modules

A tilting module has *finite type* (resp. *countable type*) if there is a set S of finitely-presented modules (resp. countably-presented modules) such that $S^{\perp} = \{T\}^{\perp}$.

Theorems

- 1. (Bazzoni-E-Trlifaj 2003) All 1-tilting modules are of countable type.
- 2. (Bazzoni-Herbera 2005) All 1-tilting modules are of finite type.
- 3. (Šťovíček-Trlifaj 2005) All *n*-tilting modules are of countable type.
- 4. (Bazzoni-Šťovíček 2005) All *n*-tilting modules are of finite type.

REFERENCES

- L. Angeleri Hügel, S. Bazzoni and D. Herbera, *A solution to the Baer splitting problem* Trans. Amer. Math. Soc. 360 (2008), 2409–2421.
- S. Bazzoni, P. C. Eklof and J. Trlifaj, *Tilting cotorsion pairs*, Bull. LMS **37** (2005), 683–696.
- S. Bazzoni and J. Šťovíček, All tilting modules are of finite type, Proc. Amer. Math. Soc. ${\bf 135}$ (2007), 3771–3781
- P. C. Eklof, *Shelah's Singular Compactness Theorem*, Publ. Mat. **52** (2008), 3–18.
- P. C. Eklof, L. Fuchs and S. Shelah, *Baer modules over domains*, Trans. Amer. Math. Soc. **322** (1990), 547–560.
- P. C. Eklof and A. H. Mekler, **Almost Free Modules**, Rev. Ed, North-Holland (2002).
- J. Šaroch and J. Trlifaj, *Completeness of Cotorsion Pairs*, Forum Math. **19** (2007), 749–760.
- J. Šťovíček and J. Trlifaj, *All tilting modules are of countable type*, Bull LMS **39** (2007), 121–132.