COMPUTING SURFACE UNIFORMIZATION USING DISCRETE
BELTRAMI FLOW

Abstract. In this paper, we propose a novel algorithm for computing surface uniformization for
surfaces with arbitrary topology. According to the celebrated uniformization theorem, all Riemann
surfaces can be classified as elliptic, parabolic or hyperbolic. Our algorithm is able to work on all
these cases by first constructing an initial map onto an appropriate domain, such as sphere, or a
polygon in the plane R? or the hyperbolic disk D, and then morphing the diffeomorphism based on
the discrete Beltrami flow algorithm. For high genus surfaces, both the final mapping and the target
domain is unknown, which presents a challenge in general. Each such surface can be conformally
mapped onto D modulo a discrete subgroup of all fractional linear transforms on D. A conformal copy
of the surface, which is also its uniformization domain, can be visualized as a fundamental polygon
in D corresponding to the discrete subgroup, where the generators of the discrete subgroup map
each side of the fundamental polygon to its corresponding side, giving the conformality information
of the surface. The novelty in our method lies in the iterative change of these generators as the
diffeomorphism is morphing, which indicates a change of geometry of the target domain to match
the geometry of the original surface. Numerical results are presented to show the efficiency and
accuracy (in terms of distortion) of our methods as well as comparison to other state of the art
algorithms.
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1. Introduction. Surface uniformization is an important mathematical tool for
geometric study and understanding of surfaces. By mapping surfaces conformally onto
a canonical domain, we have a natural correspondence between surfaces of the same
topology class. Therefore, it is widely used in applications such as surface process-
ing, texture mapping, medical imaging, shape analysis and surface classification and
comparison. Many of these applications rely on surface uniformization as an essential
tool for understanding the geometry of surfaces. Therefore, it is important to have
efficient computational tools for constructing surface uniformizations in practice.

A number of approaches have been proposed for surface uniformization based on
different but equivalent mathematical characterization of surface uniformization. For
examples, one class of approaches compute surface uniformizations by solving a system
of linear equations. The uniformization problem is first formulated as an equivalent
optimization problem, such as the minimization of harmonic energy. Then a linear
system is constructed for solving the optimization problem, usually by finite element
method. However, such methods can only work on a small class of surfaces, such as
simply connected open surfaces where such a reformulation exists. Therefore, they
are efficient but do not work for general multiply connected domains with arbitrary
topology. For these surfaces, such as those simply connected surfaces, one can use
a gradient descent approach to minimize the harmonic energy. However, as we will
show, computational methods based on harmonic energy may not be very accurate
and hence cause quite large angular distortions in practice.

An alternative approach is based on Ricci flow, which aims to adjust the confor-
mal factor of a surface map such that the surfaces metric evolves according to Ricci
flow to flatten the surface. As the surface is flattened to make its Gaussian curvature
as close to 0 as possible, the surface map becomes the desired surface uniformization.
It is known that Ricci flow is the gradient flow that minimizes a convex energy for
Euclidean and hyperbolic domains. With the energy being convex and smooth, New-
ton’s method can be effectively used to minimize the energy, and it can be shown
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that Ricci flow methods converge exponentially fast. However, on spherical domains,
the energy is non-convex and singularities may occur, which have to be removed by
some surface surgeries. Despite the fact, Ricci flow based methods are considered very
efficient and work for surfaces with general topologies.

In this paper we propose a new approach based on quasiconformal geometry that
allows the use of general energy functionals in terms of the Beltrami differential, which
describes non-conformal distortions of surface maps. Our formulation is more general
and flexible while simple to understand and implement. A simple least squares energy
functional of the Beltrami differential can be used to compute surface uniformizations
that result in minimal distortions comparable to that by Ricci flow based methods.

A sketch of our approach is as follows. We first cut open the surface to obtain
a topological disk. Then we compute an initial map from M to the parametrization
target domain, which is a sphere for genus 0 surfaces, a rectangle for genus 1 surfaces,
and a regular polygon in the hyperbolic disk for high genus surfaces. The rectan-
gle and regular polygons are standard fundamental polygons for genus one and high
genus surfaces respectively. The generators for their transformation groups can be
easily computed by solving for the parameters of the translation or Mobius transform
that bring an edge of the fundamental polygon to its corresponding edge. The ini-
tial map is computed through Tutte mapping or the discrete conformal embedding.
With the initial map, we adjust the parametrization using the discrete Beltrami flow
algorithm, which computes a vector field that adjusts the parametrization to mini-
mize the L?-norm of the Beltrami differential. However, one difficulty for computing
uniformization for high genus surface lies at the fact that both the final mapping and
the target domain which are coupled needs to be determined by the flow concurrently.
In our approach we design a flow that keeps the consistency of corresponding points
under the change of generators for high genus surfaces. With this technique, we can
adjust the diffeomorphism and the generators, which determine the target domain, at
the same time to achieve the correct conformal structure for surfaces with genus g > 1.
This technique is useful for keeping proper conformal structures of high genus surface
parametrizations, and can be directly applied to other high genus surface mapping
applications, such as surface registrations.

2. Previous Work. Surface uniformization is an essential tool for various ap-
plications of surface processing, including brain mapping [8, 11], texture mapping
[10, 20, 23], shape analysis [27] and surface classification [9] and comparison [17].

Several different computational methods for surface uniformization were intro-
duced recently, most of which are after 2000 as computational power improved. Lévy
et al. [20] proposed to generate texture atlas by computing conformal maps in the
least squares sense. The technique can also be applied to surface uniformization for
simply connected open surfaces. Gu et al. [8] proposed computing genus zero confor-
mal maps by minimizing the harmonic energy functional using gradient descent. Jin
et al. [14] proposed computing global conformal structures of surfaces by computing
the holomorphic 1-forms for surfaces of genus g > 1. Open surfaces are modeled as
closed surfaces by a double covering. Later, Jin et al. [13] proposed using discrete
surface Ricci flow for the uniformization of surfaces with arbitrary topology. The
method was improved upon the work of Chow et al. [3], which connected Ricci flows
on discrete surfaces with those on continuous surfaces, but used a slower gradient
descent approach. In general, Ricci flow approaches try to flatten the curvature of
discrete surfaces by changing the metric, while our approach considers the problem
from a mapping perspective.
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The approach of this paper is to take another view on the uniformization problem
for discrete surfaces. Note that it is not possible to compute uniformizations for
discrete surfaces which are exactly conformal, because the angle sum around each
vertex may not add up to precisely w. Therefore it is more practical to consider
maps with bounded conformal distortions and be able to control the desired amount
of distortions. Hence, the theory of quasiconformal maps is closely related to our
method. It was a natural extension of the development of conformal maps for discrete
surfaces. Using the method of Beltrami holomorphic flow, Lui et al. [19] proposed
to represent and adjust surface registrations using Beltrami coefficients. The method
uses an integral flow formula and is restricted to simply connected surfaces. By making
use of auxiliary metrics, Zeng et al. [26] extended the method of discrete surface Ricci
flow to general quasiconformal maps for arbitrary topologies. The computation of
quasiconformal maps was studied by Mastin et al. [21], where a weak formulation
was used to solve Beltrami equations for special class of domains with slits. Using
a linear discretization for the Beltrami equation, Lui et al. [18] proposed an efficient
Beltrami representation for applications in texture mapping and video compression.
By deriving simple formulas for quasiconformal maps fixing 4 points, Lipman et al. [16]
computed plane deformations with minimal distortions and applied the method on the
adjustment of planar maps. The idea of quasiconformal maps can also be described
as maps with a bounded distortion, and was used by Lipman [15] for finding maps
from triangular meshes onto the plane with desirable properties. Recently, Wong and
Zhao [25] proposed a discrete Beltrami flow directly between two arbitrary surfaces.
The flow is designed in term of a vector field corresponding to the adjustment to the
intrinsic Beltrami differential defined in a local conformal coordinate. Using a least
squares approach, the method can compute quasiconformal homeomorphisms that
minimize energies in terms of Beltrami differentials between two arbitrary surfaces
and can incorporate other constraints, such as correspondences and curve/boundary
conditions, in the formulation.

3. Theoretical Background. In this section, we give an overview of the techni-
cal background of our surface uniformization algorithms. To work on general surfaces
with arbitrary topology, we first introduce surface classification results from the Rie-
mann uniformization theorem. This enables us to work on a canonical domain such
as the sphere, the Euclidean plane or the hyperbolic disk. Then we introduce how
quasiconformal maps between surfaces can be represented by Beltrami differentials on
these domains. This allows us to describe distortions in surface maps. Using the Bel-
trami differential as our representation, we consider how the change of it is related to
the vector field we use to adjust surface maps. Precisely, we introduce the method of
Beltrami flows to compute such vector fields. Finally, to work on high genus surfaces,
we derive the consistent conditions the Beltrami flows have to satisfy while adjusting
the surface maps.

3.1. Closed Surfaces and Their Uniformizations. The uniformization the-
orem [1] states that every closed smooth surface can be biholomorphically mapped
onto exact one of the unit sphere, the Euclidean plane or the hyperbolic disk, after
a quotient operation by a discrete subgroup acting on the uniformizing space for the
latter 2 cases. For the case of simply connected closed surfaces, they can always
be conformally mapped onto the unit sphere without any quotient operation. The
process of finding such conformal maps is called surface uniformization. To precisely
define the notations we use for cases requiring quotient operations, we describe the
terminology we use and the uniformization process for the genus one and high genus



F1c. 3.1. An ezample of the fundamental parallelogram for a genus one surface. In this ezample,
the generators (4,1) and (1,2) represent the translations Th(z,y) = (x + 4,y + 1) and Ta(z,y) =
(x+1,y+2) of the plane, generating the transformation group of the parallelograms tessellating the
plane.

cases in the next 3 subsections.

3.2. The Notions of Transformation Groups and Generators. The uni-
formizing map of a surface is a conformal map from its universal covering space onto
the surface. For genus one and high genus surfaces, this mapping is not one-to-one
and satisfy some periodic boundary conditions, and the notions of transformation
groups and generators are very useful for understanding this situation. For genus one
and high genus surfaces, they can be cut open and mapped onto a copy of itself in
the uniformizing space through the uniformizing map. Each such copy of a genus one
surface is called the fundamental parallelogram and that of a genus g surface is called
the fundamental polygon (with 4¢g sides). The polygons satisfy certain constraints
which allow them to tessellate the uniformizing spaces, and some correspondence of
their sides are given so that each copy can be “stitched” to form the original surface.
In fact, the uniformizing maps are universal coverings of the surfaces. Associated with
each universal covering is the transformation group, which consists of automorphisms,
or bijective diffeomorphisms, of the uniformizing space that sends a copy of the surface
to another. For a genus one surface, this transform group has 2 generators, which
are translations of R2. For a high genus surface with genus ¢, the transformation
group consists of 2g generators which can be represented as fractional linear trans-
forms of the hyperbolic disk. Such transformation group is called a Fuchsian group.
In this way, copies of the surface tessellate the uniformizing space under the action
of its transformation group. Two intuitive figures are shown in Figures 3.1 and 3.2
to demonstrate this. Therefore the generators completely determine the conformal
geometry of the surfaces and finding them correctly is essential to our algorithms. We
will understand each of the genus one and high genus cases in depth in the following
subsections. A discussion of the transformation groups for R? can be found in [1].
For an introduction to Fuchsian groups, we refer interested readers to [6].

3.3. Uniformization for Genus One Surfaces. According to the uniformiza-
tion theorem, every genus one closed surface M can be mapped conformally onto
R?/T, where T is a discrete additive subgroup of R? generated by 2 generators. With-
out loss of generality, we may assume the generators to be (1,0) and (a,b). M can be
mapped conformally onto a fundamental domain €2 with 4 corners identified. Denote
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Fic. 3.2. An example of fundamental octagon for genus two surfaces. In this example, the
regular octagon with angles of w/4 tessellate the hyperbolic disk with a suitable transformation group
with 4 generators.

by p1, p2, ps and ps the corners of the fundamental domain. With the generators,
p1 = (0,0), po = (1,0), p3 = (1 + a,b) and py = (a,b). Let Ay, Ba, A2 and B be the
boundaries of 2 from p; to ps, pa to p3, ps to ps and py to p; respectively. By the
generator relations, we have Ay = A; 4+ a + bv/—1, and By = By + 1. Therefore, to
reach the correct generators in our algorithms, these relations must be satisfied as €2 is
deformed under the Beltrami flow, with respect to the changing generator (a(t), b(t)).

3.4. Uniformization for High Genus Surfaces. According to the uniformiza-
tion theorem, every high genus surface M with genus greater than or equal to 2 admits
a uniformization onto the hyperbolic upper half plane H. The set of all biholomor-
phic self-maps of H is given by the group PSL(2,R) := SL(2,R)/{£I}. Consider

(Z 2) € PSL(2,R). It acts on H by the action

a b az+b
czi= H. 1
(c d) 2=y Vz € (3.1)

With a conjugation, we can think of PSL(2,R) acting on the unit disk D as well,
since D and H are conformally equivalent. Mathematically, there exists a discrete
subgroup G C PSL(2,R), called the Fuchsian group, such that there is a conformal
diffeomorphism ¢: M — D/G. Precisely, the Fuchsian group is a discrete subgroup
of PSL(2,R), which acts on the hyperbolic disk by fractional linear transformations,
also called Mobius transformations.

To correctly adjust a diffeomorphism from a surface onto D/G, one needs to
continuously morph the generators of G such that the corresponding boundaries
remain consistent. For a genus g surface, it is possible to realize D/G as a fun-
damental polygon in D with 4g sides. Denote by pi,p2,...,psq the vertices of
the fundamental polygon. Omne can find generator ai,...,aq,b1,...,by such that
ai(pa) = p1,a1(p3) = p2,b1(p2) = p5,01(P3) = Pa, ..., a4(pag) = Pag—3,a4(pag-1) =
Pag—2,bg(Pag—2) = p1,bg(Pag—1) = pag. Then the generators automatically satisfy the
relation

arbray byt agbgay tb,t = id. (3.2)



Fic. 3.3. The fundamental polygon for a genus two surface. Each pair of corresponding sides
is labeled with the same number of arrows. The actions of the generators of its Fuchsian group are
shown by the dotted arrows.

Therefore the Fuchsian group G is generated by these generators:
G:<a17...,ag,b1,...7bg>. (33)

A figure of the fundamental polygon for a genus two surface is shown in Figure 3.3
with the generators of its Fuchsian group and corresponding sides labeled.

The key issue for constructing the uniformization for high genus surfaces is that
both the target domain, i.e., the fundamental polygon, and the conformal map be-
tween the surface and the fundamental polygon need to be constructed. That means
the generators and hence the fundamental domain have to be adjusted together with
the diffeomorphisms between the surface and fundamental domain during the flow.
In particular one needs to keep the lengths equal for the 2g pairs of corresponding
sides and preserve the angle sum of the fundamental domain to 27. In discussing
our algorithms, we will illustrate these constraints in detail and show that they can
be enforced by modifying the Beltrami flow. Before explaining our method for this
more complicated case, we first describe the geometry of the hyperbolic disk and its
transformations in the next subsection.

3.5. Geometry of the Hyperbolic Disk. The hyperbolic disk D, also known
as the Poincaré disk, can be constructed by equipping the unit disk in the complex
plane with the following metric:

dzdz

2 _
W=

(3.4)

With the above metric, the hyperbolic distance from a point p € D to the origin is
disty(2) = tan"'(|2]), (3.5)

where H denotes hyperbolic. It can be shown that all isometries of the hyperbolic
upper half plane H are of the form

az+b
cz+d’

P(z) = (3.6)
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where a, b, ¢, d are real numbers and ad — bc # 0. Therefore the group PSL(2,R)
acts on H by Mobius transformations. For the hyperbolic disk, the isometries take
the form

pvV—1 2" (3.7)

where ¢ € R and @ € D. This will be the form we use to describe the parameters of

our generators. The group of Mobius transformations of this form is isomorphic to
PSL(2,R).

3.6. Beltrami Coefficients and Beltrami Differentials. With the theory
on surfaces and their uniformization, it is important to have a mathematical tool to
describe the distortions of surface maps, which allows us to measure how far away we
are from the uniformizing map. For this purpose, we naturally consider the theory
of quasiconformal maps, which is a direct generalization of conformal maps. In this
subsection, we give a brief introduction on quasiconformal maps, Beltrami coefficients
and Beltrami differentials. A detailed introduction on the theory of quasiconformal
maps can be found in [2] and [7].

Consider first a complex-valued function f defined on the complex plane. f
can also be considered as a complex-valued function defined on the (z,y)-plane R
Assume that both real and imaginary parts of f are C! as real-valued functions. Its
Beltrami coefficient at z is defined to be

_ f=(2)
fo(2)

where fz and f, are complex derivatives of f defined as

of 1 [0f of
o _1 (ax +may> (3.9)

1(2) (3.8)

and

of 1 [of of
5 =5 (833 — ﬁ@) : (3.10)

(3.8) is also called the Beltrami equation, and a function f satisfying (3.8) is said to
be quasiconformal. Locally f maps a small disk centered at z to an ellipse centered at
f(2), with the dilation K(z) given by % If there is no non-conformal distortion
at z, then p(z) = 0 and K(z) = 1. Therefore the Beltrami coefficient is a quantity
that measures local non-conformal distortions of surface maps.

To generalize the notion of Beltrami coefficients to arbitrary Riemann surfaces,
where a global conformal parametrization may not exist, we can represent the local
non-conformal distortions of a surface map by the Beltrami differential

dz

— A1
Z, (3.11)

p(z)
where p(z) is the Beltrami coefficient of the surface map represented using a local
conformal parametrization z. In 4.1, we will describe the discrete Beltrami flow
algorithm, which allows us to adjust the Beltrami differentials of surface maps using
vector fields.
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Vi

FiG. 3.4. With adjacent vertices v; and v; on the original mesh, the angles a;; and Bij are the
labeled angles from the adjacent triangles of the ij-th edge.

3.7. Initial Map. Before starting discrete Beltrami flow to compute the uni-
formization for a given surface, we need to cut open the closed surface and construct
an initial map from the surface onto a planar domain. Here we propose two options.

3.7.1. Tutte Embedding. To map a cut open graph onto a planer domain, we
apply the well known Tutte embedding [24], which asserts that for any 3-connected
graph G = (V, E, F') representing a triangular mesh, suppose its boundary 9G is em-
bedded in the plane as a (not necessarily strictly) convex polygon, then the following
systems of linear equations can be solved for the z and y coordinates of the embedding

of G:

1
> —z; =i, i=1,...,[V] 0G| (3.12)
v; €N (vy) ‘N(UZ”
1
=y, i=1,...,|V]|—10G], 1
v; EN (v4)
where {v1,...,vv|—jag|} are all the interior points of G, N(v;) is the set of neighbors

of v;, and |N(v;)| is the number of neighbors of v;. A graph is called 3-connected if it
remains connected after the removal of any 2 vertices and their incident edges. This
is true for most triangular meshes in general. Later, a simple proof of the theorem
was suggested by de Verdiére et al. [4]. By the theorem, it guarantees a one-to-one
and onto map for a simply connected open surface onto a convex planer domain by
solving the above systems of linear equations.

3.7.2. Discrete Conformal Embedding. As an alternative to Tutte embed-
ding, one may also compute the discrete conformal embedding of the triangular mesh
onto some given domain. The embedding is computed by solving a linear system with
“cotangent” weights, first introduced by Pinkall et al. [22] as a linear finite element
approximation of the Laplace-Beltrami operator. In the embedding, we require each
vertex v; from the mesh to be mapped to p; = (x;,y;), which satisfies

pi = Z WijPyjs (3.14)

v; EN (vy)

where N(v;) is the set of neighbors of v;, and w;; = cot a;; + cot B;;, with o and 8
given by the angles shown in Figure 3.4.

The sum on the right hand side of (3.14) is often used to define the discrete
Laplacian operator on triangular meshes, and can be derived using finite element
methods [12]. As our results show, computing the initial map using this method can
often speed up our algorithms for uniformization by reducing the number of iterations
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needed for discrete Beltrami flow, as the initial map is already a conformal map in a
discrete sense. However, there is no guarantee that the map is always non-overlapping,
which could pose problems to our algorithms if the initial triangular mesh is very
irregular.

4. Numerical Algorithms. In this section, we describe the numerical algo-
rithms we use for surface uniformization, which are based on the various theories on
surfaces, their classifications and the distortions of the maps between them. With the
results from these theories, our algorithms are able to work on general surfaces with
arbitrary topology.

4.1. A Brief Introduction of the Discrete Beltrami Flow Algorithm. In
this subsection, we briefly describe the discrete Beltrami flow algorithm we use for
uniformization. First we consider a map from and to the complex plane C. After
that, we briefly discuss how the method is generalized to arbitrary surfaces.

Consider a domain 2 € C2. The aim of the Beltrami flow algorithm is to find
a quasiconformal map f from 2 to some domain ¥ which optimizes some energy
E(u), where p: C — C is the Beltrami coefficient of the map. The domain ¥ can be
fixed or unknown itself depending on the application. In both cases, the algorithm
seeks a flow V: C — C such that by flowing f using V, i.e., adjust the map f to
g (2) = f(2) + tV(2) with some appropriate time step ¢, the energy is decreased.

Suppose the current Beltrami coefficient is p, and there is a direction v: 2 — C
such that E(p+v) < E(p), we want to compute V' such that the Beltrami coefficient
of g'(z) = f + tV is approximately u + tv for small ¢. It is shown [25] that V, also
called the Beltrami flow, satisfies

ov v 1 3

% = (=ms) o0 )
where 0 = % and p = 6% f(z). We compute the best V satisfying this equation
using a least squares approach to obtain a flow for adjusting f. For details of the
implementation, we refer interested readers to [25], which developed the algorithm
for constructing quasiconformal maps between two arbitrary surfaces. For an energy
functional F of u, we can set v to be the gradient decent direction for example, and
compute the flow V giving the required adjustment in g. On discrete surfaces, the
least square energy can be written as a sum of squares of discrete derivatives computed
on every triangle. This method is called the discrete Beltrami flow algorithm, and
was used to produce results for simply connected closed surfaces in that paper. The
square of the L?-norm of the Beltrami differential was used as the energy functional
and produced excellent results. Other energy functionals of u can be used as well,
which is one of the advantages of our algorithms.

4.2. Initialization for Genus One Surfaces. To construct an initial map
from a genus one surface M onto the fundamental domain [0, 1] x [0,1] € R? with
initial generators (1,0),(0,1) € R?, we first select a point p from the vertices of the
triangular mesh of M, to be mapped to the 4 corners of the fundamental domain.
We pick 2 homotopically different loops with p as endpoints on the mesh to represent
the homological basis of the first homology group of the mesh, which will be mapped
onto the 2 pairs of opposite sides respectively. These loops can be picked by hand or
can be constructed by some graph searching algorithms, e.g. [5]. After cutting up
the mesh along these loops, we obtain a graph representation of the cut open mesh,
which is open and simply connected. Using Tutte embedding or discrete conformal
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Ay
(a) (b)

F1G. 4.1. The cuts on a torus and how the cut open torus is mapped onto a fundamental domain.
(a) shows a torus with 2 cuts made along 2 homotopically different loops at their intersection. (b)
shows how the cut open torus is then mapped onto a fundamental domain. The corresponding sides
on the torus and the fundamental domain are marked with the same number of arrows.

embedding, we can easily map M onto [0, 1] x [0, 1] with 2 pairs of sides identified for
consistency. This completes our initialization for genus one surfaces.

4.3. Discrete Beltrami Flow for Genus One Surfaces. Suppose we have a
parametrization from a genus one surface M onto a fundamental domain Q € R?, with
generators (1,0) and (a,b) in R? as discussed in 4.2. Suppose 92 = A; U By U Ay U By,
where Ay = A; +a+ by/—1 and By = B; + 1. We want to flow this domain in R?
so that the generator (a(t),b(t)) is changing as a function of time and A;, As move
consistently with respect to this change of generator, i.e.,

Ay = Ay +a(t) + b(t)V—1. (4.2)

Figure 4.1 illustrates the cuts on the torus and how the cut open torus is mapped
onto a fundamental domain with the correspondence described.

For each point p; on A; and its corresponding point ps on As, by (4.2), we have
the relation

pa(t) = pi(t) + a(t) + b(t)v/—1. (4.3)

Therefore, on A; and Az, we have the following condition for the flow V:

Vips) = V(pa) + alt) + Sb(t)V T (44)

On Bj; and Ba, since the generator (1,0) is not changing, we have
a2(t) = qi(t) + 1 (4.5)

for all ¢; on By and its corresponding point gs on By. Therefore, on By and Bs, we
have

V(Qz) = V(Q1)~ (4-6)

To adjust the diffeomorphism according to a given Beltrami coefficient v, we
minimize the following energy functional

J

2

0 dx dy (4.7

£V(z) —v(z)
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with the above constraints (4.4) and (4.6) along the boundaries strictly imposed as
boundary conditions for V.

We summarize the algorithm for genus one surfaces in Algorithm 1 and leave the
discussion about the optimal time step to Subsection 4.6.

Algorithm 1 Compute the uniformization for a genus one surface

Require: A genus one surface represented by a triangular mesh M = {P, E, F'}; Pick
a vertex p € P to be mapped to the 4 corners of the fundamental domain; Pick 2
loops Ly, Ly through p representing the homological basis of M formed by points
in P and edges in F;

Using Tutte embedding or discrete conformal embedding, compute a map ¢ from
the open surface cut by L; and Ls onto [0,1] x [0,1] with ¢=1([0,1] x 0) = Ly,
¢71([0,1] x 1) = L1, $71(0 x [0,1]) = Ly and ¢~ 1(1 x [0,1]) = Lo;
Set tolerance TOL;
Set generators (a,b) = (0, 1);
repeat
Compute the the least squares flow V in (4.7) with constraints (4.4) and (4.6);
Set Pnew(2) 1= ¢(2) + tV(4(z)), where ¢t is an optimally chosen time step;
Set (a,b) = dnew(0,1);
Set ¢ t0 Pnew;
until max,cpt-|V(z)| < TOL.

4.4. Initialization for High Genus Surfaces. For a high genus surface M
with genus greater than 1, we can also construct an initial map from M onto the
fundamental polygon in D. However, since the geodesics in D are not straight lines
in Euclidean sense, the fundamental polygon is not convex in Euclidean sense under
the Poincaré model. To solve this problem, we note that the geodesics are straight
lines in Euclidean sense under the Beltrami-Klein model of the hyperbolic disk, and
the coordinates in these models are related by

2u

= —. 4.8
5 1+u-u ( )

Therefore we can first embed M onto the fundamental polygon under the Beltrami-
Klein model, which is convex in Euclidean sense, then map the resulting initialization
back to the Poincaré model.

Similar to the initialization of genus one surfaces, we first pick a point p from the
vertices of the triangular mesh of M, to be mapped to the corners of the fundamental
polygon. Then we select 2¢g homotopically different loops with p as endpoints on the
mesh that represent the homological basis of the first homology group of the mesh.
Once the loops are chosen, the mesh can be cut along these loops to obtain a simply
connected open surface. Then Tutte embedding or discrete conformal embedding can
be used to map M onto the fundamental polygon under the Beltrami-Klein model.
Finally, we transform the coordinates of the image of M to get its image under the
Poincaré model by the formula

s
= ——. 4.9
" 1+vV1—-5-5 (4.9)

This completes the initialization for high genus surfaces. Note that the error intro-
duced in the conversion between the two models does not matter because the initial-



12

(a)

Fic. 4.2. The cuts on a genus 2 surface and how the cut open surface is mapped onto a
fundamental polygon. (a) shows a genus 2 surface with 4 cuts made along 4 homotopically different
loops at their intersection. (b) shows how the cut open surface is then mapped onto a fundamental
polygon. With such polygon, we immediate obtain the generators ai, a2, by and by of the Fuchsian
group of the surface. The corresponding sides on the surface and the fundamental polygon are
marked with the same number of arrows.

ization is not a conformal map. The distortion will be corrected in the Beltrami flow
algorithm.

As an example, in Figure 4.2, we illustrate the cuts of a genus 2 surface and how
the cut open surface is mapped onto a fundamental polygon using the initialization
described.

4.5. Discrete Beltrami Flow for High Genus Surfaces. Consider points
p1(t), p2(t) on &D, which correspond to each other by a Mébius transformation )¢,
which is also changing with the flow. To move p; and p, consistently in each iteration,
we derive the linear constraints that the velocities of the points and the change of pa-
rameters of the Mdbius transformation have to satisfy. Suppose p1(t) = (z1(¢),y1(¢))
and po(t) = (w2(t),y2(t)), and let ¥ be defined by

t() = pib(t) 2T a(t)
P (2) a0 (4.10)
we have the relation
P (pr(t) = pa(t), (4.11)
or
(id(t) P1 (t) —a(t) _
P =t (412

By differentiating the above equation, one gets the linear relation of changes among
p1(t), p2(t) and the parameters ¢(t) and a(t),

€’ + poa e’ pPip2 -
a+ Q.

— 4.13
L—ap ' T—ap," " 1—ap (“.13)

P2 = ¥t (p1) = paic +
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If p; and py are related perfectly by (4.12), then we can compute the least square
Beltrami flow with the above linear constraint applied to every pairs of corresponding
points. However, the corresponding points and the parameters of the corresponding
Mébius transformation may not satisfy the relation (4.12) initially or during the evo-
lution, since the adjustment of the corresponding points is made in the Euclidean
sense after the vector field is computed. Therefore we use a relaxation way to enforce
the relation during the evolution by

P2 — P(p1) = —a(p2 — ¥(p1)), (4.14)

where « is some relaxation parameter. In our experiment we use o = 1, because
ideally, a time step of ¢ = 1 should adjust the diffeomorphism to a uniformizing map.
This is also equivalent to adding a Lagrange multiplier to the energy functional of
the diffeomorphism to enforce the relation (4.12) in a least square sense. So we use
the following constraint for the velocity field at the vertices of the target fundamental
polygons in D:

. e 4 poa e p1p
P2+ p2 — P(p1) = p2idp + 72 122

— a. 4.15
1—ap; P 1—6p1a 1—6p1a ( )

Another important constraint in our algorithm is to keep the generator relations
valid. In other words, the fundamental domain has to morph in a way such that
they can tessellate the whole hyperbolic disk. This requires all pairs of corresponding
edges to have equal length, and the angle sum of the fundamental polygon to be
27r. Interestingly, these constraints are automatically enforced by (4.12). This is
because (4.12) guarantees that each pair of corresponding sides is related by a Mobius
transformation, which is an isometry. Therefore the copies of the corners of the
fundamental domain meet at a point (e.g. one of its corners) with all pairs of its sides
consistently matched in length. Since the angle around every point in the hyperbolic
disk is 27, the sum of the angles of the corners has to be 27 as well. This guarantees
that the generator relation (3.2) is satisfied, and no extra constraint other than (4.12)
is needed.

We summarize the algorithm for high genus surfaces in Algorithm 2 and leave the
discussion about the optimal time step to the following subsection.

4.6. Choosing the Optimal Time Step. In both of the algorithms above, the
time step should be chosen to lead to a fast decay of the least square energy of the

Beltrami differential p(z)% of surface M:

B(uF) = [ wiaraa (4.16)

Note that since the modulus of p(z) does not depend on the coordinates chosen to
represent the Beltrami differential, the above definition makes sense.

After computing the vector field V' using Beltrami flow that adjusts the Beltrami
differential of the surface map in the direction of the steepest descent of (4.16), the
diffeomorphism with an adjustment of size t is given by ¢new(2) = @(2) + tV(¢(2)).
Therefore the Beltrami differential also depends on ¢. We can simplify the notation
and write

B0 = £ (0% ) = [ 0P da, (4.17)
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Algorithm 2 Compute the uniformization for a high genus surface

Require: A genus g surface represented by a triangular mesh M = {P, E, F'}, with
g > 2; Pick a vertex p € P to be mapped to the 4g corners of the fundamental
polygon in the hyperbolic disk D; Pick 2g loops L1, ..., Lag through p representing
the homological basis of M formed by points in P and edges in F;

Using Tutte embedding or discrete conformal embedding, compute a map ¢ from
the open surface cut by L, ..., Lyg onto the standard 4g-gon in D = int(D) U A; U
By UAI_IUBl_]'U' : 'UAgUBgUAg_lUBQ_I7 with (b_l(Az) = Lo;_1, (b_l(Ai_l) = Lo; 1,
¢ H(B;) = Lo; and ¢~ Y(B; ') = Lo; fori=1,...,g;

Set tolerance TOL;

Set generators g;(z) = e\/?l‘m%;

repeat
Compute the the least squares flow V in (4.7) with the constraints defined by
(4.15);

Set Pnew(2) 1= ¢(2) +tV(4(z)), where ¢ is an optimally chosen time step;

Set ¢ t0 Pnew;
until max,cpt- |V(z)| < TOL.

where we have abused the notation and assumed we have a global parametrization
in z. This is not essential as our computation is done locally. The first and second
derivatives of |u(z,t)|? can be computed on each triangle of the triangulated M. Each
such triangle can be considered as a plane with given local coordinates (x,y), and each
triangle of the target domain can also be given local coordinates (u, v). Therefore the
definition of the Beltrami coefficient with local coordinates (3.8) can be used. The
flow V can also be represented locally as V (z,y) = Vi(z,y) +v—1- Va(z,y) € C. Let
fo(x,y) = u(x,y) + V=1 -v(z,y) be the local representation of the current surface
map. Then f(z,y,t) = u(z,y) + tVi(x,y) + V=1 [v(z,y) + tVa(x,y)] gives the local
representation of the surface map at time ¢ after applying the flow. Therefore locally,
f1(2,t) is just a complex fraction in terms of u, v, Vi and Vs. Hence, 4 |u(2)[? and

j—;| 1(z)|? can be computed easily. We have put the derivation of these two formulas
in detail in the Appendix.

With |4(2)[? and %\,u(z)\z computed locally on each face, the first derivative
of E(t) is given by

E'(t) = /M %\,u(z, )2 dA. (4.18)

Also, the second derivative of E(t) is given by

2
E"(t) = /M %\u(z, )2 dA. (4.19)

The integrals for both E’(t) and E”(t) can be written as summations over all faces of
M.
For small ¢, E(t) can be approximated by

E(t) = E(0) + E'(0)t + %E”(O)tQ. (4.20)

Using the Newton’s method, the optimal time step foptimal is the time step ¢ such that
the first derivative of the above approximation becomes 0, which means the energy
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attains a local minimum. The optimal time step is then given by

E/

toptimal = _Ew(((())))' (421)
Another constraint of the time step is that the Jacobian J of the map must
be positive on M. Locally, the Jacobian of the resulting map with time step ¢ in
direction V' can be computed on each face as a quadratic polynomial in ¢. Similar
to the above discussion, on a face of M, we can write the current map as fo(x,y) =
uw(z,y) +v—1-v(z,y) and the flow as V(z,y) = Vi(z,y) + V=1 Va(z,y) € C using
local coordinates. The local representation of the surface map at time ¢ is given by
flx,y,t) = u(z,y) +tVi(z,y) + V=1 [v(z,y) + tVa(z,y)]. The Jacobian of the face

at time ¢ is given by

J(zy,t) = (8“ +ta"1> (‘9” +t6"2) - (5““‘9"1) (5"’+taV2)
T Ox Ox Oy Oy Oy Oy Ox Ox
(et w0y (De0ts 0008, outs_onone)
drdy Oy ox

oz oy * dy Or Oy Ox  Ox Oy

oV oV, 0Vy OVs
2 (919v2  YV1OV2
! ( Or dy Oy Ox ) ’ (4.22)

which is a quadratic polynomial in ¢.

Therefore, on each triangle 7', we can set the maximal time step tmax,7 We can
take to be the smallest positive root of the above polynomial in ¢ for that triangle.
This is the smallest time step that causes the triangle to degenerate and then overlap
for any bigger time step. Therefore we define the global maximum time step allowed
as

tmax = 7111612 tmax,T- (423)

In our algorithms, we choose our time step fchosen as

tchosen = min(toptimah tmax/2)- (424)

This ensures fast convergence of our algorithms and guarantees that the resulting map
is not close to overlapping.

5. Results and Analysis. In this section, we present numerical results of our
algorithms. Before Section 5.5, Tutte embedding is used for the construction of initial
map. All computations are performed using MATLAB on a mobile machine equipped
with a dual-core 2.9 GHz processor and 8 GB of RAM. With a more efficient imple-
mentation in C/C++, the computation time can be further reduced.

5.1. Uniformization for Genus Zero Surfaces. We compute the uniformiza-
tion of 6 genus zero surfaces onto the unit sphere. The complexity of the triangulated
surfaces ranges from 6002 vertices to 128930 vertices. As shown in Table 5.1, except
for the 2 largest meshes with more than 100K vertices, the uniformization for other
genus zero surfaces of up to 30K can be computed in a few seconds.

5.2. Uniformization for Genus One Surfaces. We test our algorithm on the
computation for genus one surfaces, which is the simplest case for surfaces with genus
g > 1. The target domain is some parallelogram in the plane, and only 1 generator
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TABLE 5.1
The results of our algorithm for the uniformization of genus zero surfaces, with Tutte embedding
initialization.

Surface ## Vertices # Triangles # Iterations Time Taken (s)
Human Brain 6002 12000 7 2.6923

Fandisk 6475 12946 6 2.6897

Octa Flower 7919 15834 20 9.9278

Fish 29498 58992 14 16.7971

Fish 120K 120069 240134 22 222.0254
Armadillo 128930 257856 34 336.6296

TABLE 5.2

The results of our algorithm for the uniformization of genus one surfaces, with Tutte embedding
initialization.

Surface # Vertices # Triangles # Iterations Time Taken (s)
Rocker Arm 9397 18794 13 4.0616
Kitten 24956 49912 8 7.9141
Bumpy Torus 16815 33630 12 7.3783

with 2 real parameters are needed. The results for 3 examples are shown in Table
5.2. The time required by our algorithm for genus one cases is comparable to similar
sized meshes for genus zeros cases. The final uniformization of these surfaces and
their uniformization domains are shown in Figure 5.1.

5.3. Uniformization for Genus Two Surfaces. For genus two surfaces, since
the target uniformization domain is the hyperbolic disk, and the relations between the
sides of the fundamental polygon are non-linear, we restrict out maximum possible
step size to 0.2 - tnax to prevent points from going outside the disk. Our algorithm
works well for both examples. When the algorithm converges, the relative error of
the equations describing the generator relations (4.12) approaches machine precision.
This indicates that our algorithm successfully works on the hyperbolic disk. The
results are shown in Table 5.3. The final uniformization of these surfaces and their
uniformization domains are shown in Figure 5.2.

5.4. Comparison with Other Methods. We compare our algorithms with 2
other existing methods, namely the harmonic map method and methods based on
Ricci flow. We compare the results of these methods in terms of the running time
and the angular distortion of the final parametrization.

For the harmonic map method, we compute the harmonic map from 2 genus
zero surface onto a sphere. Theoretically, such map always exists and is unique and
conformal if we fix 3 points on the surface. The harmonic maps are computed using
gradient descent for the Octa Flower mesh and the Fish mesh, both genus 0 surfaces.
With the same initial maps as used in our algorithm and the same stopping criteria for
both meshes, the running time for Octa Flower was 3.7649 seconds and that for Fish
was 40.2178 seconds. This shows that as the mesh size grows larger, our algorithm
outperforms the harmonic map method.

We also tested the Ricci flow algorithms for genus one and high genus surfaces
from the RiemannMapper programs publicly available!. The programs were written

Thttp://www.cs.sunysb.edu/ gu/software/RiemannMapper/index.html
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74 ';o’o
thege

Fic. 5.1. The uniformization of 3 genus one surfaces and their fundamental domains. (a)(b)
Rocker Arm. (c)(d) Kitten. (e)(f) Bumpy Torus.

TABLE 5.3
The results of our algorithm for the uniformization of genus two surfaces, with Tutte embedding
initialization.

Surface ## Vertices # Triangles # Iterations Time Taken (s)
Amphora 9014 10832 40 31.3576
Figure Eight 12286 24576 32 22.7450

in C++ and call MATLAB at runtime for matrix computations. In this test, 2 genus
one surfaces and 1 genus two surfaces were used, and each of them has around 10K
vertices. In particular, the genus two surface of Figure Eight used was the same as
our test examples. We found that the uniformization of these 3 surfaces can each be
computed in 5 to 6 seconds. This suggests that the Ricci flow algorithms are highly
efficient due to the use of Newton’s method for energy minimization. From the results
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(d)

Fi1G. 5.2. The uniformization of 2 genus two surfaces and their fundamental domains. (a)(b)
Amphora. (c)(d) Figure Eight.

of our algorithms, it can be seen that our algorithm works reasonably fast, with the
Kitten, a mesh with 25K vertices, taking only 8 seconds. For high genus surfaces, our
algorithm runs slower and takes nearly 23 seconds on the figure eight mesh of 12K
vertices. There are two factors here. One is because our code is in MATLAB. The
other is because we used the step size 0.2 - t;,,x to prevent points from going outside
the hyperbolic disk. We hope to improve its efficiency by using a more flexible step
size in the future.

To compare the distribution of angular distortion from different methods, we
compute the distribution of distortions in each triangle of the surface mesh and the
parametrized mesh. Denote the angle from the face of the original surface by A, and
that from the face of the parametrized mesh by Ay, we compute the distribution of
the quantity

Aprm

1- .
Ao

(5.1)
If the value of the above quantity is close to 0, it means the parametrized angle is
close to the original angle, which means a small angular distortion. By comparing the
angular distortion using different algorithms, we can conclude which method achieves
the best result in preserving conformality.

We plot the angular distortions of the results from our algorithms in Figure 5.3,
and results from other algorithms in Figure 5.4. It can be seen that our method
produces very little angular distortion for surfaces of all topologies consistently. On
the other hand, the widely dispersed histograms of the results from harmonic maps
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Fi1a. 5.3. The distribution of angular error of the results by our algorithms. (a) Octa Flower.
(b) Fish. (c) Rocker Arm. (d) Kitten. (e) Bumpy Torus. (f) Amphora. (g) Figure Eight.

show serious angular distortions. Our algorithm produces similar results to those from
Ricci flow algorithm which is considered the current state of the art. Also, the serious
angular errors show that the harmonic map may not be a good characterization for
conformal map for discrete triangulated surfaces.

5.5. Improvement from Discrete Conformal Initialization. We also tested
our algorithms on all meshes using the discrete conformal initialization discussed
in Section 3.7.2. While there is no guarantee that the initial map is always non-
overlapping, most meshes can be properly initialized onto the initial domain of parametriza-
tion. We also find that speed of our algorithms can be significantly improved when
discrete conformal embedding can be used for initial map. The most impressive result
comes from the uniformization of the fish mesh with 120K vertices. We are able to
reduce the 22 iterations it takes using Tutte embedding to only 5 iterations using
discrete conformal initialization. This suggests that we should initialize using the
discrete conformal map whenever possible. The results for genus zero, one and two
surfaces are shown in Tables 5.4, 5.5 and 5.6 respectively, where N/A means discrete
conformal initial map does not work with Beltrami flow.

5.6. Performance on Meshes with Sharp Edges. Finally, we test our al-
gorithms on meshes with very sharp triangles. The meshes used in our experiment
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Fi1G. 5.4. The distribution of angular error of the results by other algorithms. (a) Octa Flower
by harmonic map. (b) Fish by harmonic map. (c) Rocker Arm by Ricci flow. (d) Kitten by Ricci
flow. (e) Figure Eight by Ricci flow.

TABLE 5.4
The results of our algorithm for the uniformization of genus zero surfaces, with discrete con-
formal initialization.

Surface # Vertices # Triangles # Iterations Time Taken (s)
Human Brain 6002 12000 5 1.9936

Fandisk 6475 12946 6 2.6847

Octa Flower 7919 15834 6 3.2029

Fish 29498 58992 N/A N/A

Fish 120K 120069 240134 5 68.4591
Armadillo 128930 257856 8 129.0380

are shown in Figure 5.5. Meshes of this form is very common in computer-aided
design (CAD) applications, where very sharp triangles occur because some vertex is
connected with many neighbors, as apparent in the figures. The main obstacle of
the uniformization of these surfaces comes from the difficulty of finding a good initial
map. The initial maps may contain triangles with very different sizes, which causes
the algorithms to be less stable. However, once a good initial map is found, our al-
gorithms work as expected. The results of our algorithms on the example meshes are
shown in Table 5.7.

6. Conclusion. In this paper, we introduced a novel algorithm based on discrete
Beltrami flow for the computation of surface uniformizations. By computing a vector
field with proper constraints enforced for the adjustment of different generators, we
successfully computed the uniformization for surfaces with genus g > 1. Computation
results show that our method a can successfully construct the uniformization map
and achieve both good accuracy and efficiency suggesting that parametrization by
minimizing the L2-norm of the Beltrami differential could be used as an alternative
good characterization for discrete surface uniformization.
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TABLE 5.5
The results of our algorithm for the uniformization of genus one surfaces, with discrete con-
formal initialization.

Surface # Vertices # Triangles # Iterations Time Taken (s)
Rocker Arm 9397 18794 7 5.9869
Kitten 24956 49912 6 6.0294
Bumpy Torus 16815 33630 4 2.4281
TABLE 5.6

The results of our algorithm for the uniformization of genus two surfaces, with discrete con-
formal initialization.

Surface # Vertices # Triangles # Iterations Time Taken (s)
Amphora 9014 10832 N/A N/A
Figure Eight 12286 24576 27 18.8043

Appendix. In this part, we derive the derivatives of the Beltrami coefficient
with respect to the time, when the local representation of the surface map fo(z,y) =
w(x,y) + V=1 v(z,y) is adjusted by the flow V(x,y) = Vi(z,y) + v—1 - Va(z,v),
also given by a local representation. We have used (x,y) and (u,v) to represent
the coordinates of the source and target surfaces respectively. Therefore f(z,y,t) =
uw(z,y) + tVi(z,y) + V=1 [v(z,y) + tVa(z,y)] gives the local representation of the
surface map at time ¢ after applying the flow. Our target is to compute %| w(z)|? and
;—;| u(z)|? from the given information.

Write f(z,t) = f(z,y,t) = fo(z) + tV(z), where z = 2 + /=1 - y and we have
treated f and V as complex-valued functions on the complex plane. Then the Beltrami
coefficient p(z,t) at z € C and time ¢ is given by

_ foz +tVz

wu(z,t) = A (6.1)

Then
/ ~ (for V) Ve — (foz +tVE)V,
M(z7t)_ (f02+t‘/z)2
VetV

Also

;J,H(Z,t) _ (fOz + tVZ)(_/J'/(Z’t)VZ) — (V? — /*L(Za t)VZ)Vz (6.3)

(fOz + t‘/z)Q

Then we can easily compute the derivatives of |u(z,t)|> with respect to t. For the
first derivative,

Stz 0 = 5 (e 0, 9)
= (oo D) + (e, O, ) (6.4

For the second derivative,
d2

T = 02 p(z,1) + 20 (2,0 (2,8) + p(z, ) (2, 1). (6.5)
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(c) (d) (e)

Fic. 5.5. The ezamples used to test our algorithms on meshes with sharp triangles: (a) Magnet
Gromet, (b) Pawn, (c¢) Motor, (d) Bottiglia, and (e) Ball Joint.

TABLE 5.7
The results of our algorithm for the uniformization of surfaces with sharp triangles, with Tutte
embedding initialization.

Surface # Vertices # Triangles # Iterations Time Taken (s)
Magnet Grommet 1924 3844 23 1.5320
Pawn 2289 4574 22 1.8831
Motor 4430 8856 17 2.5983
Bottiglia 4827 9650 23 4.1106
Ball Joint 6689 13374 21 5.0306

This completes the derivation of the formulas.
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