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Signal Recovery From Incomplete and Inaccurate
Measurements via Regularized Orthogonal

Matching Pursuit
Deanna Needell∗ and Roman Vershynin

Abstract—We demonstrate a simple greedy algorithm that can
reliably recover a vector v ∈ R

d from incomplete and inaccurate
measurementsx = Φv+e. Here Φ is aN×d measurement matrix
with N ≪ d, and e is an error vector. Our algorithm, Regularized
Orthogonal Matching Pursuit (ROMP), seeks to provide the
benefits of the two major approaches to sparse recovery. It
combines the speed and ease of implementation of the greedy
methods with the strong guarantees of the convex programming
methods.

For any measurement matrix Φ that satisfies a quantitative
restricted isometry principle, ROMP recovers a signal v with
O(n) nonzeros from its inaccurate measurementsx in at most
n iterations, where each iteration amounts to solving a Least
Squares Problem. The noise level of the recovery is proportional
to

√
log n‖e‖2. In particular, if the error term e vanishes the

reconstruction is exact.
This stability result extends naturally to the very accurate

recovery of approximately sparse signals.

Index Terms—Compressed Sensing, sparse approximation
problem, Orthogonal Matching Pursuit, Uncertainty Principle.

I. I NTRODUCTION

A. Exact recovery by convex programming

The recent massive work in the area of Compressed Sensing,
surveyed in [4], rigorously demonstrated that one can algo-
rithmically recover sparse (and, more generally, compressible)
signals from incomplete observations. The simplest model is
a d-dimensional signalv with a small number of nonzeros:

v ∈ R
d, |supp(v)| ≤ n≪ d.

Such signals are calledn-sparse. We collectN ≪ d non-
adaptive linear measurements ofv, given asx = Φv where
Φ is someN by d measurement matrix. The sparse recovery
problem is to then efficiently recover the signalv from its
measurementsx.

A necessary and sufficient condition for exact recovery
is that the mapΦ be one-to-one on the set ofn-sparse
vectors. Much work has been done to show that under some
circumstances, a convex optimization problem can be used to
recover such signals (see e.g. [14], [7]). These results show
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that the sparse recovery problem is equivalent to the convex
program

min ‖u‖1 subject to Φu = x (I.1)

and therefore is computationally tractable. Candès and Tao [7]
provide a result showing that when the mapΦ is an almost
isometry on the set ofO(n)-sparse vectors, the program (I.1)
recovers sparse signals. This condition imposed onΦ is the
restricted isometry condition:

Definition 1.1 (Restricted Isometry Condition):A
measurement matrixΦ satisfies the Restricted Isometry
Condition (RIC) with parameters(m, ε) for ε ∈ (0, 1) if we
have

(1−ε)‖v‖2 ≤ ‖Φv‖2 ≤ (1+ε)‖v‖2 for all m-sparse vectors.

Under the Restricted Isometry Condition with parameters
(2n,
√

2 − 1), the convex program (I.1) exactly recovers an
n-sparse signalv from its measurementsx [7], [8].

The Restricted Isometry Condition can be viewed as an ab-
stract form of the Uniform Uncertainty Principle of harmonic
analysis ([9], see also [5] and [17]). Many natural ensem-
bles of random matrices, such as partial Fourier, Bernoulli
and Gaussian, satisfy the Restricted Isometry condition with
parametersn ≥ 1, ε ∈ (0, 1/2) provided that

N = nε−O(1) logO(1) d;

see e.g. Section 2 of [20] and the references therein. Therefore,
a computationally tractable exact recovery of sparse signals
is possible with the number of measurementsN roughly
proportional to the sparsity leveln, which is usually much
smaller than the dimensiond.

B. Exact recovery by greedy algorithms

An important alternative to convex programming is greedy
algorithms, which have roots in Approximation Theory. A
greedy algorithm computes the support ofv iteratively, at
each step finding one or more new elements (based on some
“greedy” rule) and subtracting their contribution from the
measurement vectorx. The greedy rules vary. The simplest
rule is to pick a coordinate ofΦ∗x of the biggest magnitude;
this defines the well known greedy algorithm called Orthogo-
nal Matching Pursuit (OMP), known otherwise as Orthogonal
Greedy Algorithm (OGA) [23].

Greedy methods are usually fast and easy to implement.
For example, givenN ≥ Cn log(d/δ) measurements with
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δ ∈ (0, 0.36), OMP succeeds in justn iterations except with
probabilityδ [23]. Since each iteration amounts to solving one
least-squares problem, its running time is always polynomial
in n, N and d. Much promising work has been done on
the complexity of linear programming techniques [1], and
their applications to compressed sensing (see [15], [2], [24]).
However, the greedy approach may still be more practical for
many applications. For more discussion, see [23] and [20].

A variant of OMP was recently found in [20] that has
guarantees similar to those of convex programming meth-
ods, with only an added theoretical logarithmic factor.1 This
greedy algorithm is called Regularized Orthogonal Match-
ing Pursuit (ROMP); we state it in Section I-C below.
Under the Restricted Isometry Condition with parameters
(2n, 0.03/

√
log n), ROMP exactly recovers ann-sparse signal

v from its measurementsx. Since this paper was written,
other algorithms have been developed that also provide strong
guarantees, and even without the logarithmic factor. See the
remark at the end of Section IV for details.

Summarizing,the restricted isometry principle is a guar-
antee for efficient sparse recovery; one can provably use
either convex programming methods(I.1) or greedy algorithms
(ROMP).

C. Stable recovery by convex programming and greedy algo-
rithms

A more realistic scenario is where the measurements are
inaccurate (e.g. contaminated by noise) and the signals are
not exactly sparse. In most situations that arise in practice,
one cannot hope to know the measurement vectorx = Φv
with arbitrary precision. Instead, it is perturbed by a small
error vector:x = Φv + e. Here the vectore has unknown
coordinates as well as unknown magnitude, and it needs not
be sparse (as all coordinates may be affected by the noise).
For a recovery algorithm to be stable, it should be able
to approximately recover the original signalv from these
perturbed measurements.

The stability of convex optimization algorithms for sparse
recovery was studied in [12], [22], [13], [6]. Assuming thatone
knows a bound on the magnitude of the error,‖e‖ ≤ δ, and
that the measurement matrixΦ has sufficiently small restricted
isometry constants, it was shown in [6] that the solutionv̂ of
the convex program

min ‖u‖1 subject to ‖Φu− x‖2 ≤ δ (I.2)

is a good approximation to the unknown signal:‖v − v̂‖2 ≤
Cδ.

In contrast, the stability of greedy algorithms for sparse re-
covery has not been well understood until recently. Numerical
evidence [13] suggests that OMP should be less stable than
the convex program (I.2), but no theoretical results have been
known in either the positive or negative direction. The present
paper seeks to remedy this situation.

We prove that the bound for the stability of ROMP has
the same form as that of the convex program (I.2), up to a

1OMP itself does not have such strong guarantees, see [21].

logarithmic factor. Although the logarithmic factor produces
stronger requirements for the restricted isometry condition of
the measurement matrix, we speculate that this factor is only
an artifact of our proofs. This result essentially bridges agap
between convex programming and greedy approaches to sparse
recovery.

REGULARIZED ORTHOGONAL MATCHING PURSUIT

(ROMP)
INPUT: Measurement vectorx ∈ R

N and sparsity leveln
OUTPUT: Index setI ⊂ {1, . . . , d}, reconstructed vector
v̂ = y
Initialize: Let the index setI = ∅ and the residualr = x.
Repeat the following stepsn times or until|I| ≥ 2n:
Identify: Choose a setJ of the n biggest nonzero coordi-
nates in magnitude of the observation vectoru = Φ∗r, or
all of its nonzero coordinates, whichever set is smaller.
Regularize: Among all subsetsJ0 ⊂ J with comparable
coordinates:

|u(i)| ≤ 2|u(j)| for all i, j ∈ J0,

chooseJ0 with the maximal energy‖u|J0
‖2.

Update: Add the setJ0 to the index set:I ← I ∪ J0, and
update the residual:

y = argmin
z∈RI

‖x− Φz‖2; r = x− Φy.

Notation.Here and throughout we writef |T to denote the
vectorf restricted to the coordinates indexed byT .

Remark.The algorithm requires some knowledge about the
sparsity leveln, and there are several ways to estimate this
parameter. One such way is to conduct empirical studies using
various sparsity levels and select the level which minimizes
‖Φv̂ − x‖2 for the output v̂. Testing sparsity levels from
a geometric progression, for example, would not contribute
significantly to the overall runtime.

Theorem 1.2 (Stability under measurement perturbations):
Let Φ be a measurement matrix satisfying the Restricted
Isometry Condition with parameters (4n, ε) for
ε = 0.01/

√
log n. Let v ∈ R

d be an n-sparse vector.
Suppose that the measurement vectorΦv becomes corrupted,
so that we considerx = Φv + e wheree is some error vector.
Then ROMP produces an approximation tov that satisfies:

‖v − v̂‖2 ≤ 104
√

log n‖e‖2. (I.3)

Note that in the noiseless situation (e = 0) the reconstruc-
tion is exact:v̂ = v. This case of Theorem 1.2 was proved in
[20].

Our stability result extends naturally to the even more
realistic scenario where the signals are only approximately
sparse. Here and henceforth, denote byfm the vector of the
m biggest coefficients in absolute value off .

Corollary 1.3 (Stability of ROMP under signal perturbations):
Let Φ be a measurement matrix satisfying the Restricted
Isometry Condition with parameters (8n, ε) for
ε = 0.01/

√
log n. Consider an arbitrary vectorv in R

d.
Suppose that the measurement vectorΦv becomes corrupted,
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so we considerx = Φv + e where e is some error vector.
Then ROMP produces an approximation tov2n that satisfies:

‖v̂ − v2n‖2 ≤ 159
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

. (I.4)

Remarks. 1. The termv2n in the corollary can be replaced
by v(1+δ)n for any δ > 0. This change will only affect the
constant terms in the corollary.

2. We can apply Corollary 1.3 to the largest2n coordinates
of v and use Lemma 3.1 below to produce an error bound for
the entire vectorv. Along with the triangle inequality and the
identity v − v2n = (v − vn)− (v − vn)n, these results yield:

‖v̂ − v‖2 ≤ 160
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

. (I.5)

3. For the convex programming method (I.2), the stability
bound (I.5) was proved in [6], and even without the logarith-
mic factor. We conjecture that this factor is also not needed
in our results for ROMP.

4. Unlike the convex program (I.2), ROMP succeeds with
absolutely no prior knowledge about the errore; its magnitude
can be arbitrary. ROMP does however, require knowledge
about the sparsity leveln. Although often these parameters
may be related, it may be more natural to impose sparsity
awareness in some applications.

5. One can use ROMP to approximately compute a2n-
sparse vector that is close tothe best2n-term approximation
v2n of an arbitrary signalv. To this end, one just needs to retain
the 2n biggest coordinates of̂v. Indeed, Corollary 3.2 below
shows that the best2n-term approximations of the original
and the reconstructed signals satisfy:

‖v2n − v̂2n‖2 ≤ 477
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

.

6. An important special case of Corollary 1.3 is for the
class of compressible vectors, which is a common model in
signal processing, see [9], [11]. Supposev is a compressible
vector in the sense that its coefficients obey a power law: for
somep > 1, the k-th largest coefficient in magnitude ofv is
bounded byCpk

−p. Then (I.5) yields the following bound on
the reconstructed signal:

‖v − v̂‖2 ≤ C ′
p

√
log n

np−1/2
+ C ′′

√

log n‖e‖2. (I.6)

As observed in [6], without the logarithmic factor this bound
would be optimal; no algorithm can perform fundamentally
better.

The rest of the paper has the following organization. In
Section II, we prove our main result, Theorem 1.2. In Sec-
tion III, we deduce the extension for approximately sparse
signals, Corollary 1.3, and a consequence for bestn-term
approximations, Corollary 3.2. In Section IV, we demonstrate
some numerical experiments that illustrate the stability of
ROMP.
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II. PROOF OFTHEOREM 1.2

We begin by showing that at every iteration of ROMP, either
at least50% of the selected coordinates from that iteration are
from the support of the actual signalv, or the error bound
already holds. This directly implies Theorem 1.2.

Theorem 2.1 (Stable Iteration Invariant of ROMP):Let Φ
be a measurement matrix satisfying the Restricted Isometry
Condition with parameters(4n, ε) for ε = 0.01/

√
log n. Let v

be a non-zeron-sparse vector with measurementsx = Φv+e.
Then at any iteration of ROMP, after the regularization step
whereI is the current chosen index set, we haveJ0 ∩ I = ∅
and (at least) one of the following:

(i) |J0 ∩ supp(v)| ≥ 1
2 |J0|;

(ii) ‖v|supp(v)\I‖2 ≤ 100
√

log n‖e‖2.

We show that the Iteration Invariant implies Theorem 1.2
by examining the three possible cases:

Case 1: (ii) occurs at some iteration.We first note that
since|I| is nondecreasing, if (ii) occurs at some iteration, then
it holds for all subsequent iterations. To show that this would
then imply Theorem 1.2, we observe that by the Restricted
Isometry Condition and since|supp(v̂)| ≤ |I| ≤ 3n,

(1− ε)‖v̂ − v‖2 − ‖e‖2 ≤ ‖Φv̂ − Φv − e‖2.

Then again by the Restricted Isometry Condition and defi-
nition of v̂,

‖Φv̂−Φv−e‖2 ≤ ‖Φ(v|I)−Φv−e‖2 ≤ (1+ε)‖v|supp(v)\I‖2+‖e‖2.

Thus we have that

‖v̂ − v‖2 ≤
1 + ε

1− ε
‖v|supp(v)\I‖2 +

2

1− ε
‖e‖2.

Thus (ii) of the Iteration Invariant would imply Theorem 1.2.
Case 2: (i) occurs at every iteration andJ0 is always

non-empty. In this case, by (i) and the fact thatJ0 is always
non-empty, the algorithm identifies at least one element of
the support in every iteration. Thus if the algorithm runsn
iterations or until|I| ≥ 2n, it must be thatsupp(v) ⊂ I,
meaning thatv|supp(v)\I = 0. Then by the argument above
for Case 1, this implies Theorem 1.2.

Case 3: (i) occurs at each iteration andJ0 = ∅ for some
iteration. By the definition ofJ0, if J0 = ∅ thenu = Φ∗r = 0
for that iteration. By definition ofr, this must mean that

Φ∗Φ(v − y) + Φ∗e = 0.

This combined with Part 1 of Proposition 2.2 below (and its
proof, see [20]) applied with the setI ′ = supp(v) ∪ I yields

‖v − y + (Φ∗e)|I′‖2 ≤ 2.03ε‖v − y‖2.

Then combinining this with Part 2 of the same Proposition,
we have

‖v − y‖2 ≤ 1.1‖e‖2.

Sincev|supp(v)\I = (v−y)|supp(v)\I , this means that the error
bound (ii) must hold, so by Case 1 this implies Theorem 1.2.

We now turn to the proof of the Iteration Invariant, Theo-
rem 2.1. We will use the following proposition from [20].
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Proposition 2.2 (Consequences of the RIC [20]):Assume
a measurement matrixΦ satisfies the Restricted Isometry
Condition with parameters(2n, ε). Then the following holds.

1) (Local approximation)For everyn-sparse vectorv ∈ R
d

and every setI ⊂ {1, . . . , d}, |I| ≤ n, the observation
vectoru = Φ∗Φv satisfies

‖u|I − v|I‖2 ≤ 2.03ε‖v‖2.
2) (Spectral norm)For any vectorz ∈ R

N and every set
I ⊂ {1, . . . , d}, |I| ≤ 2n, we have

‖(Φ∗z)|I‖2 ≤ (1 + ε)‖z‖2.
3) (Almost orthogonality of columns)Consider two disjoint

setsI, J ⊂ {1, . . . , d}, |I ∪ J | ≤ 2n. Let PI , PJ denote
the orthogonal projections inRN onto range(ΦI) and
range(ΦJ ), respectively. Then

‖PIPJ‖2→2 ≤ 2.2ε.

We prove Theorem 2.1 by inducting on each iteration of
ROMP. We will show that at each iteration the set of chosen
indices is disjoint from the current setI of indices, and that
either (i) or (ii) holds. Clearly if (ii) held in a previous iteration,
it would hold in all future iterations. Thus we may assume
that (ii) has not yet held. Since (i) has held at each previous
iteration, we must have

|I| ≤ 2n. (II.1)

Consider an iteration of ROMP, and letr 6= 0 be the residual
at the start of that iteration. LetJ0 andJ be the sets found by
ROMP in this iteration. As in [20], we consider the subspace

H := range(Φsupp(v)∪I)

and its complementary subspaces

F := range(ΦI), E0 := range(Φsupp(v)\I).

Part 3 of Proposition 2.2 states that the subspacesF andE0 are
nearly orthogonal. For this reason we consider the subspace:

E := F⊥ ∩H.

First we write the residualr in terms of projections onto
these subspaces.

Lemma 2.3 (Residual):Here and onward, denote byPL the
orthogonal projection inRN onto a linear subspaceL. Then
the residualr has the following form:

r = PEΦv + PF⊥e.

Proof: By definition of the residualr in the ROMP
algorithm, r = PF⊥x = PF⊥(Φv + e). To complete the
proof we need thatPF⊥Φv = PEΦv. This follows from
the orthogonal decompositionH = F + E and the fact that
Φv ∈ H.

Next we examine the missing portion of the signal as well
as its measurements:

v0 := v|supp(v)\I , x0 := Φv0 ∈ E0. (II.2)

In the next two lemmas we show that the subspacesE and
E0 are indeed close.

Lemma 2.4 (Approximation of the residual):Let r be the
residual vector andx0 as in (II.2). Then

‖x0 − r‖2 ≤ 2.2ε‖x0‖2 + ‖e‖2.

Proof: Sincev−v0 has support inI, we haveΦv−x0 =
Φ(v − v0) ∈ F . Then by Lemma 2.3,r = PEΦv + PF⊥e =
PEx0 + PF⊥e. Therefore,

‖x0 − r‖2 = ‖x0 − PEx0 − PF⊥e‖2 ≤ ‖PF x0‖2 + ‖e‖2.
Note that by (II.1), the union of the setsI and supp(v) \ I
has cardinality no greater than3n. Thus by Part 3 of Propo-
sition 2.2, we have

‖PF x0‖2 +‖e‖2 = ‖PF PE0
x0‖2 +‖e‖2 ≤ 2.2ε‖x0‖2 +‖e‖2.

Lemma 2.5 (Approximation of the observation):Let u0 =
Φ∗x0 and u = Φ∗r. Then for any setT ⊂ {1, . . . , d} with
|T | ≤ 3n,

‖(u0 − u)|T ‖2 ≤ 2.4ε‖v0‖2 + (1 + ε)‖e‖2.

Proof: By Lemma 2.4 and the Restricted Isometry Con-
dition we have

‖x0 − r‖2 ≤ 2.2ε‖Φv0‖2 + ‖e‖2
≤ 2.2ε(1 + ε)‖v0‖2 + ‖e‖2
≤ 2.3ε‖v0‖2 + ‖e‖2.

Then by Part 2 of Proposition 2.2 we have the desired result,

‖(u0 − u)|T ‖2 ≤ (1 + ε)‖x0 − r‖2.

The result of the theorem requires us to show that we
correctly gain a portion of the support of the signalv. To
this end, we first show that ROMP correctly chooses a portion
of the energy. The regularization step will then imply that the
support is also selected correctly. We thus next show that the
energy ofu when restricted to the setsJ andJ0 is sufficiently
large.

Lemma 2.6 (Localizing the energy):Let u be the observa-
tion vector andv0 be as in (II.2). Then‖u|J‖2 ≥ 0.8‖v0‖2 −
(1 + ε)‖e‖2.

Proof: Let S = supp(v)\I be the missing support. Since
|S| ≤ n, by definition ofJ in the algorithm, we have

‖u|J‖2 ≥ ‖u|S‖2.
By Lemma 2.5,

‖u|S‖2 ≥ ‖u0|S‖2 − 2.4ε‖v0‖2 − (1 + ε)‖e‖2.
Sincev0|S = v0, Part 1 of Proposition 2.2 implies

‖u0|S‖2 ≥ (1− 2.03ε)‖v0‖2.
These three inequalities yield

‖u|J‖2 ≥ (1− 2.03ε)‖v0‖2 − 2.4ε‖v0‖2 − (1 + ε)‖e‖2
≥ 0.8‖v0‖2 − (1 + ε)‖e‖2.

This completes the proof.
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Lemma 2.7 (Regularizing the energy):Again let u be the
observation vector andv0 be as in (II.2). Then

‖u|J0
‖2 ≥

1

4
√

log n
‖v0‖2 −

‖e‖2
2
√

log n
.

Proof: By Lemma 3.7 of [20] applied to the vectoru|J ,
we have

‖u|J0
‖2 ≥

1

2.5
√

log n
‖u|J‖2.

Along with Lemma 2.6 this implies the claim.

We now conclude the proof of Theorem 2.1. The claim that
J0 ∩ I = ∅ follows by the same arguments as in [20].

It remains to show its last claim, that either (i) or (ii)
holds. Suppose (i) in the theorem fails. That is, suppose
|J0 ∩ supp(v)| < 1

2 |J0|, which means

|J0\supp(v)| > 1

2
|J0|.

Set Λ = J0\supp(v). Since |Λ| > 1
2 |J0| and all coordinates

of u in J0 are within a factor of2 of each other, we have

‖u|J0∩supp(v)‖22 < 4‖u|Λ‖22.

Since‖u|Λ‖22 + ‖u|J0∩supp(v)‖22 = ‖u|J0
‖22, this implies

‖u|Λ‖2 >
1√
5
‖u|J0

‖2.

Thus by Lemma 2.7,

‖u|Λ‖2 >
1

4
√

5 log n
‖v0‖2 −

‖e‖2
2
√

5 log n
. (II.3)

Next, we also have

‖u|Λ‖2 ≤ ‖u|Λ − u0|Λ‖2 + ‖u0|Λ‖2. (II.4)

SinceΛ ⊂ J and |J | ≤ n, by Lemma 2.5 we have

‖u|Λ − u0|Λ‖2 ≤ 2.4ε‖v0‖2 + (1 + ε)‖e‖2.

By the definition ofv0 in (II.2), it must be thatv0|Λ = 0.
Thus by Part 1 of Proposition 2.2,

‖u0|Λ‖2 ≤ 2.03ε‖v0‖2.

Using the previous inequalities along with (II.4), we deduce
that

‖u|Λ‖2 ≤ 4.43ε‖v0‖2 + (1 + ε)‖e‖2.

This is a contradiction to (II.3) whenever

ε ≤ 0.02√
log n

− ‖e‖2‖v0‖2
.

If this is true, then indeed (i) in the theorem must hold. If it
is not true, then by the choice ofε, this implies that

‖v0‖2 ≤ 100‖e‖2
√

log n.

This proves Theorem 2.1. Next we turn to the proof of
Corollary 1.3.

III. A PPROXIMATELY SPARSE VECTORS AND BESTn-TERM

APPROXIMATIONS

A. Proof of Corollary 1.3

We first partitionv so thatx = Φv2n + Φ(v − v2n) + e.
Then sinceΦ satisfies the Restricted Isometry Condition with
parameters(8n, ε), by Theorem 1.2 and the triangle inequality,

‖v2n − v̂‖2 ≤ 104
√

log 2n(‖Φ(v − v2n)‖2 + ‖e‖2), (III.1)

The following lemma as in [16] relates the2-norm of a vector’s
tail to its 1-norm. An application of this lemma combined with
(III.1) will prove Corollary 1.3.

Lemma 3.1 (Comparing the norms):Let w ∈ R
d, and let

wm be the vector of them largest coordinates in absolute
value fromw. Then

‖w − wm‖2 ≤
‖w‖1
2
√

m
.

Proof: By linearity, we may assume‖w‖1 = d. Since
wm consists of the largestm coordinates ofw in absolute
value, we must have that‖w − wm‖2 ≤

√
d−m. (This is

because the term‖w − wm‖2 is greatest when the vectorw
has constant entries.) Then by the arithmetic mean-geometric
mean (AM-GM) inequality,

‖w−wm‖2
√

m ≤
√

d−m
√

m ≤ (d−m+m)/2 = d/2 = ‖w‖1/2.

By Lemma 29 of [16], we have

‖Φ(v − v2n)‖2 ≤ (1 + ε)
(

‖v − v2n‖2 +
‖v − v2n‖1√

n

)

.

Applying Lemma 3.1 to the vectorw = v − vn we then have

‖Φ(v − v2n)‖2 ≤ 1.5(1 + ε)
‖v − vn‖1√

n
.

Combined with (III.1), this proves the corollary.

B. Bestn-term approximation

Often one wishes to find asparseapproximation to a signal.
We now show that by simply truncating the reconstructed
vector, a similar error bound still holds.

Corollary 3.2: Assume a measurement matrixΦ satisfies
the Restricted Isometry Condition with parameters(8n, ε) for
ε = 0.01/

√
log n. Let v be an arbitrary vector inRd, let x =

Φv + e be the measurement vector, andv̂ the reconstructed
vector output by the ROMP Algorithm. Then

‖v2n − v̂2n‖2 ≤ 477
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

,

wherezm denotes the bestm-sparse approximation toz (i.e.
the vector consisting of the largestm coordinates in absolute
value).

Proof: Let vS := v2n and v̂T := v̂2n, and let S
and T denote the supports ofvS and v̂T respectively. By
Corollary 1.3, it suffices to show that‖vS−v̂T ‖2 ≤ 3‖vS−v̂‖2.

Applying the triangle inequality, we have

‖vS − v̂T ‖2 ≤ ‖(vS − v̂T )|T ‖2 + ‖vS |S\T ‖2 =: a + b.
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We then have

a = ‖(vS − v̂T )|T ‖2 = ‖(vS − v̂)|T ‖2 ≤ ‖vS − v̂‖2
and

b ≤ ‖v̂|S\T ‖2 + ‖(vS − v̂)|S\T ‖2.

Since |S| = |T |, we have|S\T | = |T\S|. By the definition
of T , every coordinate of̂v in T is greater than or equals to
every coordinate of̂v in T c in absolute value. Thus we have,

‖v̂|S\T ‖2 ≤ ‖v̂|T\S‖2 = ‖(vS − v̂)|T\S‖2.

Thusb ≤ 2‖vS − v̂‖2, and so

a + b ≤ 3‖vS − v̂‖2.

This completes the proof.

Remark. Corollary 3.2 combined with Corollary 1.3 and (I.5)
implies that we can also estimate a bound on the whole signal
v:

‖v − v̂2n‖2 ≤ C
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

.

IV. N UMERICAL EXAMPLES

This section describes our numerical experiments that il-
lustrate the stability of ROMP. We study the recovery error
using ROMP for both perturbed measurements and signals.
The empirical recovery error is actually much better than that
given in the theorems.

First we describe the setup to our experimental studies.
We run ROMP on various values of the ambient dimension
d, the number of measurementsN , and the sparsity level
n, and attempt to reconstruct random signals. For each set
of parameters, we perform500 trials. Initially, we generate
an N × d Gaussian measurement matrixΦ. For each trial,
independent of the matrix, we generate ann-sparse signalv by
choosingn components uniformly at random and setting them
to one. In the case of perturbed signals, we add to the signal a
d-dimensional error vector with Gaussian entries. In the case
of perturbed measurements, we add anN -dimensional error
vector with Gaussian entries to the measurement vectorΦv.
We then execute ROMP with the measurement vectorx = Φv
or x + e in the perturbed measurement case. After ROMP
terminates, we output the reconstructed vectorv̂ obtained from
the least squares calculation and calculate its distance from the
original signal.

Figure 1 depicts the recovery error‖v − v̂‖2 when ROMP
was run with perturbed measurements. This plot was generated
with d = 256 for various levels of sparsityn. The horizontal
axis represents the number of measurementsN , and the
vertical axis represents the average normalized recovery error.
Figure 1 confirms the results of Theorem 1.2, while also
suggesting that at least for typical signals the bound (I.3)given
by the theorem appears to be satisfied without the

√
log n

factor.
Figure 2 depicts the normalized recovery error when the

signal was perturbed by a Gaussian vector. The figure confirms
the results of Corollary 1.3 while also suggesting again that
the logarithmic factor in the corollary is unnecessary.

Remark. Our work on ROMP has motivated the devel-
opment of additional methods that indeed provide similar
results but without the logarithmic factor. Compressive Sam-
pling Matching Pursuit (CoSaMP) by Needell and Tropp and
Subspace Pursuit (SP) by Dai and Milenkovic are greedy
pursuits that incorporate ideas from ROMP, combinatorial
algorithms, and convex optimization [19], [18], [10]. These
improve upon the error bounds of ROMP by removing the
logarithmic factor. In doing so, they lessen the requirements
on the restricted isometry condition by this factor as well.
The work on CoSaMP also analyzes the least squares step in
the algorithm, showing how it can be done efficiently to the
accuracy level needed to maintain the overall error bounds.
With this analysis, the total runtime of CoSaMP is shown to be
just O(Nd). Recent work on thresholding algorithms such as
Iterative Hard Thresholding (IHT) by Blumensath and Davies
has also provided similar strong guarantees [3].

60 80 100 120 140 160 180 200 220 240 260
0

0.5

1

1.5

Measurements N

E
rr

or
 to

 N
oi

se
 R

at
io

Normalized Recovery Error from ROMP on Perturbed Measurements , d=256

 

 

n=4
n=12
n=20
n=28
n=36

Fig. 1. The error to noise ratio‖v̂−v‖2

‖e‖2
as a function of the number of

measurementsN in dimensiond = 256 for various levels of sparsityn.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Measurements N

E
rr

or
 to

 N
oi

se
 R

at
io

Normalized Recovery Error from ROMP on Perturbed Signals , d=256

 

 

n=4
n=12
n=20
n=28
n=36

Fig. 2. The error to noise ratio ‖v̂−v2n‖2

‖v−vn‖1/
√

n
using a perturbed signal, as a

function of the number of measurementsN in dimensiond = 256 for various
levels of sparsityn.
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