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In this notes we discuss classic iterative methods on solving the linear operator equation

(1) Au = f,

posed on a finite dimensional Hilbert space V ∼= RN equipped with an inner product (·, ·).
Here A : V 7→ V is an symmetric and positive definite (SPD) operator, f ∈ V is given, and
we are looking for u ∈ V such that (1) holds.

The direct method to solve (1) is to form A−1 or the action of A−1f . For example, the
Gaussian elimination or LU factorization still remains the most commonly used methods
in practice. It is a black-box as it can be applied to any problem in principle. For general
dense matrices, a matrix-vector product requiresO(N2) operations and the straightforward
implementation of Gauss elimination isO(N3), which is prohibitive large whenN is large.
The state-of-the-art of direct solvers can achieve the nearly linear complexity for certain
structured sparse matrices; see for example [2].

WhenA is sparse, the nonzero entries ofA isO(N) and the basic matrix-vector product
reduces to O(N) operation. Then it is desirable to design optimally scaled solvers, say,
with O(N) or O(N logN) computational cost. Namely computing A−1f is just a few
number of Ax. To this end, we first introduce a basic residual-correction iterative method
and study classic iterative methods.

To see the huge saving of an O(N) algorithm comparing with an O(N2) one when N
is large, let us do the following calculation. Suppose N = 106 and a standard PC can do
the summation of 106 numbers in 1 minute. Then an O(N) algorithm will finish in few
minutes while an O(N2) algorithm will take nearly two years (106 minutes ≈ 694 days).

1. RESIDUAL-CORRECTION METHOD

We follow closely Xu [3, 4, 5] to introduce an iterative method in the residual-correction
form. Starting from an initial guess u0 ∈ V, one such iteration consists of three steps to
get a new approximation uk+1 from the current one uk:

(1) form the residual r = f −Auk;
(2) compute a correction e = Br with B ≈ A−1;
(3) obtain the next approximation uk+1 = uk + e.

The operator B is called iterator and assumed to be nonsingular. Given an iterator B, we
define the affine map ΦB(u; f) = u + B(f − Au) = (I − BA)u + Bf . The residual-
correction iterative method can be written as

(2) uk+1 = ΦB(uk; f) = uk +B(f −Auk).

The mapping ΦB(·; 0) is linear with respect to u and thus called linear iterative methods.
Since the exact solution u is a fixed point of the mapping ΦB(·; f), i.e., u = ΦB(u; f) =
(I −BA)u+Bf , we have the error formula

(3) u− uk+1 = (I −BA)(u− uk).

The matrix E = I −BA is the amplification matrix for the error.
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Another popular linear iterative method is based on a splitting ofA [1]. LetA = M−N
with nonsingular M . Usually M is chosen as a dominant part comparing with N . We
rewrite the equation as

Mu−Nu = f,

and derive the iterative method based on the matrix-splitting

(4) uk+1 = M−1(Nuk + f).

Comparing the residual-correction and the matrix-splitting forms, one can easily derive
the relation B = M−1 and N = M − A = B−1 − A. The matrix-splitting method is
slightly computational efficient since Nx requires less operations than Ax. The residual-
correction method emphasize the role of solving the residual equation Ae = r. In contrast
iteration (4) updates u directly and thus is also called the direct updated form.

The art of constructing efficient iterative methods lies on the design ofB which captures
the essential information of A−1 and its action is easily computable. In this context the
notion of “efficient” implies two essential requirements:

(1) One iteration require only O(N) or O(N logN) operations.
(2) The contraction rate is well below 1 and independent of N .

2. CLASSIC ITERATIVE METHODS

Let us consider the case V = RN and A is an SPD matrix. We will derive several linear
iterative methods based on the splitting

A = D + L + U .

Here D,L,U are diagonal matrix, lower triangular matrix and upper triangular matrix of
A. A list of iterators is presented below

• Richardson BR = αI
• Jacobi BJ = D−1.
• Weighted Jacobi BDJ = αD−1.
• Forward Gauss-Seidel BGS = (D + L)−1

• Backward Gauss-Seidel BGS = (D + U)−1

• Symmetric Gauss-Seidel B̄GS = (D + U)−1D(D + L)−1

• Successive Over-Relaxation (SOR) BSOR = α(D + αL)−1.
• Symmetric SOR BSSOR = B̄SOR = α(2− α)(D + αU)−1D(D + αL)−1

We use forward Gauss-Seidel as an example to write out its algorithmic description.
Multiply D + L to uk+1 = uk + (D + L)−1(f − Auk) to get (D + L)uk+1 = (D +
L)uk + f −Auk. Using the fact A = D + L+ U , it can be formally written as

(5) uk+1 = D−1(f − Luk+1 − Uuk).

We then end up with the following in-place implementation of Gauss-Seidel iteration.
for i=1:N

u(i)= a−1
ii (b(i) -

∑i−1
j=1 aiju(j)-

∑N
j=i+1 aiju(j));

end

In the above algorithm, we use only one vector u to store both uk+1 and uk. The transition
from uk to uk+1 is built into the loop. To reveal the transition more explicitly, let us
introduce the dynamically updated vector

vi = (u1k+1, . . . , u
i
k+1, u

i+1
k , . . . , uNk ),
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i.e., vi is the vector of iteration when the i-th component is updated by the Gauss-Sedel
iteration. Then v0 = uk and vN = uk+1 and

vi − vi−1 = uik+1 − uik.

The Gauss-Sedel iteration can be also written in terms of v as
for i=1:N

vi = vi−1 + a−1ii (bi − (Avi−1)i);
end

Again in implementation, only one vector v is needed.
The form (5) is called direct update form. One iteration requires almost the same oper-

ations as computing Ax. The correction form

uk+1 = uk + (D + L)−1(f −Auk),

requires an evaluation of the residual and a forward substitution which is almost two times
slower. On the other hand, in MATLAB, it is much easier and faster to implement the
correction form

u = u + tril(A)\(f-A*u);

3. CONVERGENCE ANALYSIS OF RESIDUAL-CORRECTION METHODS

In this section, we shall analyze the convergence of the linear residual-correction iter-
ative method and its variants. Given an SPD operator A in V, we can define a new inner
product (·, ·)A of V:

(u, v)A = (Au, v) = (u,Av), for all u, v ∈ V.

We shall use (V, I) and (V, A) to denote the same linear space V but with two different
inner product structures. It turns out that (V, A) plays an important role in the convergence
analysis. We shall use ∗ for the adjoint with respect to (V, A) and ᵀ to (V, I), i.e.,

(Bᵀu, v) = (u,Bv) for all u, v ∈ V
(B∗u, v)A = (u,Bv)A for all u, v ∈ V.

By definition, it is straightforward to verify that

(6) B∗ = A−1BᵀA.

An operator M is symmetric w.r.t. (·, ·) if M = Mᵀ and is symmetric w.r.t. (·, ·)A if
M = M∗. In functional analysis, it is called self-adjoint operator which depends on the
inner product of the corresponding Hilbert space. When we say ‘symmetric’, we refer to
the default (·, ·) inner product and emphasize the symmetry in (·, ·)A by ‘A-symmetry’.

For two symmetric operators X,Y , we introduce the notation X ≥ Y , if (Xu, u) ≥
(Y u, u) for all u ∈ V. We can generalize to A-symmetric operators and write inequality
X ≥A Y when X,Y are symmetric in the (·, ·)A inner product.

3.1. General convergence analysis. Let ek = u − uk. Recall that the error equation of
the residual-correction iterative method is

ek+1 = (I −BA)ek = (I −BA)k+1e0.

The residual-correction iterative method converges if and only if ρ(I −BA) < 1 which is
equivalent to

|1− λ| < 1 for all λ ∈ σ(BA).
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Namely the spectrum of BA is inside the unit disk in the complex domain at center (1, 0).
Estimate of eigenvalues ofBA is thus the crucial ingredient. Here recall that for a linear op-
erator T ∈ L(V,V), the spectrum of T is defined as σ(T ) = {λ : λ is an eigenvalue of T}.
The spectral radius of T is ρ(T ) = supλ∈σ(T ) |λ|.

We emphasize that by the definition of eigenvalue it depends only the linear structure of
the operator not the inner product. Closing a right inner product, however, can help us on
the study of eigenvalues.

3.2. Symmetric scheme. Eigenvalues of operator BA could be complex and thus the
estimate is difficult. When B is symmetric, BA may not be symmetric but will be A-
symmetric and if B is also SPD, BA is B−1-symmetric.

The right Hilbert space to work with is (V, A) not the default one (V, I). In the right
space, everything becomes transparent. One immediate benefit of the factBA is symmetric
in A-inner product is that all eigenvalues of BA are real numbers. Thus

(7) ρ(I −BA) = max{|1− λmin(BA)|, |1− λmax(BA)|}.

From (7), we get a characterization of the convergence of a symmetric scheme.

Theorem 3.1. For symmetric iterator B, the iterative scheme ΦB converges if and only if

0 < λmin(BA) ≤ λmax(BA) < 2.

On the other hand, from ρ(I −BA) < 1 we can derive bound on the eigenvalues.

Corollary 3.2. For a symmetric iterator B, if ρ = ρ(I −BA) < 1. Then

1− ρ ≤ λmin(BA) ≤ λmax(BA) ≤ 1 + ρ.

Proof. It is from the inequality |1− x| ≤ ρ for x ∈ [λmin, λmax]. �

To get more quantitative information, we need to estimate λmin(BA) and λmax(BA)
by comparing B−1 with A or B with A−1.

Lemma 3.3. When B is symmetric and nonsingular in (V, I),

λmin(BA) = inf
u∈V\{0}

(ABAu, u)

(Au, u)
= inf
u∈V\{0}

(Bu, u)

(A−1u, u)
=

[
sup

u∈V\{0}

(B−1u, u)

(Au, u)

]−1
,

λmax(BA) = sup
u∈V\{0}

(ABAu, u)

(Au, u)
= sup
u∈V\{0}

(Bu, u)

(A−1u, u)
=

[
inf

u∈V\{0}

(B−1u, u)

(Au, u)

]−1
.

Proof. Due to the similarity, we only prove the formulae for λmin(BA). The first two
comes from the fact BA is symmetric in (V, A). The third identity can be proved as

λ−1min(BA) = λmax((BA)−1) = sup
u∈V\{0}

((BA)−1u, u)A
(u, u)A

= sup
u∈V\{0}

(B−1u, u)

(Au, u)
.

�

Using the partial ordering notation for symmetric operators, the estimate λmin(BA) ≥
c0 is equivalent to BA ≥A c0I and can be derived from the inequalities

c0B
−1 ≤ A, B ≥ c0A−1, or ABA ≥ c0A.

That is formally we can manipulate symmetric operators as numbers in inequalities.
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3.3. Symmetrization of general schemes. For general non-symmetric iterator B, eigen-
values of BA could be complex and not easy to estimate. We define its symmetrization
ΦB = ΦBᵀΦB , i.e.

(1) uk+ 1
2

= uk +B(f −Auk);
(2) uk+1 = uk+ 1

2
+Bᵀ(f −Auk+ 1

2
).

The symmetry will bring more structure to the estimate of eigenvalues. By the definition

(8) I −BA = (I −BᵀA)(I −BA),

and therefore

(9) B = Bᵀ(Bᵀ−1 +B−1 −A)B.

SinceB is symmetric in (V, I), I−BA is symmetric in (V, A). By the following exercise,
it is also semi-positive definite.

Lemma 3.4. Let B be defined by (10). Then

(10) I −BA = (I −BA)∗(I −BA).

Proof.
(I −BA)∗ = I − (BA)∗ = I −A−1(BA)ᵀA = I −BᵀA.

�

For the symmetrized scheme B, eigenvalues of BA are real numbers and thus

(11) ρ(I −BA) = max{|1− λmin(BA)|, |1− λmax(BA)|}.

By (10), I − BA is symmetric and semi-positive definite and thus λmin(I − BA) ≥ 0
which is equivalent to λmax(BA) ≤ 1. Therefore we have the following result.

Lemma 3.5. For the symmetrized scheme ΦB ,

(12) ρ(I −BA) = 1− λmin(BA).

We then present a criterion for the convergence of the symmetrized scheme.

Theorem 3.6. The symmetrized iterative method ΦB converges if and only if

(13) B−1 +Bᵀ−1 −A is SPD.

Proof. By (12), the following statements are equivalent

(1) ΦB converges,
(2) λmin(BA) > 0,
(3) BA is SPD in (V, A),
(4) B is SPD in (V, I),
(5) B−1 +Bᵀ−1 −A is SPD in (V, I).

The equivalence of (4) and (5) is from the formula

B = Bᵀ(Bᵀ−1 +B−1 −A)B.

�

We summarize the result for the symmetrized scheme ΦB in the following theorem.
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Theorem 3.7. For iterative scheme ΦB ,

‖I −BA‖2A = ρ(I −BA) = 1−

[
sup

u∈V\{0}

(B
−1
u, u)

(Au, u)

]−1
.

Consequently if

(14) (B
−1
u, u) ≤ K(Au, u) for all u ∈ V,

then
‖I −BA‖2A ≤ 1− 1

K
.

3.4. Relation of a scheme and its symmetrization. The convergence of ΦB and ΦB is
connected by the following inequality.

Lemma 3.8.
ρ(I −BA) ≤

√
ρ(I −BA),

and the equality holds if B = Bᵀ.

Proof. We use the relation between spectral radius and norms to get

ρ(I −BA)2 ≤ ‖I −BA‖2A = ‖(I −BA)∗(I −BA)‖A = ρ(I −BA).

The first inequality holds if B is symmetric. �

Therefore the convergence of symmetrized scheme ΦB will imply the convergence of
the original algorithm ΦB . When B is non-symmetric, e.g. the Gauss-Seidel method,
we shall study its symmetrization B. But we should be cautious that when B is non-
symmetric, it is possible that ΦB converges while ΦB does not.

For symmetricB, (13) is a sufficient and necessary condition since the equality holds in
Lemma 3.8. We could estimate λmin(BA) and λmax(BA) or λmin(BA). Note that even
B is symmetric, it symmetrization is different and B = 2B − BAB is a better but more
expensive iterator.

4. CONVERGENCE ANALYSIS OF CLASSIC ITERATIVE METHODS

We shall apply our theories to analyze the convergence of classic iterative methods.
We begin with Richardson method for which B = αI and discuss the optimal choice of
the damping parameter. For an SPD operator, we define the condition number κ(A) =
λmax(A)/λmin(A).

Theorem 4.1. Richardson method with B = αI converges if and only if 0 < α <
2/λmax(A). Furthermore, the optimal convergence rate is achieved when

α∗ =
2

λmin(A) + λmax(A)
,

and the optimal convergence rate is

ρα∗ =
κ(A)− 1

κ(A) + 1
.

Proof. Since A is SPD, all eigenvalues of A are real numbers, and λmin(A) > 0. ρ(I −
αA) = max{|1 − αλmin(A)|, |1 − αλmax(A)|}. The optimal α∗ minimizes max{|1 −
αλmin(A)|, |1− αλmax(A)|}, and it satisfies

α∗λmax(A)− 1 = 1− α∗λmin(A).

The proof is more evident from the Figure 4. �



CLASSICAL ITERATIVE METHODS 7

ω

ρ

λ−1
max 2λ−1

maxλ−1

min

1

FIGURE 1. Convergence rate of Richardson method

1

FIGURE 1. Convergence analysis of Richardson method

We now analyze the convergence rate of Jacobi and weighted Jacobi iteration.

Theorem 4.2. Jacobi method converges if and only if 2D −A = D −L−U is an SPD
matrix.

Proof. Since BJ = D−1 is an SPD matrix, the characterization of its converges is from
Theorem 3.6. �

A matrix is called diagonally dominated if aii ≥
∑
j 6=i |aij | for all i and is strictly

diagonally dominated if it is diagonally dominated and for at least one i, aii >
∑
j 6=i |aij |.

One can easily prove that a symmetric and strictly diagonal dominated matrix is SPD.

Corollary 4.3. If A is strictly diagonally dominated, then Jacobi iteration always con-
verges.

Proof. Note that if A = D + L + U is strictly diagonal dominated, so is 2D − A =
D −L−U . �

To study the weighted Jacobi iteration, we introduce a scaled matrixAD = D−1/2AD−1/2.
By the following exercise, σ(AD) = σ(D−1A). We therefore reduce the analysis of the
weighted Jacobi method to Richardson method.

Theorem 4.4. Weighted Jacobi method with B = αD−1 converges if and only if 0 < α <
2/λmax(AD). Furthermore, the optimal convergence rate is achieved when

α∗ =
2

λmin(AD) + λmax(AD)
,

and the optimal convergence rate is

ρα∗ =
κ(AD)− 1

κ(AD) + 1
.

The diagonal entry of the scaled matrix AD is always 1. An estimate of λmax(AD) can
be obtained by the Gershgorin circle theorem. For example, if A is diagonally dominated,
then λmax(AD) ≤ 2.
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Theorem 4.5. Gauss-Seidel method always converges. For forward Gauss-Sediel method
B = (D + L)−1,

‖I −BA‖2A =
c0

1 + c0
,

where

c0 = sup
u∈RN ,‖u‖A=1

(D−1Uu,Uu) = sup
u∈RN ,u6=0

(D−1Uu,Uu)

(Au,u)
.

Proof. By direct computation, we have

Bᵀ−1 + B−1 −A = D

is an SPD. Thus, by Theorem 3.6, Gauss-Sediel method always converges. Furthermore

B
−1

= A + LD−1U .

Thus

λ−1min(BA) = sup
u6=0

(B̄
−1

u,u)

(Au,u)
= 1 + sup

u6=0

(LD−1Uu,u)

(Au,u)
= 1 + c0.

Results follows from Theorem 3.7 and the fact U = Lᵀ. �

5. EXERCISE

Exercise 5.1. Derive the direct updated form of the Jacobi iteration and write its algorith-
mic description. Compare with G-S and list the main difference.

Exercise 5.2. Prove that if B is symmetric and B−1 > 1
2A, then ΦB converges with a rate

‖I −BA‖2A ≤ 1− λmin(B−1 +Bᵀ−1 −A)λmin(A)‖B−1‖−2.

In view of matrix-splitting method, the condition B−1 > 1
2A means the matrix M = B−1

is dominant (more than half).

Exercise 5.3. Consider k-steps of Richardson methods with different parametersα1, . . . , αk.
Then the error equation is

ek = (I − αkA) · · · (I − α1A)e0.

Consider the optimization problem of choosing k-parameters:

(15) min
αi∈R,i=1,...,k

{
max

λ∈[λmin(A),λmax(A)]
|(I − αkλ) · · · (I − α1λ)|

}
.

Find the solution of (15) and derive the rate. This trick is known as Chebyshev acceleration.

Exercise 5.4. Let An×r and Br×n be two matrices. Prove

σ(AB)\{0} = σ(BA)\{0}.

Exercise 5.5. Prove that the convergence rate of Richardson, weighted Jacobi method,
and Gauss-Seidel method for the 5-point stencil finite difference method of the Poisson
equation on a uniform mesh with size h, is like

ρ ≤ 1− Ch2.

Thus when h→ 0, we will observe slow convergence of those classical iterative methods.
Hint: For G-S, use the Hölder inequality of the 2-norm of a matrix M :

‖M‖2 ≤ ‖M‖∞‖M‖1.
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