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Abstract—We demonstrate a simple greedy algorithm that can that the sparse recovery problem is equivalent to the convex
reliably recover a vector v € R? from incomplete and inaccurate program
measurementsr = dv+e. Here @ is a N x d measurement matrix
with N < d, and e is an error vector. Our algorithm, Regularized min ||y subject to du ==z (1.1)
Orthogonal Matching Pursuit (ROMP), seeks to provide the
benefits of the two major approaches to sparse recovery. It and therefore is computationally tractable. Camdnd Tao [7]
combines the speed and ease of implementation of the greedyprovide a result showing that when the mé@pis an almost
methods with the strong guarantees of the convex programming isometry on the set of)(n)-sparse vectors, the program (I.1)

methods. . . N .
For any measurement matrix ® that satisfies a quantitative recovers sparse signals. This condition imposedtors the

restricted isometry principle, ROMP recovers a signalv with restrigtgq isometry Con'dition: N
O(n) nonzeros from its inaccurate measurements: in at most Definition 1.1 (Restricted Isometry Conditionk
n iterations, where each iteration amounts to solving a Least measurement matrixp satisfies the Restricted Isometry

Squares Problem. The noise level of the recovery is proportional condition (RIC) with parameterém. ) for ¢ € (0.1) if we
to /logn|le|2. In particular, if the error term e vanishes the have (RIC) P $m €) (0,1)

reconstruction is exact.

This stability result extends naturally to the very accurate (1—e)||v]|2 < ||®]2 < (1+€)]||v]|2 for all m-sparse vectors
recovery of approximately sparse signals. - -

Index Terms—Compressed Sensing, sparse approximation Under the Restricted Isometry Condition with parameters
problem, Orthogonal Matching Pursuit, Uncertainty Principle.  (2n,+/2 — 1), the convex program (I.1) exactly recovers an
n-sparse signab from its measurements [7], [8].

The Restricted Isometry Condition can be viewed as an ab-
stract form of the Uniform Uncertainty Principle of harmoni
analysis ([9], see also [5] and [17]). Many natural ensem-
A. Exact recovery by convex programming bles of random matrices, such as partial Fourier, Bernoulli

The recent massive work in the area of Compressed Sensiagd Gaussian, satisfy the Restricted Isometry conditich wi
surveyed in [4], rigorously demonstrated that one can algBarameters: > 1, e € (0,1/2) provided that
rithmically recover sparse (and, more generally, comjinégs N = ne—0M 1Ogou) d:
signals from incomplete observations. The simplest masglel i '
a d-dimensional signab with a small number of nonzeros: see e.g. Section 2 of [20] and the references therein. Téreref

J a computationally tractable exact recovery of sparse fgna
v eRY, [supp(v)| < n < d. is possible with the number of measuremetis roughly

proportional to the sparsity level, which is usually much
smaller than the dimensioth

I. INTRODUCTION

Such signals are called-sparse. We colleciV <« d non-
adaptive linear measurements @f given asx = ®v where
® is someN by d measurement matrix. The sparse recovery

problem is to then efficiently recover the signalfrom its B. Exact recovery by greedy algorithms

measurements. o N An important alternative to convex programming is greedy

_ A necessary and sufficient condition for exact recoveRgorithms, which have roots in Approximation Theory. A

is that the map® be one-to-one on the set of-sparse greedy algorithm computes the support ofiteratively, at
vectors. Much work has been done to show that under sogigeh step finding one or more new elements (based on some
cwcumstances,.a convex optimization problem can be used-gpeedyn rule) and subtracting their contribution from the
recover such signals (see e.g. [14], [7]). These result® shgheasurement vector. The greedy rules vary. The simplest

N ) _ rule is to pick a coordinate ob*x of the biggest magnitude;
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0 € (0,0.36), OMP succeeds in just iterations except with logarithmic factor. Although the logarithmic factor pramis

probability ¢ [23]. Since each iteration amounts to solving onstronger requirements for the restricted isometry coowlitf

least-squares problem, its running time is always polymbmithe measurement matrix, we speculate that this factor ig onl

in n, N and d. Much promising work has been done oran artifact of our proofs. This result essentially bridgegaa

the complexity of linear programming techniques [1], andetween convex programming and greedy approaches to sparse

their applications to compressed sensing (see [15], [Z]})[2 recovery.

However, the greedy approach may still be more practical for

many applications. For more discussion, see [23] and [20]. REGULARIZED ORTHOGONAL
A variant of OMP was recently found in [20] that hayROMP)

guarantees similar to those of convex programming meth-| INPUT: Measurement vector € RY and sparsity leveh

ods, with only an added theoretical logarithmic factdrhis OuTPUT: Index setl C {1,...,d}, reconstructed vecto

greedy algorithm is called Regularized Orthogonal Match- |4 =y

ing Pursuit (ROMP); we state it in Section I-C below. |Initialize: Let the index sefl = () and the residuat = .

Under the Restricted Isometry Condition with parameters|Repeat the following steps times or until|I| > 2n:

MATCHING PURSUIT

=

(2n,0.03/y/log n), ROMP exactly recovers an-sparse signal
v from its measurements. Since this paper was written,
other algorithms have been developed that also providegtro
guarantees, and even without the logarithmic factor. See th

Identify: Choose a set of the n biggest nonzero coordj
nates in magnitude of the observation vectoe= ®*r, or
all of its nonzero coordinates, whichever set is smaller.

Regularize: Among all subsets/y, C J with comparable

coordinates:

u(@)] < 2[u(j)]

chooseJ, with the maximal energyju| s, ||2-
Update: Add the setJ, to the index setl «— I U Jy, and
update the residual:

remark at the end of Section IV for details.

Summarizing,the restricted isometry principle is a guar-
antee for efficient sparse recovery; one can provably use
either convex programming methodsdl) or greedy algorithms
(ROMP).

for all 7,5 € Jy,

C. Stable recovery by convex programming and greedy algo-

. y = argmin ||z — ®z||2;
rithms

z€RI

r=x— dy.

A more realistic scenario is where the measurements ar

inaccurate (e.g. contaminated by noise) and the signals ar@Jotation. Here and throughout we writg|; to denote the
not exactly sparse. In most situations that arise in practiiector f restricted to the coordinates indexed By
one cannot hope to know the measurement veeter v Remark.The algorithm requires some knowledge about the
with arbitrary precision. Instead, it is perturbed by a dmagparsity leveln, and there are several ways to estimate this
error vector:z = ®v + e. Here the vectole has unknown parameter. One such way is to conduct empirical studiegusin
coordinates as well as unknown magnitude, and it needs Ratious sparsity levels and select the level which minimize
be sparse (as all coordinates may be affected by the noigg)i — x|, for the outputd. Testing sparsity levels from
For a recovery algorithm to be stable, it should be ablg geometric progression, for example, would not contribute
to approximately recover the original signal from these significantly to the overall runtime.
perturbed measurements. Theorem 1.2 (Stability under measurement perturbations):
The stability of convex optimization algorithms for sparseet ® be a measurement matrix satisfying the Restricted
recovery was studied in [12], [22], [13], [6]. Assuming tloate |sometry ~ Condition ~ with  parameters (4n,e)  for
knows a bound on the magnitude of the eripr] < J, and ¢ 0.01/y/logn. Let v € RY be an n-sparse vector.
that the measurement matdxhas sufficiently small restricted Suppose that the measurement vedorbecomes corrupted,
isometry constants, it was shown in [6] that the solutioof so that we considet = ®v + e wheree is some error vector.
the convex program Then ROMP produces an approximationitahat satisfies:

min [Jul|; subjectto  [[Pu—z|2 <5 (1.2) lv = 0]l2 < 1044/log nlle||2- (.3)
is a good approximation to the unknown signial: — o, < Note that in the noiseless situation € 0) the reconstruc-

Cs. tion is exact:v = v. This case of Theorem 1.2 was proved in
In contrast, the stability of greedy algorithms for sparse r[20].

covery has not been well understood until recently. Nunagric Our stability result extends naturally to the even more

evidence [13] suggests that OMP should be less stable thigalistic scenario where the signals are only approximatel

the convex program (1.2), but no theoretical results hawanbesparse. Here and henceforth, denotefhythe vector of the

known in either the positive or negative direction. The prgs ™ biggest coefficients in absolute value bf

paper seeks to remedy this situation. Corollary 1.3 (Stability of ROMP under signal perturbatgn
We prove that the bound for the stability of ROMP haket ® be a measurement matrix satisfying the Restricted

the same form as that of the convex program (1.2), up tolgometry  Condition ~ with  parameters (8n,e)  for
£ 0.01/y/logn. Consider an arbitrary vectos in R

Suppose that the measurement vediorbecomes corrupted,

1OMP itself does not have such strong guarantees, see [21].



so we considerr = ®v + e wheree is some error vector. Il. PROOF OFTHEOREM 1.2

Then ROMP produces an approximatiomg, that satisfies:  \ye pegin by showing that at every iteration of ROMP, either

. o lv —vnll1 at least50% of the selected coordinates from that iteration are
1o = vanl> < 159 10g2n(”€”2 + vn ) U9 fom the support of the actual signal or the error bound

Remarks. 1. The termus, in the corollary can be replacedalready holds. This directly implies Theorem 1.2.
by v(145), for any § > 0. This change will only affect the Theorem 2.1 (Stable Iteration Invariant of ROMR)et @
constant terms in the corollary. be a measurement matrix satisfying the Restricted Isometry

2. We can apply Corollary 1.3 to the largest coordinates Condition with parametergin, <) for e = 0.01/y/log n. Letv
of v and use Lemma 3.1 below to produce an error bound @@ a non-zera-sparse vector with measurements- ®v +e.
the entire vectow. Along with the triangle inequality and the Then at any iteration of ROMP, after the regularization step
identity v — vo,, = (v —v,) — (v — v,)n, these results yield: where] is the current chosen index set, we hakeN I = 0

and (at least) one of the following:

A o = vall .
[0 = vlls < 160vlog2n(lello + ). 05 () Lo nsupp(v)] > 31

3. For the convex programming method (1.2), the stability(") lolsupporllz2 < 100”,10gn”8”2_' o
bound (1.5) was proved in [6], and even without the logarith- We sh_oyv that the Iteratlon Invariant implies Theorem 1.2
mic factor. We conjecture that this factor is also not need&y €xamining the three possible cases:
in our results for ROMP. Case 1: (ii) occurs at some iterationWe first note that
4. Unlike the convex program (1.2), ROMP succeeds witgince|I| is nondecreasing, if (i) occurs at some iteration, then
absolutely no prior knowledge about the erepits magnitude it holds for all subsequent iterations. To show that this Mdou
can be arbitrary. ROMP does however, require knowled§@en imply Theorem 1.2, we observe that by the Restricted
about the sparsity levet. Although often these parameterdsometry Condition and sincgupp(?)| < [I| < 3n,
may be relgted, it may .be more natural to impose sparsity (1= )6 —v]ls — [lella < | @0 — Do — e]lo.
awareness in some applications.
5. One can use ROMP to approximately computéra Then again by the Restricted Isometry Condition and defi-
sparse vector that is close the best2n-term approximation nition of 9,
vo, Of an arbitrary signad. To this end, one just needs to retain
the 2n biggest coordinates af. Indeed, Corollary 3.2 below |20—®v—ell2 < [[®(v]1)—Pv—ell2 < (1+&)||v]suppozll2+l€ll2-
shows that the bes;tn—tgrm apprqximations of the original Thus we have that
and the reconstructed signals satisfy: l+e 9

— U — < ——|vls + .
w20 = B2ull> < 477y/10g 20 lell2 + S vn||1). fo=vlle = o ltlwwpenll + el

. . vn . Thus (i) of the Iteration Invariant would imply Theorem 1.2
6. An important special case of Corollary 1.3 is for the Case 2: (i) occurs at every iteration and.Jo is always
class of compressible vectors, which is a common modelrj1

: ) . . rE)n—empty. In this case, by (i) and the fact thdg is always
signal processing, see [9]’ [14]. .S.UprSB a compressible non-empty, the algorithm identifies at least one element of
vector in the sense that its coefficients obey a power law: f

{’?{e support in every iteration. Thus if the algorithm rums
somep > 1, the k-th largest coefficient in magnitude ofis bp 4 9

_ ; . iterations or until|I| > 2n, it must be thatsupp(v) C I,
bounded byC, k7. Then (1.5) yields the following bound on meaning thaty,.p(.y; = 0. Then by the argument above
the reconstructed signal:

for Case 1, this implies Theorem 1.2.
. Vlogn Case 3: (i) occurs at each iteration and/, = () for some
— < "/ . 1.6) . ) > 7 i 0
o =oll> < Ppp-1/2 * ogn|lel> (1) iteration. By the definition ofJy, if Jy = 0 thenu = &*r = 0
As observed in [6], without the logarithmic factor this baun for that iteration. By definition of-, this must mean that

would be optimal; no algorithm can perform fundamentally
better. (v —y) + &7 =0.

The rest of the paper has the following organization. his combined with Part 1 of Proposition 2.2 below (and its

S_ection Il, we prove our main _result, Theorem 1.2. In Seﬁ'roof, see [20]) applied with the sét = supp(v) U I yields
tion Ill, we deduce the extension for approximately sparse

signals, Corollary 1.3, and a consequence for bestrm [lv—y+ (®*e)|r]l2 < 2.03||v — y|2-
approximations, Corollary 3.2. In Section IV, we demoristra I L .
some numerical experiments that illustrate the stability a’hen combinining this with Part 2 of the same Proposition,

ROMP. we have

lv = yll2 < 1.1]ell2.
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Proposition 2.2 (Consequences of the RIC [208ssume Lemma 2.4 (Approximation of the residuallet » be the
a measurement matri® satisfies the Restricted Isometryresidual vector and as in (11.2). Then
Condition with parameter&n, ). Then the following holds.
1) (Local approximationfor everyn-sparse vectos € R¢
and every sef C {1,...,d}, |I| < n, the observation Proof: Sincev — vy has support i, we havebv —xg =
vectoru = ¢*®v satisfies ®(v —vy) € F. Then by Lemma 2.3y = Pg®v + Pp.e =
Pgxo + Pr.e. Therefore,

Iz = rll2 < 22¢]olz + el

ulr = vlrlla < 2.03¢]v]|2.

2) (Spectral norm)For any vectorz ¢ RY and every set 170 ~ 7ll2 = [z0 = Ppzo — Proell2 < [|Praoll2 + [le]2-

I'c{l,...,d}, I < 2n, we have Note that by (I1.1), the union of the sefsand supp(v) \ I
* has cardinality no greater tham. Thus by Part 3 of Propo-
1(@"2)[1]l2 < (1 +)[l2]2. < y hog y P
sition 2.2, we have
3) (Almost orthogonality of columngonsider two disjoint
setsI,J C {1,...,d}, |[IUJ| < 2n. Let P;, P; denote [1Praoll2+lelle = | PrPryzolle +lell2 < 2.2¢]lzoll2 +el2-

the orthogonal projections iRY onto range(®;) and -
range(® ), respectively. Then Lemma 2.5 (Approximation of the observatiohpet uy =
|1PrPs||ass < 2.26. ®*ro andu = ®*r. Then for any sefl” C {1,...,d} with
B IT| < 3n,
We prove Theorem 2.1 by inducting on each iteration of
ROMP. We will show that at each iteration the set of chosen [(uo — u)|rll2 < 2.4efjvoll2 + (1 + €)|le[|2.

indices is disjoint from the current sétof indices, and that Proof: By Lemma 2.4 and the Restricted Isometry Con-
either (i) or (ii) holds. Clearly if (ii) held in a previousdtation, dition we have '
it would hold in all future iterations. Thus we may assume

that (i) has not yet held. Since (i) has held at each previous lzo — 72 < 2.2¢||Pvgl|2 + |le]|2
iteration, we must have < 2.2¢(14¢)]lvoll2 + llell-
|I] < 2n. (1.1) < 2.3¢]|vgll2 + |le]l2-

Consider an iteration of ROMP, and letZ 0 be the residual Then by Part 2 of Proposition 2.2 we have the desired result,
at the start of that iteration. Lef, andJ be the sets found by

ROMP in this iteration. As in [20], we consider the subspace (w0 = wlrlla < (1 +e€)llzo — 72
H :=range(Pgupp (v u
_ (Poupp(oyor) The result of the theorem requires us to show that we
and its complementary subspaces correctly gain a portion of the support of the signal To

this end, we first show that ROMP correctly chooses a portion
of the energy. The regularization step will then imply thze t
Part 3 of Proposition 2.2 states that the subspactasdEj are support is also selected correctly. We thus next show ttet th
nearly orthogonal. For this reason we consider the subspaegergy ofu when restricted to the setsand.J, is sufficiently
ol large.
E=F"NH Lemma 2.6 (Localizing the energylet v be the observa-

First we write the residuat in terms of projections onto tion vector andvy be as in (11.2). Therul |2 > 0.8]|vgl|2 —
these subspaces. (1+¢)|lell2-

Lemma 2.3 (Residual)Here and onward, denote I, the Proof: Let S = supp(v) \ I be the missing support. Since
orthogonal projection irRY onto a linear subspack. Then |S| < n, by definition of.J in the algorithm, we have
the residual has the following form:

F :=range(®;), Eo:= range(Pgupp(v)\1)-

[ulsllz = lluls]l2-
r=Pg®v+ Pr.e.

Proof: By definition of the residual in the ROMP
algorithm, r = Ppiz = Ppi(®v + €). To complete the l[ulsll2 = lluols|l2 — 2.4¢[lvoll2 — (1 + &)lle]l2-
proof we need thatPr.®v = Pg®v. This follows from Sincewo|s = o,
the orthogonal decompositioH = F' + E and the fact that
dv € H. [ | llwols]lz > (1 = 2.03¢)]||vo]|2-

Next we examine the missing portion of the signal as w
as its measurements:

By Lemma 2.5,
Part 1 of Proposition 2.2 implies

Q|Jhese three inequalities yield

(11.2) [ulsll2 = (1 = 2.03¢)[lvoll2 — 2.4¢|voll2 — (1 +€)lle]l2

V0 1= Ulsupp(o)\1»  To = Pvo € Ey.
> 0.8|[voll2 — (1 + &) llell2-

In the next two lemmas we show that the subspdcemd
E, are indeed close. This completes the proof. [ ]



Lemma 2.7 (Regularizing the energy)gain let © be the Ill. APPROXIMATELY SPARSE VECTORS AND BEST:-TERM

observation vector and, be as in (11.2). Then APPROXIMATIONS
1 llell2 A. Proof of Corollary 1.3
> - N o .
el = 4\/10gnHUO||2 2v/Togn We first partitionv so thatz = ®uvy, + ®(v — v2,) + e.

Then sinced satisfies the Restricted Isometry Condition with
parameter$8n, ), by Theorem 1.2 and the triangle inequality,

[v2n — 0|2 < 104+/1og 2n([|®(v — van)[2 + [lefl2), (IlI.1)

1
> — .
||U|J0||2 = 25\/@“”‘J”2 - -
) L . The following lemma as in [16] relates tRenorm of a vector’s
Along with Lemma 2.6 this implies the claim. B {ail to its 1-norm. An application of this lemma combined with
[.1) will prove Corollary 1.3.

Proof: By Lemma 3.7 of [20] applied to the vectait ;,
we have

We now conclude the proof of Theorem 2.1. The claim th&l ; 4
Jo NI = follows by the same arguments as in [20]. Lemma 3.1 (Comparing the norms)et w € R?, and let
It remains to show its last claim, that either (i) or (i)’ be the vector of then largest coordinates in absolute

holds. Suppose (i) in the theorem fails. That is, suppogélue fromw. Then

|Jo Nsupp(v)| < £|Jo|, which means [[wllx
Hw wm||2 > 2\/—-
1 m

|Jo\supp(v)| > §|J0|' Proof: By linearity, we may assuméw|; = d. Since

) L _ w,, consists of the largest. coordinates ofw in absolute
SetA = Jo\supp(g). Since|A| > 3|Jo| and all coordinates value, we must have thdtw — wy,|ls < v/d —m. (This is
of w in Jo are within a factor of of each other, we have  p..5ise the tertiw — wy,||2 is greatest when the vectar

has constant entries.) Then by the arithmetic mean-gemmetr
mean (AM-GM) inequality,

Sincelfulallz + lulsonsuppc 2 =l 2, this mplies -y, o vim < VA= myim < (d-m-tm)/2 = d/2 = [u]l /2.

Hu|']oﬂsupp(v)||g < 4““"1\“%

1
l[ufall2 > ﬁllulJOIIQ- ]
By Lemma 29 of [16], we have

Thus by Lemma 2.7,

v —v
1 L (0~ o2l < (1) (o = vna o+ 122l ).
Julallz > ————=|vollz = =—=—.  (I.3)
4v/5logn 2y/5logn Applying Lemma 3.1 to the vectar = v — v,, we then have
Next, we also have U — Up
o0~ vl < 131+ o122l
lulallz < llula = wolall2 + lluolall2- (11.4)

Combined with (111.1), this proves the corollary.
SinceA C J and|J| < n, by Lemma 2.5 we have

lula — uolallz < 2.4¢|voll2 + (1 +€)]le]2. B. Bestn-term approximation
Often one wishes to find sparseapproximation to a signal.
We now show that by simply truncating the reconstructed
vector, a similar error bound still holds.
uolallz < 2.03¢]|vo]|2- Corollary 3.2: Assume a mgasurgment matidx satisfies
the Restricted Isometry Condition with parametés, ¢) for
Using the previous inequalities along with (I1.4), we deeluce = 0.01/y/logn. Let v be an arbitrary vector iiR?, let x =

By the definition ofvy in (11.2), it must be thatvy|y = 0.
Thus by Part 1 of Proposition 2.2,

that dv + e be the measurement vector, afdhe reconstructed
lulallz < 4.43¢[jvoll2 4+ (1 + )| le]l2. vector output by the ROMP Algorithm. Then
This is a contradiction to (11.3) whenever lvan — Dapll2 < 477+/log 2n(||e||2 + M\/%"”l>,
0.02 lell2 ) where z,,, denotes the besti-sparse approximation te (i.e.
~ Viogn  lvoll2 the vector consisting of the largest coordinates in absolute
If this is true, then indeed (i) in the theorem must hold. If ivalue).
is not true, then by the choice ef this implies that Proof: Let vg := wv, and or := 0g,, and let s
and T' denote the supports afs and v respectively. By
[voll2 < 100]|e(|2+/log . Corollary 1.3, it suffices to show thbs —o7||2 < 3|jvs—1|.

Applying the triangle inequality, we have
This proves Theorem 2.1. Next we turn to the proof of PPYINg g a y

Corollary 1.3. [ lvs —orll2 < ||(vs — 07)|rll2 + [[vs|s\7ll2 =: a + b.



We then have Remark. Our work on ROMP has motivated the devel-
R R R opment of additional methods that indeed provide similar
|(vs = or)lzll2 = [|(vs = O)lzll2 < [lvs — 02 results but without the logarithmic factor. CompressivenSa
and pling Matching Pursuit (CoSaMP) by Needell and Tropp and
Subspace Pursuit (SP) by Dai and Milenkovic are greedy
pursuits that incorporate ideas from ROMP, combinatorial
Since|S| = |T|, we have|S\T| = |T\S|. By the definition algorithms, and convex optimization [19], [18], [10]. Tkes
of T, every coordinate of in T' is greater than or equals toimprove upon the error bounds of ROMP by removing the
every coordinate of in 7 in absolute value. Thus we haveJogarithmic factor. In doing so, they lessen the requiretsmien
on the restricted isometry condition by this factor as well.
The work on CoSaMP also analyzes the least squares step in

a =

b < |[9|s\rll2 + [(vs — 0)|s\7ll2-

[9]s\rll2 < [0]m\sllz = [|(vs = 9)[r\s]l2-

Thusb < 2|lvs — 9|2, and so the algorithm, showing how it can be done efficiently to the
. accuracy level needed to maintain the overall error bounds.

a+b<3llvs =2, With this analysis, the total runtime of CoSaMP is shown to be

This completes the proof. m JustO(Nd). Recent work on thresholding algorithms such as

_ _ Iterative Hard Thresholding (IHT) by Blumensath and Davies
Remark. Corollary 3.2 combined with Corollary 1.3 and (|.5)has also provided similar strong guarantees [3]
implies that we can also estimate a bound on the whole signal

V. Normalized Recovery Error from ROMP on Perturbed Measurements , d=256

|lv — Danlla < C+/log 2n(\|e||2 + ”1)_\/%”'1)

IV. NUMERICAL EXAMPLES

This section describes our numerical experiments that
lustrate the stability of ROMP. We study the recovery errc
using ROMP for both perturbed measurements and sign:
The empirical recovery error is actually much better thaat th
given in the theorems.

First we describe the setup to our experimental studie
We run ROMP on various values of the ambient dimensic
d, the number of measurement$, and the sparsity level
n, and attempt to reconstruct random signals. For each
of parameters, we perform00 trials. Initially, we generate
an N x d Gaussian measurement matdx For each trial,
independent of the matrix, we generaterasparse signal by Fig. 1. The error to noise ratid>=vl2 as a function of the number of
choosingn components uniformly at random and setting thefeasurements in dimensiond = 256 for various levels of sparsity.
to one. In the case of perturbed signals, we add to the signal a
d-dimensional error vector with Gaussian entries. In theecas

Error to Noise Ratio

60 80 100 120 140 160 180 200 220 240 260
Measurements N

of perturbed measurements, we add Mrdimensional error Normalized Recovery Error from ROMP on Perturbed Signals , d=256
vector with Gaussian entries to the measurement vebtor 087

We then execute ROMP with the measurement vecter v 07t

or z + e in the perturbed measurement case. After ROM

terminates, we output the reconstructed veétobtained from o6r

the least squares calculation and calculate its distanoe the
original signal.

Figure 1 depicts the recovery errtyp — ||, when ROMP
was run with perturbed measurements. This plot was gerkera
with d = 256 for various levels of sparsity. The horizontal
axis represents the number of measuremeXitsand the 0.2f
vertical axis represents the average normalized recoveoy. e
Figure 1 confirms the results of Theorem 1.2, while als 0.1
suggesting that at least for typical signals the bound ¢iBn
by the theorem appears to be satisfied without {Hegn 0 %0 100
factor.

Figure 2 depicts the normalized recovery error when tn_g-g. 2. The error to noise rafig lo=vanll2_sing a perturbed signal, as a
signal was perturbed by a Gaussian vector. The figure confirfition of the number of measuqr)e_r%‘n‘ﬁ’éi\r{?aimensiord = 256 for various
the results of Corollary 1.3 while also suggesting agairt thigvels of sparsityn.
the logarithmic factor in the corollary is unnecessary.
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