
INTRODUCTION TO FINITE ELEMENT METHODS

LONG CHEN

Finite element methods are grounded in the variational formulation of partial differen-
tial equations. These methods enable the construction of finite element spaces on general
triangulations, effectively managing complex geometries and boundaries. Boundary con-
ditions are naturally incorporated into the weak formulation or function space. The vari-
ational foundation of these methods facilitates systematic error analysis, making them the
preferred choice for elliptic equations in complex domains.

1. GALERKIN METHODS

The finite element methods have been introduced as methods for approximate solution
of variational problems. Let us consider the model problem: Poisson equation with ho-
mogenous Dirichlet boundary conditions

(1) −∆u = f in Ω, u = 0 on ∂Ω.

Multiply a test function v, integrate over Ω, and use integration by parts to obtain the
corresponding variational formulation: Find u ∈ V = H1

0 (Ω) := {v ∈ L2(Ω)|∇v ∈
L2(Ω), v|Γ = 0}, such that

(2) a(u, v) = (f, v), for all v ∈ V.
where

a(u, v) =

∫
Ω

∇u · ∇v dx, (f, v) =

∫
Ω

fv dx, for f ∈ L2(Ω)

Clearly, in such case a(·, ·) is bilinear and symmetric, and a(u, u) = |u|21,Ω := ‖∇u‖2.
Furthermore a(u, u) = 0 implies ∇u = 0 and consequently u is constant. As u|Γ = 0,
this constant should be zero. Therefore a(·, ·) defines an inner product on V , and thus the
problem (2) has a unique solution by the Riesz representation theorem.

We now consider a class of methods, known as Galerkin methods which are used to
approximate the solution to (2). Consider a finite dimensional subspace Vh ⊂ V . Restrict
the variational form in the subspace Vh, i.e., find uh ∈ Vh s.t.

(3) a(uh, vh) = (f, vh) for all vh ∈ Vh.
Let Vh = span{φ1, . . . , φN}. For any function v ∈ Vh, there is a unique representation:

v =
∑N
i=1 viφi. We thus can define an isomorphism Vh ∼= RN by

v =

N∑
i=1

viφi ←→ v = (v1, · · · , vN )ᵀ,

and call v the coordinate vector of v relative to the basis {φi}Ni=1. Following the terminol-
ogy in elasticity, we introduce the stiffness matrix

A = (aij)N×N , with aij = a(φj , φi),
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and the load vector f = {〈f, φk〉}Nk=1 ∈ RN . Then the variational problem (20) on Vh
can be formulated as the following linear algebraic system

Au = f .

By definition, for two functions u, v ∈ Vh, their a(·, ·)-inner product is realized by the
matrix product

(4) a(uh, vh) = a

(∑
i

uiφi,
∑

vjφj

)
=
∑
i,j

a(φi, φj)ui vj = vᵀAu.

Therefore for any vector u ∈ RN ,uᵀAu = a(u, u) ≥ 0 and equals 0 if and only if u
is zero. Namely A is an SPD matrix and thus the solution u = A−1f exists and unique.
After we get the coefficient vector u, uh can be obtained by linear combination of basis
functions.

The finite element method, a prominent and widely-used example of Galerkin methods,
constructs a finite-dimensional subspace Vh based on triangulations Th of the domain. The
name comes from the fact that the domain is decomposed into finite number of elements.
Usually piecewise polynomials are used to define a finite dimensional space.

2. TRIANGULATIONS AND BARYCENTRIC COORDINATES

In this section, we discuss triangulations used in finite element methods. We would
like to distinguish two structures related to a triangulation: one is the topology of a mesh
determined by the combinatorial connectivity of vertices; another is the geometric shape
which depends on both the connectivity and the location of vertices.

2.1. Geometric simplex and triangulation. Let xi = (x1,i, · · · , xn,i)ᵀ, i = 1, · · · , n+1
be n + 1 points in Rn. We say x1, · · · ,xn+1 do not all lie in one hyper-plane if the n-
vectors x1x2, · · · ,x1xn+1 are independent. This is equivalent to the matrix:

A =


x1,1 x1,2 . . . x1,n+1

x2,1 x2,2 . . . x2,n+1

...
...

...
xn,1 xn,2 . . . xn,n+1

1 1 . . . 1


is non-singular. Given any point x = (x1, · · · , xn) ∈ Rn, by solving the following linear
system

(5) A


λ1

...
λn
λn+1

 =


x1

...
xn
1

 ,

we obtain unique n+ 1 real numbers λi(x), 1 ≤ i ≤ n+ 1, such that for any x ∈ Rn

(6) x =

n+1∑
i=1

λi(x)xi, with
n+1∑
i=1

λi(x) = 1.

The convex hull of the d+ 1 points x1, · · · ,xd+1 in Rn

(7) τ := {x =

d+1∑
i=1

λixi | 0 ≤ λi ≤ 1, i = 1 : d+ 1,

d+1∑
i=1

λi = 1}
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is defined as a geometric d-simplex generated (or spanned) by the vertices x1, · · · ,xd+1.
For example, a triangle is a 2-simplex and a tetrahedron is a 3-simplex. For an integer
0 ≤ m ≤ d−1, an m-dimensional face of τ is anym-simplex generated by m+1 vertices
of τ . Zero dimensional faces are vertices and one-dimensional faces are called edges of τ .
The (d− 1)-face opposite to the vertex xi will be denoted by Fi.

The numbers λ1(x), · · · , λd+1(x) are called barycentric coordinates of x with respect
to the d+ 1 points x1, · · · ,xd+1. There is a simple geometric meaning of the barycentric
coordinates. Given a x ∈ τ , let τi(x) be the simplex with vertices xi replaced by x. Then,
by the Cramer’s rule for solving (5),

(8) λi(x) =
|τi(x)|
|τ |

,

where | · | is the Lebesgue measure in Rd, namely area in two dimensions and volume in
three dimensions. Note that λi(x) is an affine function of x and vanished on the face Fi.

xix
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FIGURE 1. Patches are similar
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(b) 2d simplex
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FIGURE 1. Geometric explanation of barycentric coordinates.

It is convenient to have a standard simplex sn ⊂ Rn spanned by the vertices 0, e1, · · · , en
where ei = (0, · · · , 1, · · · , 0). Then any n-simplex τ ⊂ Rn can be thought as an image of
sn through an affine map B : sn → τ with B(ei) = xi. See Figure 2. The simplex sn is
also often called the reference simplex.
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(c) A standard simplex in R3

FIGURE 2. Reference simplexes in R1,R2 and R3.
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Let Ω be a polyhedral domain in Rd, d ≥ 1. A geometric triangulation (also called
mesh or grid) T of Ω is a set of d-simplices such that

∪τ∈T τ = Ω, and
◦
τi ∩

◦
τj= ∅, i 6= j.

Remark 2.1. In this course, we restrict ourself to simplicial triangulations. There are other
type of meshes by partition the domain into quadrilateral (in 2-D), cubes, prisms (in 3-D),
or polytopes in general.

There are two conditions that we shall impose on triangulations that are important in the
finite element computation. The first requirement is a topological property. A triangulation
T is called conforming or compatible if the intersection of any two simplexes τ and τ ′ in
T is either empty or a common lower dimensional simplex.

(a) Bisect a triangle (b) Completion

FIGURE 1. Newest vertex bisection

1

(a) A triangulation with a hanging node(a) Bisect a triangle (b) Completion

FIGURE 1. Newest vertex bisection

1

(b) A conforming triangulation

FIGURE 3. Two triangulations. The left is non-conforming and the right
is conforming.

The second important condition is on the geometric structure. A set of triangulations
T is called shape regular if there exists a constant c0 such that

(9) max
τ∈T

diam(τ)d

|τ |
≤ c0, for all T ∈ T ,

where diam(τ) is the diameter of τ and |τ | is the measure of τ in Rd. In two dimensions,
it is equivalent to the minimal angle of each triangulation is bounded below uniformly
in the shape regular class. We shall define hτ = |τ |1/n for any τ ∈ T ∈ T . By (9),
hτ h diam(τ) represents the size of an element τ ∈ T for a shape regular triangulation
T ∈ T .

In addition to (9), if

(10)
maxτ∈T |τ |
minτ∈T |τ |

≤ ρ, for all T ∈ T ,

T is called quasi-uniform. For quasi-uniform grids, define the mesh size of T as hT :=
maxτ∈T hτ . It is used to measure the approximation rate. In FEM literature, we often
write a triangulation as Th.

2.2. Abstract simplex and simplicial complex. To distinguish the topological structure
with the geometric one, we now understand the points as abstract entities and introduce
abstract simplex or combinatorial simplex. The set τ = {v1, · · · , vd+1} of d + 1 abstract
points is called an abstract d-simplex. A face σ of a simplex τ is a simplex determined by
a non-empty subset of τ . A k-face has k + 1 points. A proper face is any face different
from τ .

LetN = {v1, v2, · · · , vN} be a set ofN abstract points. An abstract simplicial complex
T is a set of simplices formed by finite subsets of N such that if τ ∈ T is a simplex, then
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any face of τ is also a simplex in T . By the definition, a two dimensional combinatorial
complex T contains not only triangles but also edges and vertices of these triangles. A
geometric triangulation defined before is only a set of d-simplex not its faces. By including
all its face, we shall get a simplicial complex.

A subsetM ⊂ T is a subcomplex of T ifM is a simplicial complex itself. Important
classes of subcomplex includes the star or ring of a simplex. That is for a simplex σ ∈ T

star(σ) = {τ ∈ T , σ ⊂ τ}.
If two, or more, simplices of T share a common face, they are called adjacent or neigh-

bors. The boundary of T is formed by any proper face that belongs to only one simplex,
and its faces.

Associating a set of abstract points with geometric points in Rn, n ≥ d, yields a geo-
metric shape composed of piecewise flat simplices. This process is known as the geometric
realization of an abstract simplicial complex, or in geometric terms, an embedding of T
into Rn. The embedding hinges on matching abstract and geometric vertices.

It is crucial to distinguish between two aspects of a triangulation T : the topological
structure, defined by the connective relationships of vertices, and the geometric shape,
determined by the vertices’ coordinates. For instance, a planar triangulation is a two-
dimensional abstract simplicial complex embeddable in R2, termed a 2-D triangulation.
The same 2-D simplicial complex can also be embedded in R3, forming a surface triangu-
lation. Despite these different embeddings, both maintain the same combinatorial structure
as an abstract simplicial complex, yet they differ in their geometric representation: one as
a flat domain in R2 and the other as a surface in R3.

3. LINEAR FINITE ELEMENT SPACES

In this section we introduce the simplest linear finite element space of H1(Ω) and use
the scaling argument to estimate the interpolation error. We refer to Exercise 5.4 for an
elementary proof using calculus.

3.1. Linear finite element space and the nodal interpolation. Given a shape regular
triangulation Th of Ω, we set

Vh := {v | v ∈ C(Ω), and v|τ ∈ P1,∀τ ∈ Th},
where P1(τ) denotes the space of polynomials of degree 1 (linear) on τ ∈ Th. See Fig. 4
for illustration of linear finite element functions in 1-D and 2-D. Whenever we need to deal
with boundary conditions, we further define Vh,0 = Vh ∩ H1

0 (Ω). We note here that the
global continuity is also necessary in the definition of Vh in the sense that if u ∈ H1(Ω),
and u is piecewise smooth, then u should be continuous.

We use N to denote the dimension of finite element spaces. For Vh, N is the number of
vertices of the triangulation Th and for Vh,0,N is the number of interior vertices. For linear
finite element spaces, we have the so called a nodal basis functions {φi, i = 1, · · ·N}
such that φi is piecewise linear (with respect to the triangulation) and φi(xj) = δi,j for all
vertices xj of Th. Therefore for any vh ∈ Vh, we have the representation

vh(x) =

N∑
i=1

vh(xi)φi(x).

Due to the shape of the nodal basis function, it is also called the hat function. See Figure
5 for an illustration in 1-D and 2-D. Note that restricting to one simplex, i.e. φi|τ is the
corresponding barycentrical coordinates.
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(a) Linear finite element function in 1-D (b) Linear finite element function in 2-D

FIGURE 4. Linear finite element functions

(a) 1-D basis function (b) 2-D basis function

FIGURE 5. Nodal basis (hat) functions in 1-D and 2-D.

The nodal interpolation operator Ih : C(Ω)→ Vh is defined as

(Ihu)(x) =

N∑
i=1

u(xi)φi(x),

and denoted by the short notation uI := Ihu.

3.2. Scaling argument. Let τ̂ = sn be the standard n-simplex which is also called refer-
ence simplex. Define an affine map F : τ̂ 7→ τ , and the function v̂h(x̂) = vh(F (x̂)),∀x̂ ∈
τ̂ . Essentially it is like a scaling of variables x = hx̂ but geometric change is also included
in the affine map F consisting of translation, rotation and scaling. The following important
relation between the norms on the reference simplex and physical simplex can be easily
proved by changing of variable. The shape regularity of a simplex will be needed to bound
the 2-norm of Jacobi matrix and its determinant in terms of h.

Lemma 3.1. When τ is shape regular, we have

(11) ‖D̂αv̂‖0,p,τ̂ h hsobn(k,p)
τ ‖Dαv‖0,p,τ , for all |α| = k,

where the Sobolev number is sobn(k, p) = k − n
p .
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Proof. Let J =
(
∂x
∂x̂

)
be the Jacobi matrix of the map F . Then ∇̂v̂ = J∇v and conse-

quently |D̂αv̂| h hk|Dαv|, cf. Exercise 3. Use the change of variable dx = |J |dx̂ h
hn dx̂, we have ∫

τ̂

|D̂αv̂|p dx̂ h
∫
τ

hkp|Dαv|h−n dx.

Then the results follows. �

For two Banach spaces B0, B1, the continuous embedding B1 ↪→ B0 implies that

‖u‖B0 . ‖u‖B1 , for all u ∈ B1.

The inequality in the reserve way ‖u‖B1 . ‖u‖B0 may not true. Now considering finite
element spaces Vh ⊂ Bi, i = 0, 1 endowed with two norms. For a fixed h, the dimension
of Vh is finite. Since all the norms of finite dimensional spaces are equivalent, there exists
constant Ch such that

(12) ‖uh‖B1
≤ Ch‖uh‖B0

, for all uh ∈ Vh.

The constant Ch in (12) depends on the size and shape of the domain. If we consider the
restriction on one element τ and transfer to the reference element τ̂ , the constant for the
norm equivalence will not depend on h, i.e.,

‖ûh‖B1,τ̂ . ‖ûh‖B0,τ̂ .

Using the map F , we can then determine the constant in terms of the mesh size h. This is
called scaling argument.

As an example, we obtain the following typical inverse inequalities

|uh|1,τ . h−1‖uh‖τ , and(13)

‖uh‖0,p,τ . hn(1/p−1/q)‖uh‖0,q,τ , 1 ≤ q ≤ p ≤ ∞.(14)

Recall that we have the following refined embedding theorem

(15) ‖v‖0,p,Ω ≤ C(n,Ω) p1−1/n‖v‖1,n,Ω, for all 1 ≤ p <∞.

Using the inverse inequality and the above embedding result, for uh ∈ Vh, we have

‖vh‖∞ . h−n/p‖vh‖0,p . h−n/pp1−1/n‖vh‖1,n.

Now choosing p = | log h| and noting h−n/| log h| ≤ C, we get the following discrete
embedding result:

(16) ‖vh‖∞ . | log h|1−1/n‖vh‖1,n, for all vh ∈ Vh.

In particular, when n = 2, we can almost control the maximum norm of a finite element
function by its H1 norm. Although the term | log h| is unbounded as h → 0, it increases
very slowly and appears as a constant for practical h.

3.3. Error estimate of the nodal interpolation. We use the scaling argument to estimate
the interpolation error |u − uI |1,Ω and refer to Exercise 5.4 for a proof using multipoint
Taylor series.

Theorem 3.2. For u ∈ H2(Ω),Ω ⊂ Rn, n = 1, 2, 3, and Vh the linear finite element
space based on quasi-uniform triangulations Th, we have

|u− uI |1,Ω . h|u|2,Ω.
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Proof. First of all, by the Sobolev embedding theorem, H2 ↪→ C(Ω̄) for n ≤ 3. Thus the
nodal interpolation uI is well defined.

Since |û|1,τ̂ ≤ ‖û‖2,τ̂ , and

|ûI |1,τ̂ . ‖ûI‖0,∞,τ̂ ≤ ‖û‖0,∞,τ̂ . ‖û‖2,τ̂ ,

we get the estimate in the reference simplex: for û ∈ H2(τ̂)

(17) |û− ûI |1,τ̂ ≤ |û|1,τ̂ + |ûI |1,τ̂ . ‖û‖2,τ̂ .

The nodal interpolation will preserve linear polynomials i.e. p̂I = p̂ for p̂ ∈ P1(τ̂),
then

|û− ûI |1,τ̂ = |(û+ p̂)− (û+ p̂)I |1,τ̂ . ‖û+ p̂‖2,τ̂ , ∀ p̂ ∈ P1(τ̂),

and thus by the Bramble-Hilbert lemma

(18) |û− ûI |1,τ̂ . inf
p̂∈P1(τ̂)

‖û+ p̂‖2,τ . |û|2,τ̂ .

We now use the scaling argument to transfer the inequality back to the simplex τ . First

|û|2,τ̂ . h
2−n

2
τ |u|2,τ .

To scale the left hand side, we need a property of the interpolation operator

(19) û− uI = û− ûI ,

namely the interpolation is affine invariant, which can be verified easily by definition. Then
by the scaling argument

h
1−n

2
τ |u− uI |1,τ . |û− uI |1,τ̂ = |û− ûI |1,τ̂ .

Combing all the arguments above leads to the interpolation error estimate on a quasiuni-
form mesh. For u ∈ H2(Ω),

|u− uI |21,Ω =
∑
τ∈Th

|u− uI |21,τ .
∑
τ∈Th

h2
τ |u|22,τ h h2|u|22,Ω.

�

4. CONVERGENCE ANALYSIS

Finite element methods for solving Poisson equation is a special case of Galerkin method
by choosing the subspace Vh ⊂ V based on a triangulation Th of the underlying domain.
As an example, let us consider the linear finite element space Vh. The finite element ap-
proximation will be: find uh ∈ Vh such that

(20) a(uh, vh) = 〈f, vh〉, for all vh ∈ Vh.

Again the existence and uniqueness follows from the Riesz representation theorem since
f ∈ V ′ ⊂ V ′h is also a continuous linear functional on Vh and by Poincaré inequality a(·, ·)
defines an inner production on H1

0 (Ω).
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4.1. H1 error estimate. We first derive an important orthogonality result for projections.
Let u and uh be the solution of continuous and discrete equations respectively i.e.

a(u, v) = 〈f, v〉 ∀v ∈ H1
0 (Ω),

a(uh, v) = 〈f, v〉 ∀v ∈ Vh.
Choosing v ∈ Vh in both equations and subtracting them, we then get an important orthog-
onality

(21) a(u− uh, vh) = 0 ∀vh ∈ Vh,
which implies the following optimality of the finite element approximation

(22) ‖∇(u− uh)‖ = inf
vh∈Vh

‖∇(u− vh)‖.

Theorem 4.1. Let u and uh be the solution of continuous and discrete equations respec-
tively. When u ∈ H2(Ω) ∩H1

0 (Ω), we have the following optimal order estimate:

(23) ‖∇(u− uh)‖ . h‖u‖2.
Furthermore when H2-regularity result holds, we have

(24) ‖∇(u− uh)‖ . h‖f‖.

Proof. When u ∈ H2(Ω)∩H1
0 (Ω), the nodal interpolation operator is well defined by the

embedding theorem. By (22), we then have

‖∇(u− uh)‖ ≤ ‖∇(u− uI)‖ . h‖u‖2 . h‖f‖.
Here in the second ., we have used the error estimate of interpolation operator, and in the
third one, we have useed the regularity result. �

4.2. L2 error estimate. Now we estimate ‖u− uh‖. The main technical is the combina-
tion of the duality argument and the regularity result. It is known as Aubin-Nitsche duality
argument or simply “Nitsche’s trick”.

Theorem 4.2. Let u and uh be the solution of continuous and discrete equations respec-
tively. Suppose the H2 regularity result holds, we then have the following optimal order
approximation in L2 norm

(25) ‖u− uh‖ . h2‖u‖2.

Proof. By the H2 regularity result, there exists w ∈ H2(Ω) ∩H1
0 (Ω) such that

(26) a(w, v) = (u− uh, v), for all v ∈ H1
0 (Ω),

and ‖w‖2 ≤ C‖u− uh‖. Choosing v = u− uh in (26), we get

‖u− uh‖2 = a(w, u− uh)

= a(w − wI , u− uh)

≤ ‖∇(w − wI)‖‖∇(u− uh)‖ (orthogonality)

. h‖w‖2‖∇(u− uh)‖

. h‖u− uh‖‖∇(u− uh)‖ (regularity).

Canceling one ‖u− uh‖, we get

‖u− uh‖ ≤ Ch‖∇(u− uh)‖ . h2‖u‖2.
�
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For the estimate in H1 norm, when u is smooth enough, we can obtain the optimal
first order estimate. But for L2 norm, the duality argument requires H2 elliptic regularity,
which in turn requires that the polygonal domain be convex. In fact, for a non-convex
polygonal domain, it will usually not be true that ‖u − uh‖ = O(h2) even if the solution
u is smooth.

5. EXERCISE

Exercise 5.1. In this exercise, we calculate integrals using barycentric coordinate. For an
n+ 1 multi-index α and an n-simplex τ , one has

(27)
∫
τ

λα(x)dx =
α!n!

(|α|+ n)!
|τ |.

A multi-index α is an k-tuple of non-negative integers α = (α1, α2, · · · , αk). The
length of α is defined by |α| =

∑k
i=1 αi, and α! = α1! . . . αn!. For a given vector x =

(x1, x2, · · · , xk), we define xα = xα1
1 xα2

2 · · · x
αk

k . Finally let λ = (λ1, λ2, · · · , λn+1)
denote the vector of barycentric coordinates.

We shall prove the identity (27) through the following sub-problems:

(1) n = 1 and τ = [0, 1]. Prove that∫ 1

0

xα1(1− x)α2dx =
α1!α2!

(α1 + α2 + 1)!

(2) n = 2 and τ = s2. Prove that∫
τ

xα1yα2(1− x− y)α3dx =
α1!α2!α3!

(α1 + α2 + α3 + 2)!

(3) Prove the identity (27) for τ = sn using induction on n.
(4) Prove the identity (27) for general simplex τ by using the transformation from the

standard simplex sn.

Exercise 5.2. In this exercise, we give explicit formula of the stiffness matrix in a triangle.
Let τ be a triangle with vertices x1,x2,x3 and let λ1, λ2, λ3 be corresponding barycentric
coordinates.

(1) Let ni be the outward normal vector of the edge ei and di be the distance from xi
to ei. Prove that

∇λi = − 1

di
ni.

(2) Let θi be the angle associated to the vertex xi. Prove that∫
τ

∇λi · ∇λj dx = −1

2
cot θk,

where (i, j, k) is any permutation of (1, 2, 3).
(3) Let ci = cot θi, i = 1 to 3. If we define the local stiffness matrix Aτ as 3 × 3

matrix formed by
∫
τ
∇λi · ∇λj dx, i, j = 1, 2, 3. Show that

Aτ =
1

2

c2 + c3 −c3 −c2
−c3 c3 + c1 −c1
−c2 −c1 c1 + c2

 .
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(4) Let e be an interior edge in the triangulation T with nodes xi and xj , and shared
by two triangles τ1 and τ2. Denoted the angle in τ oppositing to e by θτe . Then
prove that the entry aij =

∫
Ω
∇φi · ∇φj dx is

aij = −1

2
(cot θτ1e + cot θτ2e ).

Consequently aij ≤ 0 if and only if θτ1e + θτ2e ≤ π. By the way, if a 2-D triangu-
lation satisfying θτ1e + θτ2e ≤ π, it is called a Delaunay triangulation.

Exercise 5.3. In this exercise, we compute the singular values of the affine map from the
reference triangle τ̂ spanned by â1 = (1, 0), â2 = (0, 1) and â3 = (0, 0) to a triangle τ
with three vertices ai, i = 1, 2, 3. One of such affine map is to match the local indices of
three vertices, i.e., F (âi) = ai, i = 1, 2, 3:

F (x̂) = Bᵀ(x̂) + c,

where

B =

[
x1 − x3 y1 − y3

x2 − x3 y2 − y3

]
, and c = (x3, y3)ᵀ.

(1) Estimate the σmax(B) and σmin(B) in terms of edge lengthes and angles of the
triangle τ .

(2) Establish inequalities between ‖∇v‖0,τ and ‖∇̂v̂‖0,τ̂ where v̂(x̂) := v(F (x̂)).

Exercise 5.4. In this exercise, we give a proof of the interpolation error estimate using
calculus. Let τ be a simplex with vertices xi, i = 1, . . . , n+ 1 and {λi, i = 1, . . . , n+ 1}
be the corresponding barycentric coordinates.

(1) Show that

uI(x) =

n+1∑
i=1

u(xi)λi(x),

n+1∑
i=1

λi(x) = 1, and
n+1∑
i=1

(x− xi)λi(x) = 0.

(2) Let us introduce the auxiliary functions

gi(t,x) = u(xi + t(x− xi)).
For u ∈ C2(τ̄), prove the following error equations

(uI − u)(x) =

n+1∑
i=1

λi(x)

∫ 1

0

tg′′i (t,x)dt,

∇(uI − u)(x) =

n+1∑
i=1

∇λi
∫ 1

0

tg′′i (t,x)dt.

Hint: Multiply the following Taylor series by λi and sum over i

gi(0,x) = gi(1,x)− g′i(1,x) +

∫ 1

0

tg′′i (t,x)dt.

(3) Let u ∈W 2,p with p > n/2. Using the error formulate in (2) to prove

‖u− uI‖0,p ≤ C1h
2|u|2,p, |u− uI |1,p ≤ C2h|u|2,p.

Try to obtain sharp constants in the above inequalities.
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