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Abstract:  Parameterizing the bioluminescent source globally in Gaussians 
provides several advantages over voxel representation in bioluminescence 
tomography. It is mathematically unique to recover Gaussians [3] and 
practically sufficient to approximate various shapes by Gaussians in 
diffusive medium. The computational burden is significantly reduced since 
much fewer unknowns are required. Besides, there are physiological 
evidences that the source can be modeled by Gaussians. The simulations 
show that the proposed model and algorithm significantly improves 
accuracy and stability in the presence of Gaussian or non- Gaussian sources, 
noisy data or the optical background mismatch. It is also validated through 
in vivo experimental data. 
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1. Introduction  
Bioluminescence tomography (BLT) [1-3] is an emerging molecular imaging modality, which 
can be used to monitor physiological and pathological activities at molecular levels, specially 
visualize primary tumor growth and tumor cell metastasis. In BLT [4-13], one attempts to 
recover both location and intensity of bioluminescent sources from boundary measurements.  

Conventionally the bioluminescent source is represented in voxels. For example, in a 
triangulation {τi, i≤N} of the domain Ω, the source in piecewise constants is 
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where 1i is the basis function supported on the subdomain τi that is 1 on τi, and 0 otherwise, 
and qi is the average intensity value on τi to be recovered. 

The accurate source reconstruction in voxels is highly challenging, which intrinsically 
comes from its non-uniqueness and severe illposedness [3]. For example, even with a large 
number of boundary data, which is practically much less than the number of voxels, the 
recovery of deeply embedded objects still has a poor resolution. An attempt to achieve the 
high-resolution reconstruction in the voxel-based BLT was made through the modeling by 
radiative transfer equation (RTE) and the use of angularly-resolved data in the medium of a 
few mean free paths [14, 15], although it may take quite an effort to acquire the angularly-
resolved data in practice. Please note that the popular diffusion approximation (DA) cannot 
model the angularly-resolved measures. 

In this work, instead of voxel representation, we model the source in Gaussians in 
reconstructions. A motivation is that because the light of interest is highly diffusive, a 
localized bioluminescent tumor does look like a Gaussian at a sufficiently large distance. 
Therefore it is practically sufficient to model various shapes as Gaussians in the diffusive 
medium, especially those deeply embedded objects. With this new representation, the 
reconstruction itself is unique [3] and the BLT is reduced to the problem with a few 
parameters. Moreover, the new model can be justified from physiological reasons. Please see 
the next section for the detailed explanation of the benefits for such a parameterization. 

The outcome of the Gaussian model is formulated as a minimization problem with 
respect to the number of Gaussians, intensity, the center, the radius and the aligned direction 
of each Gaussian. 

Just to clarify, although the number of Gaussians may be fixed in a specific 
reconstruction process, the exact number of actual Gaussian sources is not assumed. If the 
number of Gaussians in reconstruction is larger than the actual number, the source can still be 
recovered; otherwise, the actual number can be approached from a smaller initial guess in a 



combinatorial fashion through minimizing the data discrepancy. This can be illustrated in the 
following example. Suppose there are three Gaussians. In the reconstruction, we can set the 
number of Gaussians to four. With the proposed reconstruction algorithm, three recovered 
Gaussians would correspond to actual ones while the other one has the zero or nearly zero 
intensity values. On the other hand, if the assumed number is smaller than the actual number, 
e.g., only one Gaussian, the data discrepancy cannot be effectively reduced, and in this case 
the problem can be formulated as combinatorial optimization problem in which the number of 
Gaussians is increased iteratively until three so that data discrepancy can be reduced to the 
desired tolerance. On the other hand, a rough estimate of the actual number of Gaussians does 
improve both accuracy and efficiency of the reconstruction. In summary, the actual number of 
Gaussians is not assumed and it is practically sufficient to fix the number of Gaussians in 
reconstructions since the sources are localized and limited in quantity. 

Please notice that, in [16] on diffuse optical imaging, modeling the absorption coefficient 
as a single Gaussian, the authors also demonstrated the reconstruction improvement when 
using a priori information from ultrasound images for the center of the Gaussian. In this work, 
we do not assume a priori information from other imaging modalities although it can be used 
for further improvement. For example, we do not assume the center of Gaussians that is to be 
recovered. However, we do impose some geometric constraints to avoid the apparent non-
uniqueness of geometric parameterization. For example, we constrain on the distance between 
any two Gaussians so that they do not overlap, or use the size of the phantom as the bound of 
the center. Please refer to the next section for the details on the applied constraints. 

Last, although we model the source in Gaussians in the reconstruction, the actual source 
distribution in simulations is not necessarily Gaussian. However the reconstruction is better if 
the actual source is in Gaussians as well. Please refer to the result section for details. 

Here is the outline of the paper. In section 2, we introduce the new model of 
bioluminescent source by Gaussians, various intrinsic geometric constraints, and then the 
minimization algorithm; in section 3, the proposed model and algorithm is validated through 
simulations and experimental data. 

2. Methods 

2.1. Forward Modeling 
RTE is the most accurate among realistic models for light propagation in tissue [17, 18]. 

However, due to its large dimensionality, an efficient solver of RTE is non-trivial [19]. Many 
efforts have been devoted in the development of RTE solver. Please see [20] and references 
therein for numerical methods for solving the deterministic RTE, and [21] and references 
therein for stochastic approaches by Monte Carlo method. The alternative modeling strategy is 
to simplify RTE into appropriate approximation according to particular optical regimes of 
interest [17, 22, 23]. Among all the approximate models, the most popular one is DA, which is 
valid in the scattering dominant regime. For simplicity, we will use DA in this proof-of-
concept study. Please note that the modeling error in practice comes from not only the chosen 
model, but also the approximation of optical properties for the underlying medium. 

In the following DA with Robin boundary condition, we use φ for the light intensity, q 
for the bioluminescent source, µa for the absorption coefficient, µs

'
 for the reduced scattering 

coefficient, D for the diffusion coefficient, i.e., D=1/ [3(µa + µs
'
)], n̂  for the outgoing normal 

at the medium boundary, A for the boundary constant [24]. 
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Here we choose piecewise linear finite element method (FEM) to solve Eq. (2). After 
discretization, Eq. (2) is reduced to a linear system with the discretized light intensity Φ, the 
discretized source Q, and the system matrix F dependent on µa and D, i.e., 

QF =Φ      (3) 



We refer the readers to [24] for the details of FEM solution of Eq. (2). After solving Eq. (3), 
we have the following boundary fluxes 

AnDf 2/ˆ φφ =⋅∇−= .    (4) 

2.2. Source Representation by Gaussians 
As a quantitative imaging method, BLT is expected to provide the source intensity or 

power accurately. However, there are some intrinsic aforementioned difficulties in achieving 
high-resolution reconstruction with the voxel-based BLT. Therefore, instead of local voxel 
representation of the bioluminescent source, we consider the global representation by 
characteristic shapes of the tumor, e.g., the Gaussians in this study. A motivation is that 
because the light of interest is highly diffusive, a localized bioluminescent tumor does look 
like a Gaussian if it is sufficiently distant from the boundary. It turns out that this new 
representation with significantly reduced degrees of freedom is more robust than the voxel-
based representation. 

Mathematically, it was proven in [3]: the solution of BLT is non-unique without the 
incorporation of effective a priori knowledge on the source distribution; in particular the 
uniqueness can be established when source is assumed to be composed of solid balls with the 
known intensities. However, using solid balls is not effective in representing general source 
distribution, especially features like anisotropy and fast decay of source intensity which are 
quite common in practice. In this study, we use summation of Gaussians to model general 
source distribution. This structural representation is flexible and improves the reconstruction 
stability for BLT. In particular the anisotropic Gaussian representation is an effective 
mathematical approximation in the sense that it parameterizes the major quantitative 
information of interest, such as the intensity, the center and the size of the source. 

Physiologically, the Gaussian shape is indeed a natural choice. According to 
http://www.humpath.com/tumorigenesis, tumorigenesis is a collection of complex genetic 
diseases characterized by multiple defects in the homeostatic mechanisms that regulate cell 
growth, proliferation and differentiation. Cancer is caused by uncontrolled proliferation and 
the inappropriate survival of damaged cells, which results in tumor formation. Cells have 
developed several safeguards to ensure that cell division, differentiation and death occur 
correctly and in a coordinated fashion, both during development and in the adult body. Many 
regulatory factors switch on or off genes that direct cellular proliferation and differentiation. 
Damage to these genes, which are referred as tumor-suppressor genes and oncogenes, is 
selected for in cancer. Most tumor-suppressor genes and oncogenes are first transcribed from 
DNA into RNA, and are then translated into protein to exert their effects. Recent evidence 
indicates that small non-protein-coding RNA molecules, called microRNAs (miRNAs), might 
also function as tumour suppressors and oncogenes. Therefore, in the tumorigenesis stage, 
cancerous cells are localized, limited in quantity, irregular in shape, and with some decaying 
behavior away from the center. As a result, they can be modeled effectively as Gaussian 
sources after they are bioluminescently labeled. Other inflammation foci can be similarly 
modeled at earlier stages. 

Therefore we represent the source q as the summation of Gaussians with the intensity ρ, 

the center (xc, yc, zc), anisotropic radius (rx, ry, rz) and Euler angles (ϕ, φ, θ), i.e.,  
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simplicity, we restrict the discussion on the rotation variables in 2D, which is simplified to θ 

only, i.e., 
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Computationally, the Gaussian source representation Eq. (5) reduces the burden 
significantly since we solve BLT with at most n×(1+d)(2+d)/2 unknowns in d dimensions, 
which is in general much smaller than that from voxel representation, e.g.,  N (total number of 
voxels) unknowns for Eq. (1). 

2.3. Gaussian-based BLT 
Modeling bioluminescent source in Gaussians, we formulate BLT as the minimization 

problem with respect to variables X
G
={ρj, xc,j, yc,j, zc,j, rx,j, ry,j, rz,j, ϕj, φj, θj, j≤n}, 
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Here we use the set {fi, i≤M} for the measured data, the set {Pi, i≤M} of column vectors for 
the discretized measuring operator, and geometric constraints R on X

G
, which can be regarded 

as the regularization term. Please note that φ is now nonlinearly dependent on XG
 in this new 

formulation, although it linearly depends on q in Eq. (1) in the voxel-based representation. 
In Eq. (6), we do not treat n as a variable, mainly because there is generally no practical 

need for that since the tumors are usually localized and limited in quantity. We can just assign 
a practical estimate to n that is larger enough than or comparable with the actual number. 

However, in the case that such an estimate is unavailable, we formulate Eq. (6) as a 
combinatorial optimization problem with respect to the variable n. That is we start from an 
initial guess n0 of n, which can be smaller than the actual number, and solve Eq. (6) iteratively 
until the data discrepancy d reaches certain toleranceε. Here the update of n is simply 
nk+1=nk+1. For the notation convenience, we will use X for X

G
 whenever it is appropriate. 

Then we have the following algorithm. 

 
In Algorithm 1, ε=0.05 is an empirical number that can identify those n’s that are 

sufficient for the reconstruction; fk denotes the measurements with the source Xk; ||⋅|| can be 
the simple summation of the absolute values. 

 
Next, we turn to the geometric constraints R, which can be imposed naturally from the 

known geometry of the medium. Please note that we do not assume any a priori knowledge 
on the anatomical structure of the medium, e.g., from other imaging modalities, although they 
can be easily incorporated into the scheme to improve the reconstruction. All the geometric 
constraints are either from the shape of the medium or from some commonsense assumptions 
on the shape of the source to avoid some non-uniqueness in geometric representation. 

The first type of constraints is the min-max constraint, the minimum and maximum for 
each variable of X

G
. For example, we can use the size of the medium as the min-max 

constraint for the center, and realistic values for anisotropic radius or intensity such as zeros 
as the lower bounds. That is  

Algorithm 1: Combinatorial optimization  
Given: initial guess n0

 
and ε =0.05.

 
 

Repeat: 1. Computing Xk through Eq. (6) with the fixed nk 
              2. d=||fk(Xk)– f||/||f||; 

       3. Stopping criterion: Quit if d <ε. 
       4. nk+1=nk+1 

 



GG
XXX maxmin << .     (7-1) 

Notice that although we constraint the rotation angles, e.g., 0°≤θ<180°, the representation of 
ellipsoid is not unique, e.g., by simultaneously exchanging rx and ry and considering the 
supplementary angle of θ in 2D. However, this does not affect the reconstruction result. 

Secondly, we restrict the shape variation along different directions so that the source is 
not too “narrow”, which is physiologically reasonable, i.e., 

xzxzzyzyyxyx rcrrcrrcr <<< ,, .     (7-2) 

Here the parameter cxy, cyz and czx control the size difference between any two directions for 
each source. 

In the case with multiple Gaussians, it is important to impose the following type of 
constraints, minimal-separation constaints, on centers and radiuses between any two 
Gaussians so that they will not overlap or get too close to each other. That is for any two 
Gaussian i and j,  

2222

,,

2

,,

2

,, )()()()()()( jijijijzizzjyiyyjxixx zzyyxxrrcrrcrrc −+−+−<+++++ . (7-3) 

Here cx, cy and cz are the control parameters, which can for example be set to ln2, 
corresponding to full width at half maximum (FWHM). Without using constraints from Eq. 
(7-3), multiple inclusions may not be separated. An example is given in the result section. 

All the above constraints Eq. (7) can be represented by the following abstract inequalities 

0)( <G
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Here we use the popular logarithmic penalty functions to enforce those constraints, i.e., 

∑ −−=
k

G

k

G XgXR )](ln[)( .     (9) 

Combining Eq. (6) and (9), the BLT with Gaussian representation is formulated as the 
minimization of the sum of the data fidelity and the logarithmic penalty functions of 
geometric constraints. In the next section we will develop the algorithm for solving Eq. (6) via 
the popular barrier method. 

Please note that when anatomical priors are available from other imaging modalities, such 
as X-ray CT or MRI, they can be incorporated naturally into the scheme Eq. (6). For example, 
the min-max constraints Eq. (7-1) can be tightened for centers or radiuses with the measured 
values from anatomical images; more accurate constraints can be imposed by assigning the 
appropriate constants in Eq. (7-2) and Eq. (7-3). In contrast, it is difficult to impose those 
global geometric features locally in the voxel-based BLT. On the other hand, the 
straightforward co-registration of the images from X-ray CT or MRI may not improve BLT 
satisfactorily since there is usually no simple one-to-one anatomical correspondence between 
them due to the fundamentally distinct imaging mechanisms. 

2.4. Minimization by Barrier Method 
As the standard approach for minimizing nonlinear least squares, we linearize the first 

term (the data fidelity) in Eq. (6), and solve for the incremental change δX iteratively via the 
following outer loop of iterations 
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Here f
n
 is the simulated data with X

n
, J is the Jacobian coming from the linearization, which 

depends on X
n
, and the detail for the computation of J is given in the next section for the 

algorithm implementation. 
During each iteration in the outer loop for Eq. (10), we minimize the following with b=f-

f
n
 and x=δX
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Here we choose the popular barrier method [25] to enforce the constraint term R. That is we 
solve a sequence of the following minimization problems 
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Minimizing Eq. (12) strictly enforces the geometric constraint R since the value of logarithmic 
penalty functions would otherwise become infinitely large. During each step the solution x

n
 is 

no more than K/t-suboptimal with K as the total number of constraints. This implies x
n
 

converges to the optimal point of Eq. (11) such that Jx=b with strictly enforced geometry 
constraints as t→∞. The Eq. (12) can be minimized with Newton’s method via the following 
inner loop 
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In each iterative step by Eq. (13), we compute the descent direction δx, find the moving step s 
through the backtracking line search, and then update x and t for the next iteration until the 
stopping criterion is satisfied. That is we solve a sequence of t-subproblems via Eq. (13) with 
the increasing t.  

2.5. Algorithm Implementation 
The flowchart of the algorithm for solving Eq. (6) is as follow: the outer loop comes from 

the linearization Eq. (10) of the data fidelity term while the inner loop solves each 
linearization step using barrier method via Eq. (13). 

 

 
In this flowchart, we use the ratio difference of the total source power E=∫qdΩ as the 

stopping criterion for the outer loop, i.e., assuming that the total power E is stable when the 
algorithm converges.  As the stopping criterion for the inner loop, we use the sub-optimal 
ratio K/t, which naturally measures the difference between the iterative solution of Eq. (12) 
and the original solution with strictly enforced constraints. We set εi empirically to 0.0001t

0
. 

Please note that the formula for t
0
 is for balancing the linearized data fidelity and the penalty 

function. 
Next, we give the details of computing Jacobian and the descent direction in Algorithm 2 

for the completeness. 
Let us start with the computation of Jacobian J={Jij, i≤M, j≤n}, which can be derived 

from the Jacobian J0={J0,ij, i≤M, j≤N} with respect to the piecewise-constant voxel 

Algorithm 2: minimizing BLT Eq. (6) with Gaussian representation 
Outer loop: Linearization of the data fidelity via Eq. (10) 
Given: initial guess X

0 
and εo=0.01.

 
 

Repeat: 1. Compute Jacobian J from X
n
. 

              2. Inner loop: solve x=δX using barrier method via Eq. (13) 
                 Given: t

0
=-2R(X

n
)/||b||

2
, µ=2, initial guess x

0
=0. 

                 Repeat: 2.1. Compute the descent direction δx; 
                        2.2. Compute the moving step s via backtracking line search; 
                               Given: α=0.01, s=1, β=0.5.                         
                               While: L(x

n
+sδx)>L(x

n
)+ α(∇Lx)

T⋅(sδx) 

                        s=βs. 
                        2.3. Update x

n+1
 =x

n
+sδx and t

n+1
= µt

n
. 

                        2.4. Stopping criterion:  Quit if K/t
n
<εi. 

       3. Stopping criterion: Quit if |E
n+1

-E
n
|/ E

n
 <εo. 



representation via Eq. (1). The connection between J and J0 is through the following 
coordinate transformation 
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where qk represents the kth voxel value in Eq. (1),  xj is the jth parameter in global 
representation by Gaussians in Eq. (5). 

An efficient way to compute J0 is through the adjoint method [24]. After computing J0, J 
follows immediately from (14). However, noticing that there are only a few parameters in the 
new source representation by Gaussians, i.e., n�M�N, we directly compute J without 
computing J0 via the direct method as follow. 

From Eq. (3), we have F(∂φ/∂qk)=∂Q/∂qk, then 
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Through Eq. (15), we only need to compute the forward solver n times, which would be at 
least M times if we compute J0 first via Eq. (14). Please note that ∂Q/∂qk is a sparse vector, 

which is nonzero only at the nodes in the kth voxel; on the other hand ∂qk/∂xj can be 
analytically derived from Eq. (5). Therefore, we can now compute the Jacobian J merely by 
computing n forward solvers, which is much more efficient than that in the voxel-based BLT. 
The trade-off is that we need to compute the Jacobian more than once due to the nonlinear 
dependence of J on X

G
, which needs to be computed only once in the voxel-based BLT due to 

the linear dependence of J0 on X. However, since n�M, we still achieve a considerable gain 
in speed, since the new algorithm usually converges in less than 20 iterations while the ratio 
M/n is usually at least about a hundred. That is we usually achieve at least 5 gains in speed on 
the computation of Jacobians. 

In the rare cases when n>M, the adjoint method is preferred, i.e., 
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That is we compute M forward solvers instead. 
Next we compute the first and second derivatives of logarithmic penalty functions for 

each geometric constraint gk(X
G
) as in Eq. (7), i.e., Rk=-ln[-gk(X

G
)]. From the straightforward 

computation, we have the following simple formula 
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Please note each constraint Rk is evaluated at X
n
+x rather than x. 

The overall algorithm for BLT with Gaussian representation is more efficient than voxel-
based BLT, mainly because the minimization is now with respect to only a few parameters of 
Gaussians instead of at least thousands of voxels in the conventional voxel-based BLT. For 
the current BLT algorithm with new model by Gaussians, minimization through barrier 
method in Step 2 is extremely fast although the algorithm seems complicated, which is 
understandable due to the significantly reduced number of variables; the major computation 
cost comes from the Jacobian J in Step 1, although it takes less computational time than that 
in voxel-based BLT, which is again due to the reduced number of unknowns. 



3. Results 
In this section, we first compare the performance of Gaussian-based BLT, “G-BLT”, with that 
of the conventional voxel-based BLT, “V-BLT”, through simulated data in single-inclusion 
and multiple-inclusion cases, and then validate the proposed method in mouse study. 

3.1. Reconstruction with Single Inclusion 
We first evaluate the proposed algorithm with single anisotropic Gaussian inclusion, and 

then perform the single-inclusion reconstructions with various shapes, different noise levels, 
and different approximation errors in optical background to compare the performance of G-
BLT and V-BLT. For the presentation purpose, we only show 2D comparisons. The results 
and the conclusions are similar for the 3D case. In particular, 3D results will be demonstrated 
with in vivo data. 

All the 2D reconstructions are performed on a circular phantom with the diameter of 20 
millimeters. 120 data are collected all around the phantom at the boundary with equal angular 
distance in between. The reconstruction mesh has 2162 triangular elements and 1130 nodes. 
To avoid the inverse crime, the data are generated with different meshes that are about four 
times as large as the reconstruction mesh. For example, there are 8664 triangular elements and 
4425 nodes for the case with circular inclusion as shown in Figure 1(a). 

We assume the homogeneous optical background with µa=0.01mm
-1
 and µs

'
=1mm

-1
. 

Without further mentioning, we use mm as the unit for the length, mm
-1
 as the unit for 

absorption or scattering coefficients,  nano Watts (nW) as the unit for the total source power, 
and nW/mm

2
, nW/mm

3
 as the unit for the source intensity in 2D and 3D respectively. The unit 

of angle is in degree. 
In G-BLT, as the initial guess, for simplicity we assume there is one Gaussian inclusion 

with ρ=0.1, xc=0, yc=0, rx=1, ry=1 and θ=90°. The reconstruction with multiple inclusions as 
the initial guess will be considered in the next section. Please notice that the nonzero value has 
to be assigned for ρ, otherwise the Jacobian with respect to other parameters will be zero 
according to Eq. (14). For the constraint variables, we set ρmax=10, ρmin=0.01, xmax=ymax=10, 
xmin=ymin=-10, rx,max=ry,max=5, rx,min=ry,min=0.1, θmax=180°,θmin=0°, and cxy=5. 

For the V-BLT, we solve the problem via the standard Levenberg-Marquardt method 
with L2 regularization [24]. That is to minimize 
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where the Jacobian J0 is with respect to the piecewise-constant voxel representation by Eq. 
(1), and λ is the regularization parameter. 

Please notice that one may optimize the choice of regularization term in Eq. (19). 
However we found out that the results did not improve drastically when using other 
regularization strategies [14, 15], which may be due to the severely illposed nature of the 
inverse problem in the optical regime modeled by diffusion approximation Eq. (2). In the 
following, we restrict our discussion based on L2 regularization as in Eq. (19). 

3.1.1. Inclusions with Gaussian Shapes 

Table 1. Tests with single Gaussian source. The Gaussian phantom has ρ=1, xc=5, yc=0, rx=2, 
ry=1. The rotation angles are 0°, 45°, 90°, 135°respectively for Test 1-4. In all tests, the total 
energy of the phantom E is approximately 6.285. Please notice that the result from Case 2 can 
be understood according to the non-unique representation of the Gaussian. 

 Test 1 2 3 4 

G-BLT 

E 6.295 6.296 6.295 6.295 
ρ 1.225 1.231 1.237 1.229 
xc 4.997 4.995 4.999 4.997 
rx 1.906 0.846 1.919 1.913 
yc  0.000 -0.001 0.002 0.000 
ry 0.856 1.917 0.843 0.852 
θ 1.541 135.161 89.760 134.910 

V-BLT 
E 5.461 5.464 5.464 5.463 
ρ 0.202 0.191 0.183 0.200 



 
Since it is physiologically reasonable to approximate the bioluminescence sources by 

Gaussians, we first consider reconstructions where we assume the source is a single Gaussian. 
All the tests have the same Gaussian up to a rotation, with parameters specified in Table 1. 
The reconstructed results with both G-BLT and V-BLT are plotted in Figure 1 and the 
recovered parameter values are in Table 1 as well. 

From Figure 1, in all tests G-BLT can recover the Gaussian phantom when using the 
representation of source in Gaussians while V-BLT gives relatively much poorer results. 
Moreover, G-BLT is quantitatively better than V-BLT in the sense it gives more accurate total 
power E and maximal intensity as documented in Table 1. 

 

Figure 1. Reconstructions with single Gaussian inclusion. (a)-(d) are the phantoms with 0°, 
45°, 90° and 135° rotations respectively; (e)-(h) are from the voxel-based BLT; (i)-(l) are 
from Gaussian-based BLT. Please see Table 1 for the true and recovered parameters. Please 
note that the maximum intensity recovered via the voxel-based BLT is only up to 20% of the 
true value. The results show that Gaussian-based BLT not only localizes the inclusion better 
than, but also quantitatively more accurate than the voxel-based BLT. 

3.1.2. Inclusions with Various Shapes 

Table 2. The parameters for single-object simulations with inclusions of various shapes. E is 
the total source energy; ρ is the maximal source intensity; xc and yc are x- and y-coordinate of 
the center of the inclusion; rx and ry are maximum distances from the center to the boundary 
along x and y direction respectively. 

Inclusion Circle Square Triangle Rectangle 

E 3.121 4 2 8 
ρ 1 1 1 1 
xc 5 5 5 5 
rx 1 1 1 1 
yc  0 0 -0.333 0 
ry 1 1 1.333 2 

 
We evaluate the algorithm through the simulated data with single inclusions of various 

shapes. The parameters for various single inclusions are specified in Table 2. The 
reconstructed results with both G-BLT and V-BLT are plotted in Figure 3 and the parameter 
values are in Table 3. 

Before doing the reconstruction, we simply compare the measurements from Gaussian 
and non-Gaussian sources as shown in Figure 2. Here we embed inclusions deeply at the 



center of the medium. The plotted measurements are normalized with the absolute sum 1. The 
figure shows that the measurement profiles from Gaussian sources are almost the same as 
those from the non-Gaussian ones. It suggests that various shapes can be characterized by 
anisotropic Gaussians when the sources are deeply embedded into the diffusive medium. 

 

Figure 2. Comparison of boundary measurements from Gaussian sources and non-Gaussian 
sources. (a)-(c) are from non-Gaussian sources with side length ratio of 1:1, 1:2 and 2:1. (d)-(f) 
are from Gaussian sources with the radius ratio of 1:1, 1:2 and 2:1. (g)-(i) plot the boundary 
measurements originating counterclockwise from x-axis, in which the red curve are from 
Gaussian sources and the blue curves are from non-Gaussian sources. Please note that the data 
are normalized so that the absolute sum is 1. 

 

Figure 3. Single-inclusion reconstructions with various shapes. (a)-(d) are the phantoms with 
circular, square, triangular and rectangular inclusion respectively; (e)-(h) are from the voxel-
based BLT; (i)-(l) are from Gaussian-based BLT. Please see Table 2 and 3 for the true and 
recovered parameters. Please note that the maximum intensity recovered via the voxel-based 
BLT is only up to 20% of the true value. The results show that Gaussian-based BLT not only 
localizes the inclusion better than, but also quantitatively more accurate than the voxel-based 
BLT. 



 
From Figure 3, visually we can tell that G-BLT is consistently better in localizing the 

inclusions than V-BLT. Moreover, G-BLT is quantitatively better than V-BLT in the sense it 
gives more accurate total power E and maximal intensity as documented in Table 3. 

One minor issue regarding G-BLT is that the reconstructed radiuses along x- and y- axis 
seem not to match those in true phantoms, whish is possibly due to the Gaussian 
approximation error of non-Gaussian phantom. For example, with rectangular inclusion, the 
recovered rx=1.752 and ry=1.797, while the true rx=1 and ry=2. Although rx<ry in the 
reconstruction, this scale difference is much smaller than the true difference. 

Notice that in this section and the rest of reconstructions for non-Gaussian sources, we 
did not consider θ as reconstruction variable. The reason is that G-BLT does not recover the 
shapes for non-Gaussian sources as exactly as for Gaussian sources even with rotation. 

Table 3. The reconstructed parameters for single-object simulations with inclusions of various 
shapes. Please see Table 2 for the corresponding true values. 

 Inclusion Circle Square Triangle Rectangle 

G-BLT 

E 3.135 4.019 2.008 8.002 
ρ 0.628 0.799 0.407 0.808 
xc 4.976 4.978 4.977 4.977 
rx 1.259 1.265 1.251 1.752 
yc  0.000449 0.00113 -0.332 -0.0000795 
ry 1.259 1.265 1.252 1.797 

V-BLT 
E 2.668 3.422 1.708 6.895 
ρ 0.0946 0.121 0.0626 0.236 

3.1.3. Different Noise Level 
We evaluate the algorithm with respect to different noise level. 5%, 10%, 20%, 30% 

percentage of Gaussian noise is added to the measurements f respectively, e.g., 
f(1+5%⋅Randn), where Randn represents the random Gaussian distribution with zero mean 
and unit variance. The reconstructed results with both G-BLT and V-BLT are plotted in 
Figure 4 and the parameter values are in Table 4. Here the simulations are performed on the 
same circular phantom with single circular inclusion as in Figure 3(a). 

Again, from Figure 4, visually G-BLT localizes much better than V-BLT. In particular, 
the result from G-BLT changes a little for the noise up to 20%. On the other hand, it is 
difficult to tell even the center of object in V-BLT when the noise is increased beyond 10%. 
Moreover, from Table 4, G-BLT gives more accurate quantitative information than V-BLT. 

Table 4. The reconstructed parameters for single-circular-object simulations with different 
Gaussian noise levels. Please see Table 2 for the corresponding true values. 

 Noise Level 5% 10% 20% 30% 

G-BLT 

E 3.115 3.052 2.944 1.961 
ρ 0.624 0.612 0.591 0.398 
xc 4.993 4.955 5.038 6.585 
rx 1.260 1.258 1.253 1.216 
yc  -0.00135 0.0507 -0.0357 -1.342 
ry 1.258 1.260 1.263 1.291 

V-BLT 
E 2.715 2.725 2.744 2.307 
ρ 0.0956 1.321 0.151 0.0937 

3.1.4. Mismatch of Optical Background 
We evaluate the algorithm with different mismatch in optical background. The 

background is perturbed with ±10%, ±30%, ±50%, ±70% percentage of error respectively, 
e.g., µa(1+10%) and µs

'
(1+10%). Notice that we either increase or decrease both absorption 

and scattering coefficients since empirically we find that the mismatch may cancel if one is 
increased while the other is decreased. Therefore, we change both in the same direction to 
simulate the worst-case errors. Please also note that the reconstruction results with V-BLT are 
not presented since it does not localize the inclusion satisfactorily even in the case without 
optical background error. 



The results from G-BLT are presented in Figure 5 and Table 5, which show that G-BLT 
is robust to the mismatch error of optical background in the sense that the inclusion can still 
be localized well despite of the shifting of centers due to the systematic discrepancy between 
the true values and the values used in the reconstruction. 

Table 5. Gaussian-based BLT for single-circular-object simulations with different mismatch in 
optical background. Please see Table 2 for the corresponding true values. 

Error -10% -30% -50% -70% 

E 2.834 2.351 1.983 1.639 
ρ 0.569 0.475 0.402 0.334 
xc 5.263 5.918 6.736 7.871 
rx 1.254 1.244 1.235 1.234 
yc  -0.0000524 -0.00233 -0.00473 -0.00454 
ry 1.262 1.266 1.271 1.276 

Error +10% +30% +50% +70% 

E 3.485 4.368 5.559 7.163 
Ρ 0.697 0.868 1.096 1.395 
xc 4.709 4.234 3.827 3.479 
rx 1.265 1.277 1.292 1.310 
yc  0.000587 0.000275 -0.000247 -0.000724 
ry 1.257 1.253 1.249 1.248 

3.2. Reconstruction with Multiple Inclusions 
Now we evaluate the algorithm in the presence of multiple inclusions by considering first 

Gaussian inclusions and then non-Gaussian shapes. 
Despite of the fact that there are two inclusions in the test on Gaussian sources (Figure 6) 

and three inclusions in the test on non-Gaussian sources (Figure 6), we assume four inclusions 
as the initial guess in G-BLT, since the exact number of inclusions is usually not known in 
practice unless the correct anatomical priors are available from other imaging modalities. 
However, since the bioluminescent source is localized and limited in quantity as discussed 
previously, we only need to set the number of sources n to a reasonable larger value than the 
actual number, in order to faithfully reconstruct the source distribution without considering n 
as an independent variable. Particularly, as the initial guess, we assume there are four 
Gaussian inclusions, i.e., n=4, with ρ1= ρ2= ρ3= ρ4= 0.1, x1,c=5, y1,c=5, x2,c=5, y2,c=-5, x3,c=-

5, y3,c=-5,  x4,c=-5, y4,c=5, r1,x= r2,x= r3,x= r4,x=1, r1,y= r2,y= r3,y= r4,y=1 and θ1= θ2= θ3= θ4= 
90°. Notice that for the same reason mentioned above, we do not consider θ as reconstruction 
variable for non-Gaussian sources for simplicity. 

The same constants as in the single-inclusion simulations are used. In order to separate 
the multiple objects, we find out the minimal-separation constraints are usually necessary. 
This is also intuitively correct since the source representation may otherwise be non-unique, 
given the severely illposed nature of BLT. Here we set cx=cy=ln2, corresponding to that the 
minimal distance between any two objects is at least the average of FWHM. 

3.2.1. Inclusions with Gaussian Shapes 
The detailed setting is given in Table 6 and Figure 6(a). The results are plotted in Figure 

6, which clearly shows that G-BLT is able to accurately recover the values of intensity, 
centers, radiuses and rotation angle. On the other hand, neither shapes nor locations of 
inclusions can be not be captured from V-BLT. 

Table 6. Multiple-Gaussian-inclusion simulation with Inclusion 1 (the left ellipse in Figure 6(a)) 
and Inclusion 2 (the right ellipse in Figure 6(a)). The total energy E of the phantom is 12.570; 
the recovered total energy from G-BLT is 12.596 while that from V-BLT is 11.582.  

 Inclusion 1 Inclusion 2 

 Phantom G-BLT Phantom G-BLT 
ρ 1.000 1.243 1.000 1.236 
xc 5.000 -5.005 5.000 4.988 
rx 2.000 1.915 2.000 1.916 
yc  0.000 0.001 0.000 0.001 
ry 1.000 0.843 1.000 0.845 
θ 45.000 44.448 135.000 134.760 



 

 

Figure 4. Single-inclusion reconstructions with different Gaussian noise levels. The phantom is 
as the same as (a) in Figure 3 with single circular inclusion; (a)-(d) are from the voxel-based 
BLT with 5%, 10%, 20% and 30% noise level respectively; (e)-(h) are correspondingly from 
Gaussian-based BLT. Please see Table 2 and 4 for the true and recovered parameters. The 
results show that Gaussian-based BLT is more robust to the noise than the voxel-based BLT. 

 

Figure 5. Single-inclusion reconstructions with different mismatch in optical background. The 
phantom is as the same as (a) in Figure 3 with single circular inclusion; (a)-(d) are from 
Gaussian-based BLT with -10%, -30%, -50%, -70% error in optical background; (e)-(h) are 
from Gaussian-based BLT with +10%, +30%, +50%, +70% error in optical background. Please 
see Table 2 and 5 for the true and recovered parameters. Please also note that the reconstruction 
results with the voxel-based BLT are not presented since it does not localize the inclusion 
satisfactorily even in the case without optical background error. The results show that 
Gaussian-based BLT is robust to the mismatch error of optical background in the sense that the 
inclusion can still be localized well despite of the shifting of centers due to the systematic 
discrepancy between the true values and the values used in the reconstruction. 

 

Figure 6. Multiple-inclusion reconstructions with 5% Gaussian noise level. (a) is the phantom 
with two elliptical inclusions.; (b) is from the voxel-based BLT; (c) is from Gaussian-based 
BLT. Please see Table 6 for the true and recovered parameters. The results show again that 
Gaussian-based BLT not only localizes the inclusion better than, but also quantitatively more 
accurate than the voxel-based BLT. 



3.2.2. Inclusions with Non-Gaussian Shapes 
The detailed setting is given in Table 7 and Figure 7(a). The results are plotted in Figure 

7, which clearly shows that G-BLT with proper constraints is able to separate the inclusions 
while V-BLT fails. The parameter values are documented in Table 7, which are quite 
consistent with the true values. One minor issue is that the recovered center is not as accurate 
as one from the single-inclusion cases, which is understandable due to mutual effect of 
inclusions and the illposedness of the problem. 

Table 7. Multiple-inclusion simulations. Three circular inclusions of 1mm diameter are located 
at (0, 0), (4, 0) and (8, 0) respectively with the unit source intensity. The total energy E is 9.364; 
the recovered total energy from G-BLT is 9.290 while that from V-BLT is 8.282. Please note 
that the presented values are from G-BLT with minimal-separation constraints as in Eq. (7-3). 
Please also notice that three inclusions are assumed in the initial guess for the reconstruction 
with G-BLT although there are actually three inclusions. After the reconstruction, 3 out of 4 
inclusions have distinguished peak values. 

 Inclusion 1 Inclusion 2 Inclusion 3 Inclusion 4 
ρ 1.069 0.878 0.831 0.0391 
xc 7.572 3.460 -0.141 3.673 
rx 1.383 0.925 0.921 1.076 
yc  -0.0135 0.326 -0.0397 -4.132 
ry 0.839 0.907 1.240 0.945 

 
 

 

Figure 7. Multiple-inclusion reconstructions with 5% Gaussian noise level. (a) is the phantom 
with three circular inclusions.; (b) is from the voxel-based BLT; (c) is from Gaussian-based 
BLT without minimal-separation constraint; (d) is from Gaussian-based BLT with the minimal-
separation constraint. Please see Table 7 for the true and recovered parameters. The results 
show that Gaussian-based BLT with proper geometric constraints is in general able to separate 
multiple inclusions better than the voxel-based BLT. 

3.2.3. Combinatorial optimization 
In this section, we give one example of combinatorial optimization (Algorithm 1) with 

the number of Gaussians n as a variable. 
In the phantom (Figure 8(a)), there are three Gaussians with the parameters specified in 

Table 8. In the reconstruction, we start with the initial guess n0=1, and continue the 
combinatorial process until the data discrepancy d reaches the tolerance. Please notice that the 
process should have terminated at n=3. For illustration purpose, we run until n=5.  

The detailed setting and the recovered parameters are given in Table 8. Figure 8 shows 
that this combinatorial process is able to reconstruct the source even the initial guess is 
smaller than the actual number, e.g., the results from n=1 and n=2 fail to give a satisfactory 
reconstruction while those from n=3, n=4 and n=5 all successfully recover the desired 
distribution. 

It is interesting to notice that although the reconstruction with more than or equal to the 
actual number of Gaussians is able to recover the actual number of Gaussians, the 
reconstruction with more Gaussians than the actual number may degrade the image quality 
due to the apparent non-unique representation of the geometry. For example, two recovered 
sources in Figure 8(e) constitute the top Gaussian in Figure 8(a) when using n=4 and two 
recovered sources in Figure 8(f) constitute the left Gaussian in Figure 8(a) when using n=5. 

 



Table 8. Combinatorial optimization with the varying n for G-BLT. Three Gaussian inclusions 
are located at (0, 5), (4.33, -2.5) and (-4.33, -2.5) respectively with ρ=1, rx=1 and ry=2. The 
number of Gaussians n is treated as a variable in this combinatorial problem. The value of n in 
the reconstruction is set to 1 as the initial guess and iteratively increased until the solution 
converges. The following table records the reconstructed values for n=1, 2, 3, 4 and 5. Please 
notice that the reconstruction should have terminated at n=3 according to the given criterion if 
it were not for illustration purpose. The total energy E is 18.843; the recovered total energy is 
21.164, 20.861, 18.879, 18.908 and 18.912 respectively. The measurement difference d is 
0.167, 0.132, 0.00315, 0.00322 and 0.00327 respectively. 

n  Inclusion 1 Inclusion 2 Inclusion 3 Inclusion 4 Inclusion 5 

1 

ρ 3.593 ― ― ― ― 
xc -0.000228 ― ― ― ― 
rx 1.178 ― ― ― ― 
yc -0.0342 ― ― ― ― 
ry 1.592 ― ― ― ― 

2 

ρ 0.194 3.893 ― ― ― 
xc -6.975 0.323 ― ― ― 
rx 1.149 0.824 ― ― ― 
yc -4.254 0.209 ― ― ― 
ry 1.588 1.964 ― ― ― 

3 

ρ 1.224 1.254 1.235 ― ― 
xc 0.00101 -4.329 4.314 ― ― 
rx 0.863 0.833 0.855 ― ― 
yc 5.023 -2.491 -.2498 ― ― 
ry 1.889 1.922 1.905 ― ― 

4 

ρ 1.712 1.189 1.211 1.211 ― 
xc -0.0207 0.0135 -4.337 4.321 ― 
rx 0.838 0.856 0.860 0.870 ― 
yc 3.774 6.464 -2.522 -2.521 ― 
ry 0.840 0.832 1.900 1.889 ― 

5 

ρ 0.0276 1.236 2.388 1.057 1.235 

xc 5.992 0.00485 -4.171 -4.429 4.337 

rx 0.887 0.857 0.703 0.706 0.859 

yc 1.150 5.029 -1.771 -4.129 -2.566 

ry 0.921 1,879 0.867 0.793 1.846 

 

 

Figure 8. Combinatorial optimization with the varying n for G-BLT. (a) is the phantom with 
three Gaussian inclusions.; (b)-(f) are the reconstructed images from n=1, 2, 3, 4, 5 respectively. 

 

3.3. 3D in vivo validation 
After evaluating the propose G-BLT in 2D with various settings, we have established the 

superiority of G-BLT over V-BLT. Now we validate G-BLT in 3D with in vivo experimental 



data. The details of experimental setups and mouse experiments are given in [4]. We also refer 
the readers to the above reference for the reconstruction parameters, such as the used mesh 
and the values for optical parameters. 

In the previous voxel-based reconstruction [4], with a permissible region selected 
according to the high value clusters in the data, two sources were localized with a stronger one 
of the power 39.8nW/mm

3
 (right) and a smaller one of the power 1.5nW/mm

3
 (left). When the 

mouse was dissected after the experiment, two tumors were found on both adrenal glands, 
respectively, as shown in Figure 9(c). The volume of tumor tissues as measured by Vernier 
calipers was 468 mm

3
 for the tumor (right) 275 mm

3
 for the tumor (left).  

Now we use G-BLT, Gaussian-based BLT, to reconstruct instead of V-BLT. Please note 
that we do not select the permissible region. 

As the initial guess, we assume there are four Gaussian inclusions, i.e., n=4, with ρ1= ρ2= 
ρ3=ρ4=10, x1,c= x2,c= x3,c= x4,c=0, y1,c= y2,c= y3,c= y4,c=0, z1,c=5, z2,c=10, z3,c=15, z4,c=20, r1,x= 
r2,x= r3,x= r4,x=1, r1,y= r2,y= r3,y= r4,y=1 and r1,z= r2,z= r3,z= r4,z=1. 

The constants in the geometric constraints are: ρmax=1000, ρmin=0.1, xmax=ymax=12, 
xmin=ymin=-12, zmax=27, zmin=0, rx,max=ry,max=6, rx,min=ry,min=0.5, and cxy=cyz=czx=5, cx=cy= 
cz=ln2. Here the min-max values on the geometry correspond to the physical size of the 
domain; the maximum of the intensity is estimated from the data, which is roughly 50 times of 
the maximal value in the data. 

As documented in Table 9, 2 out of 4 recovered inclusions, with the locations just 
corresponding to the kidneys, have significantly larger values, i.e., the one with the peak 
intensity of 16.593nW/mm

3
 (right) and  the other one with the peak intensity of 7.692nW/mm

3
 

(left). In addition, the peak intensity of the other 2 inclusions (Inclusion 3 and 4) is less than 
5% of the maximum (Inclusion 1), which can be from experimental or numerical noise. The 
reconstructed bioluminescent volumes (2rx⋅2ry⋅2ry) are 506 mm

3
 (right) and 901 mm

3
 (left) 

respectively. The discrepancy between the reconstructed volumes and the measured ones is 
not surprising since the anatomical volume may not correspond to the bioluminescent volume. 

Table 9. In vivo study using Gaussian-based BLT. Please also notice that four inclusions are 
assumed in the reconstruction although there are actually two tumors from the histological 
verification. The reconstructed result also shows exactly two inclusions with the distinguished 
values, i.e. Inclusion 1 and 2 in the following table. 

 Inclusion 1 Inclusion 2 Inclusion 3 Inclusion 4 
ρ 16.593 7.692 0.625 0.525 
xc 3.517 -1.598 6.377 0.280 
rx 3.960 4.789 3.447 4.901 
yc  -4.907 1.570 -0.527 0.778 
ry 3.220 4.980 4.898 4.977 
zc 12.391 15.455 17.384 5.713 
rz 4.959 4.725 4.957 2.825 

 

 

Figure 9. In vivo mouse studies on Gaussian-based BLT. (a) shows two reconstructed 
bioluminescent sources with dominant power on two kidneys respectively; (b) is the 
reconstructed bioluminescent isosurface of the intensity value 7; (c) is the histological 
verification with two tumors at the same locations on the dissected kidneys. Please see Table 8 
for the recovered parameters. 



4. Conclusions and discussions 
In this proof-of-concept study, we have introduced a stable way to recover bioluminescent 
source through novel source representation by Gaussians. It is mathematically unique and 
computationally cheap. Besides, there are strong physiological evidences that the actual 
bioluminescent sources can be modeled by Gaussians, which will be further studied in the 
future work. The resultant problem with the fixed number of Gaussians is formulated as a 
nonlinear least-square minimization with appropriate geometric constraints, which is solved in 
turn by barrier method; on the other hand, the problem with the varying number of Gaussians 
can be formulated as a combinatorial optimization problem. The superiority of the proposed 
method has been established through simulations and in vivo experimental data. In particular, 
when the source itself can be approximated by Gaussians, the proposed method is able to 
accurately recover the intensity, centers, radiuses and rotation angles of the Gaussians. 

Due to the significantly reduced number of variables, the proposed method is robust to 
the measurement noise and the mismatch in optical background; the computational burden is 
also reduced to the minimization problem with respect to a few parameters instead of at least 
thousands of parameters in the conventional voxel-based BLT. 

In the future work, we shall perform more mouse studies to further develop and optimize 
the current method into a practical in vivo bioluminescence imaging method, for which we 
may need to incorporate RTE for more accurate modeling, simplified representation for 
optical heterogeneity, such as piecewise constants, to be simultaneously reconstructed for 
correcting optical background, and multi-spectral data for better stability. 

Although the source is represented as Gaussians in this study, other shape functions may 
be appropriate for other purposes. An interesting topic to pursuit is the multi-modality 
imaging since the structural priors can be easily incorporated into the proposed method for 
more accurate quantitative estimation. 
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