CLASSICAL ITERATIVE METHODS

LONG CHEN

We discuss classic iterative methods for solving the linear operator equation

$$(1) Au = f,$$

posed on a finite dimensional Hilbert space $\mathbb{V} \cong \mathbb{R}^N$ equipped with an inner product (\cdot, \cdot) . Here $A : \mathbb{V} \to \mathbb{V}$ is a *symmetric and positive definite (SPD)* operator, $f \in \mathbb{V}$ is given, and we seek $u \in \mathbb{V}$ satisfying (1).

The direct approach is to form A^{-1} or compute the action $A^{-1}f$. Gaussian elimination or the LU factorization remains the standard method. It is a black-box procedure that applies to general matrices. For a dense matrix, one matrix-vector multiplication costs $\mathcal{O}(N^2)$ operations and a straightforward Gauss elimination costs $\mathcal{O}(N^3)$, which is too expensive when N is large. State-of-the-art direct solvers achieve nearly linear complexity for certain structured sparse matrices; see, for example, [3].

When A is sparse, the number of nonzero entries is $\mathcal{O}(N)$, so one matrix–vector multiplication costs only $\mathcal{O}(N)$. In this setting, it is natural to design solvers with optimal or near–optimal complexity, such as $\mathcal{O}(N)$ or $\mathcal{O}(N\log N)$. This means that evaluating $A^{-1}f$ should require only a small number of applications of A to a vector.

We begin with a basic residual–correction iteration and then study several classical iterative schemes. For algorithms achieving $\mathcal{O}(N)$ complexity with uniformly bounded contraction factors, we refer the reader to *Introduction to Multigrid Methods*.

1. RESIDUAL-CORRECTION METHOD

We follow Xu [4, 5, 6] and introduce an iterative method in residual–correction form. Starting from an initial guess $u_0 \in \mathbb{V}$, one iteration computes u_{k+1} from u_k by:

- (1) forming the residual $r = f Au_k$;
- (2) computing a correction e = Br with a nonsingular preconditioner $B \approx A^{-1}$;
- (3) updating the iterate $u_{k+1} = u_k + e$.

Given B, define the affine map

$$\Phi_B(u; f) = u + B(f - Au) = (I - BA)u + Bf.$$

Then the residual-correction method is

(2)
$$u_{k+1} = \Phi_B(u_k; f) = u_k + B(f - Au_k).$$

The map $\Phi_B(\cdot;0)$ is linear in u and thus (2) is called a linear iterative method. Since the exact solution u satisfies $u=\Phi_B(u;f)$, we obtain the error relation

(3)
$$u - u_{k+1} = (I - BA)(u - u_k).$$

The matrix E=I-BA is the error amplification operator (also called the iteration matrix). Another popular formulation of linear iterative method is based on a splitting of A [2]. Let A=M-N with M nonsingular, where M is chosen as the dominant part of A. Rewriting the equation as

$$Mu - Nu = f,$$

we obtain the matrix-splitting iteration

(4)
$$u_{k+1} = M^{-1}(Nu_k + f).$$

Comparing the residual-correction and matrix-splitting forms, we see that

$$B = M^{-1}$$
, $N = M - A = B^{-1} - A$.

The matrix-splitting method is slightly more efficient as Nx is cheaper to compute than Ax. The residual-correction framework highlights the step of solving the residual equation Ae = r, whereas the update (4) acts directly on u and is often called the direct update form.

FIGURE 1. Efficiency vs. accuracy of solvers with multigrid (MG) achieving a balanced compromise.

The art of constructing *efficient* iterative methods lies in the design of B, which must capture the essential features of A^{-1} while remaining inexpensive to apply. In this setting, the term "efficient" refers to the following two requirements:

- (1) Each iteration costs only $\mathcal{O}(N)$ or $\mathcal{O}(N \log N)$ operations.
- (2) The contraction rate is strictly less than 1 and remains independent of N.

2. CLASSIC ITERATIVE METHODS

Let us consider the case $\mathbb{V} = \mathbb{R}^N$ and let A be an SPD matrix. We derive several linear iterative methods based on the splitting

$$A = D + L + U.$$

Here D, L, and U are the diagonal, strictly lower triangular, and strictly upper triangular parts of A, respectively. A list of corresponding preconditioner operators is given below:

$$ullet$$
 Richardson: $oldsymbol{B}_{
m R}=lpha oldsymbol{I}$

$$ullet$$
 Jacobi: $oldsymbol{B}_{
m J} = oldsymbol{D}^{-1}$

$$ullet$$
 Weighted Jacobi: $oldsymbol{B}_{
m DJ} = lpha oldsymbol{D}^{-1}$

$$ullet$$
 Forward Gauss–Seidel: $oldsymbol{B}_{\mathrm{GS}} = (oldsymbol{D} + oldsymbol{L})^{-1}$

$$oldsymbol{B}_{
m GS}$$
 Backward Gauss–Seidel: $oldsymbol{B}_{
m GS} = (D+U)^{-1}$ $oldsymbol{B}_{
m GS} = (D+U)^{-1} D (D+L)^{-1}$

• Symmetric Gauss–Seidel:
$$\bar{B}_{GS} = (D+U)^{-1} D (D+L)^{-1}$$

• Successive over-relaxation (SOR):
$$B_{SOR} = \alpha (D + \alpha L)^{-1}$$

• Symmetric SOR:
$$\mathbf{B}_{SSOR} = \alpha(2-\alpha)(\mathbf{D} + \alpha \mathbf{U})^{-1}\mathbf{D}(\mathbf{D} + \alpha \mathbf{L})^{-1}$$

We use the forward Gauss-Seidel method as an example to illustrate the algorithmic form of a linear iterative scheme. Starting from the residual-correction update

$$u_{k+1} = u_k + (D+L)^{-1}(f - Au_k),$$

multiply both sides by D+L to obtain

$$(D+L)u_{k+1} = (D+L)u_k + f - Au_k$$
.

Since A = D + L + U, this gives the formal relation

(5)
$$u_{k+1} = D^{-1} (f - Lu_{k+1} - Uu_k).$$

This leads to the following in-place implementation of one Gauss-Seidel sweep:

for i=1:N
$$\mbox{u(i)} = a_{ii}^{-1} \, (\mbox{b(i)} \ - \sum_{j=1}^{i-1} a_{ij} \mbox{u(j)} - \sum_{j=i+1}^{N} a_{ij} \mbox{u(j)}) \, ;$$
 end

In the above algorithm, we use only one vector \mathbf{u} to store both u_{k+1} and u_k . The transition from u_k to u_{k+1} is built into the loop. Indeed the classical derivation of Gauss–Seidel solves the i-th equation

$$a_{i1}u^1 + \dots + a_{ii} \mathbf{u}^i + \dots + a_{iN}u^N = f^i,$$

treating u^i as the only unknown and moving all other terms to the right-hand side.

The form (5) is a direct update scheme. One Gauss–Seidel iteration requires essentially the same amount of work as a single matrix–vector multiplication with A. In contrast, the correction form

$$u_{k+1} = u_k + (D+L)^{-1} (f - Au_k),$$

requires both a residual evaluation and a forward substitution, and is therefore almost twice as expensive. In MATLAB, however, it is often easier and faster to implement the correction form:

$$u = u + tril(A) \setminus (f-A*u);$$

For lower or upper triangular matrices, the inverse is applied by forward or backward substitution, and MATLAB performs an internal type check to choose the appropriate routine.

3. Convergence analysis of residual-correction methods

In this section we analyze the convergence of the linear residual—correction method and its variants. The *A*-inner product and *A*-symmetry play a central role in the analysis.

3.1. Symmetry and inner products. Given an SPD operator A on \mathbb{V} , we introduce the A-inner product

$$(u,v)_A := (Au,v) = (u,Av), \qquad u,v \in \mathbb{V}.$$

We use (\mathbb{V}, I) and (\mathbb{V}, A) to denote the same linear space equipped with the standard and A-inner products. It is the structure induced by (\mathbb{V}, A) that plays a central role in the convergence analysis.

We use $^{\mathsf{T}}$ for the adjoint with respect to (\mathbb{V},I) and * for the adjoint with respect to (\mathbb{V},A) :

$$\begin{split} (B^\intercal u,v) &= (u,Bv), \qquad u,v \in \mathbb{V}, \\ (B^*u,v)_A &= (u,Bv)_A, \qquad u,v \in \mathbb{V}. \end{split}$$

A direct calculation shows

(6)
$$B^* = A^{-1}B^{\mathsf{T}}A.$$

If we treat A as a basis transformation matrix, B^* and B^{T} are different representation of the dual of B in different bases.

An operator M is symmetric with respect to (\cdot, \cdot) if $M = M^{\mathsf{T}}$, and symmetric with respect to $(\cdot, \cdot)_A$ if $M = M^*$. In functional analysis, such operators are called self-adjoint, and the notion depends on the chosen inner product of the underlying Hilbert space. Throughout, when we say "symmetric", we refer to symmetry in the default inner product (\cdot, \cdot) , and use "A-symmetric" to emphasize symmetry in $(\cdot, \cdot)_A$.

For two symmetric operators X and Y, we write $X \geq Y$ if $(Xu,u) \geq (Yu,u)$ holds for all $u \in \mathbb{V}$. For A-symmetric operators, we write $X \geq_A Y$ to indicate $(Xu,u)_A \geq (Yu,u)_A$ for all $u \in \mathbb{V}$. This notation introduces a partial order on the set of symmetric operators.

3.2. General convergence analysis. Let $e_k = u - u_k$. Recall that the error equation of the residual–correction method is

$$e_{k+1} = (I - BA)e_k = (I - BA)^{k+1}e_0.$$

The method converges if and only if $\rho(I-BA)<1$, which is equivalent to

$$|1 - \lambda| < 1$$
 for all $\lambda \in \sigma(BA)$.

Thus the spectrum of BA must lie inside the open unit disk centered at (1,0) in the complex plane. Estimating the eigenvalues of BA is therefore a key part of the analysis.

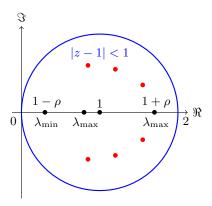


FIGURE 2. Spectrum of BA contained in the open unit disk centered at 1 in the complex plane. When B is symmetric, $\sigma(BA)$ is on the real axis.

For a linear operator $T \in \mathcal{L}(\mathbb{V}, \mathbb{V})$, the *spectrum* is

$$\sigma(T) = \{ \lambda : \lambda \text{ is an eigenvalue of } T \},$$

and the spectral radius is

$$\rho(T) = \sup_{\lambda \in \sigma(T)} |\lambda|.$$

Eigenvalues depend only on the linear structure of an operator and do not involve the choice of inner product. However, selecting a suitable inner product, for example A-inner product, can greatly simplify the study of these eigenvalues.

3.3. **Symmetric scheme.** Eigenvalues of the operator BA may be complex, which makes direct estimates difficult. When B is symmetric, BA need not be symmetric in (\cdot, \cdot) , as $(BA)^{\mathsf{T}} = A^{\mathsf{T}}B^{\mathsf{T}} = AB \neq BA$ in general. But BA is A-symmetric.

Lemma 3.1. When B is symmetric, BA is A-symmetric. If B is also SPD, then BA is B^{-1} -symmetric.

Proof. It is straightforward to verify

$$(BA)^* = A^{-1}(BA)^{\mathsf{T}}A = BA.$$

The second one can be verified by symbolical change.

The appropriate Hilbert space for the analysis is (\mathbb{V}, A) rather than the default space (\mathbb{V}, I) . In this space the structure of BA becomes transparent. In particular, BA is symmetric in the A-inner product so all of its eigenvalues are real. Therefore

(7)
$$\rho(I - BA) = \max\{|1 - \lambda_{\min}(BA)|, |1 - \lambda_{\max}(BA)|\}.$$

From (7) we obtain a characterization of the convergence of a symmetric scheme.

Theorem 3.2. Let B be a symmetric preconditioner. Then the iterative scheme Φ_B converges if and only if

$$0 < \lambda_{\min}(BA) \le \lambda_{\max}(BA) < 2.$$

From the condition $\rho(I - BA) < 1$ we can also derive bounds on the eigenvalues.

Corollary 3.3. Let B be a symmetric preconditioner and set $\rho = \rho(I - BA) < 1$. Then

$$1 - \rho \le \lambda_{\min}(BA) \le \lambda_{\max}(BA) \le 1 + \rho.$$

Proof. The result follows from the scalar inequality $|1-x| \leq \rho$ for all $x \in [\lambda_{\min}, \lambda_{\max}]$.

To obtain quantitative estimates, we need bounds on $\lambda_{\min}(BA)$ and $\lambda_{\max}(BA)$ in terms of comparisons between B^{-1} and A, or equivalently between B and A^{-1} .

Lemma 3.4. Let B be symmetric and nonsingular in (V, I). Then

$$\lambda_{\min}(BA) = \inf_{u \in \mathbb{V} \setminus \{0\}} \frac{(ABAu, u)}{(Au, u)} = \inf_{u \in \mathbb{V} \setminus \{0\}} \frac{(Bu, u)}{(A^{-1}u, u)} = \left[\sup_{u \in \mathbb{V} \setminus \{0\}} \frac{(B^{-1}u, u)}{(Au, u)}\right]^{-1},$$

$$\lambda_{\max}(BA) = \sup_{u \in \mathbb{V} \setminus \{0\}} \frac{(ABAu, u)}{(Au, u)} = \sup_{u \in \mathbb{V} \setminus \{0\}} \frac{(Bu, u)}{(A^{-1}u, u)} = \left[\inf_{u \in \mathbb{V} \setminus \{0\}} \frac{(B^{-1}u, u)}{(Au, u)}\right]^{-1}.$$

Proof. By symmetry of BA in (\mathbb{V}, A) , the first two identities for $\lambda_{\min}(BA)$ follow from the standard Rayleigh quotient characterization in $(\cdot, \cdot)_A$. For the third one, note that

$$\lambda_{\min}^{-1}(BA) = \lambda_{\max}((BA)^{-1}) = \sup_{u \in \mathbb{V} \setminus \{0\}} \frac{((BA)^{-1}u, u)_A}{(u, u)_A} = \sup_{u \in \mathbb{V} \setminus \{0\}} \frac{(B^{-1}u, u)}{(Au, u)}.$$

The identities for $\lambda_{\max}(BA)$ are analogous.

Using the partial ordering notation for symmetric operators, the lower bound $\lambda_{\min}(BA) \ge c_0$ is equivalent to $BA \ge_A c_0 I$, and can be obtained from any of

$$c_0 B^{-1} \le A$$
, $B \ge c_0 A^{-1}$, $ABA \ge c_0 A$.

Formally, these inequalities show that symmetric operators can be manipulated in the same way as real numbers with respect to the induced orderings.

3.4. Symmetrization of general schemes. For a general non-symmetric preconditioner B, the eigenvalues of BA may be complex and are therefore difficult to estimate directly. To recover symmetry, we introduce the *symmetrized scheme*

$$\Phi_{\overline{B}} := \Phi_{B^{\intercal}} \circ \Phi_B,$$

given by the two-step iteration

(1) $u_{k+\frac{1}{2}} = u_k + B(f - Au_k),$

(2)
$$u_{k+1} = u_{k+\frac{1}{2}} + B^{\intercal}(f - Au_{k+\frac{1}{2}}).$$

This construction brings additional structure. From the definition,

(8)
$$I - \overline{B}A = (I - B^{\mathsf{T}}A)(I - BA),$$

which implies

$$\overline{B} = B^{\mathsf{T}} (B^{\mathsf{T}-1} + B^{-1} - A) B.$$

Since \overline{B} is symmetric in (\mathbb{V}, I) , the operator $I - \overline{B}A$ is symmetric in (\mathbb{V}, A) . The next lemma shows that $I - \overline{B}A$ is also positive semidefinite.

Lemma 3.5. Let \overline{B} be defined by (9). Then

$$(10) I - \overline{B}A = (I - BA)^*(I - BA),$$

where * denotes the adjoint with respect to the A-inner product.

Proof. Using $(BA)^* = A^{-1}(BA)^{\mathsf{T}}A$, we obtain

$$(I - BA)^* = I - (BA)^* = I - A^{-1}(BA)^{\mathsf{T}}A = I - B^{\mathsf{T}}A,$$

which implies (10).

Combining Lemma 3.4, 3.4, and Theorem 3.7, for the symmetrized scheme \overline{B} , eigenvalues of $\overline{B}A$ are real numbers and thus

(11)
$$\rho(I - \overline{B}A) = \max\{|1 - \lambda_{\min}(\overline{B}A)|, |1 - \lambda_{\max}(\overline{B}A)|\}.$$

By (9), $I-\overline{B}A$ is symmetric and semi-positive definite and thus $\lambda_{\min}(I-\overline{B}A) \geq 0$ which is equivalent to $\lambda_{\max}(\overline{B}A) \leq 1$. Therefore we have the following result.

Lemma 3.6. For the symmetrized scheme $\Phi_{\overline{R}}$,

(12)
$$\rho(I - \overline{B}A) = 1 - \lambda_{\min}(\overline{B}A).$$

We now present a criterion for the convergence of the symmetrized scheme.

Theorem 3.7. The symmetrized iterative method $\Phi_{\overline{B}}$ converges if and only if

(13)
$$B^{-1} + B^{T-1} - A \text{ is SPD.}$$

Proof. By (12), the following statements are equivalent:

- (1) $\Phi_{\overline{B}}$ converges;
- (2) $\lambda_{\min}(\overline{B}A) > 0$;
- (3) $\overline{B}A$ is SPD in (\mathbb{V}, A) ;
- (4) \overline{B} is SPD in (\mathbb{V}, I) ;
- (5) $B^{-1} + B^{\intercal 1} A$ is SPD in (V, I).

The equivalence of (4) and (5) follows from

$$\overline{B} = B^{\mathsf{T}} (B^{\mathsf{T}-1} + B^{-1} - A) B.$$

We summarize the convergence properties of the symmetrized scheme $\Phi_{\overline{B}}$ in the following theorem.

Theorem 3.8. For the iterative scheme Φ_B ,

$$||I - BA||_A^2 = \rho(I - \overline{B}A) = 1 - \left[\sup_{u \in \mathbb{V} \setminus \{0\}} \frac{(\overline{B}^{-1}u, u)}{(Au, u)}\right]^{-1}.$$

Consequently, if

(14)
$$(\overline{B}^{-1}u, u) \le K(Au, u) \quad \text{for all } u \in \mathbb{V},$$

then

$$||I - BA||_A^2 \le 1 - \frac{1}{K}.$$

3.5. **Relation of a scheme and its symmetrization.** The convergence of Φ_B and its symmetrization $\Phi_{\overline{B}}$ is related through the following inequality.

Lemma 3.9.

$$\rho(I - BA) \leq \sqrt{\rho(I - \overline{B}A)},$$

and equality holds when B is symmetric, i.e., $B = B^{\mathsf{T}}$.

Proof. Using the relation between spectral radius and operator norms, we have

$$\rho(I - BA)^2 \le \|I - BA\|_A^2 = \|(I - BA)^*(I - BA)\|_A = \rho(I - \overline{B}A).$$

The initial inequality becomes equality when B is symmetric.

Therefore, convergence of the symmetrized scheme $\Phi_{\overline{B}}$ implies convergence of the original scheme Φ_B . However, when B is non-symmetric (e.g., Gauss–Seidel), it is possible that Φ_B converges while $\Phi_{\overline{B}}$ fails to converge.

When B is symmetric, condition (13) becomes both necessary and sufficient because equality holds in Lemma 3.9. In this case we may estimate either $\lambda_{\min}(BA)$, $\lambda_{\max}(BA)$, or $\lambda_{\min}(\overline{B}A)$. Note that even for symmetric B, its symmetrization is different:

$$\overline{B} = 2B - BAB$$
,

which generally gives a better (but more expensive) preconditioner.

3.6. Limitation of the spectral analysis. Consider the iteration

$$x_k = Ex_{k-1} = E^k x_0.$$

Recall that for any consistent matrix norm $\|\cdot\|_X$,

$$\rho(E) \le ||E||_X, \qquad \rho(E) = \lim_{k \to \infty} ||E^k||_X^{1/k}.$$

Thus $\rho(E)$ describes the *asymptotic* convergence of the sequence $\{x_k\}$. For any $\epsilon > 0$, there exists k_0 such that

$$||E^k||_X \le (\rho(E) + \epsilon)^k, \qquad k \ge k_0.$$

However, this asymptotic information does *not* guarantee contraction at each iteration. Even when $\rho(E) < 1$, the norm $||E^k||$ may show *transient growth*—including exponential growth for $k \le k_0$ followed by exponential decay for $k > k_0$. See Example D.2 in [1, Appendix D.4].

Bounding a matrix norm in terms of its spectral radius can be difficult; see, for example, [1, Appendix D.2], which uses the resolvent of a matrix to derive such bounds. For highly

non-normal matrices, the gap between the spectral radius and any induced matrix norm can be arbitrarily large. As an example, consider the rotation—shear matrix

$$R = \begin{pmatrix} 0 & 1 \\ \lambda & 0 \end{pmatrix}, \qquad \lambda > 0.$$

Its spectral radius is $\rho(R) = \sqrt{\lambda}$, while

$$||R|| \ge ||Re_1|| = \lambda, \qquad e_1 = (1,0)^\top.$$

Hence

$$||R|| \ge \sqrt{\lambda} \, \rho(R).$$

When $\lambda \gg 1$, the gap between the conditions $\rho(R) < 1$ and ||R|| < 1 becomes very large. When the iteration matrix E is diagonalizable, i.e.

$$E = T\Lambda T^{-1}, \qquad \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n),$$

we obtain

$$||E^k|| = ||T\Lambda^k T^{-1}|| \le ||T|| ||\Lambda^k|| ||T^{-1}|| = \kappa(T) \rho(E)^k,$$

where the condition number $\kappa(T) = ||T|| ||T^{-1}||$ may be very large.

When E is unitarily diagonalizable, meaning that T is unitary, then

$$||E|| = ||\Lambda|| = \rho(E),$$

and the spectral radius fully describes the norm behavior. E is unitarily diagonalizable is equivalent to E is normal, i.e., for real matrices $EE^{\mathsf{T}}=E^{\mathsf{T}}E$.

4. Convergence analysis of classic iterative methods

We apply the convergence theory to analyze the convergence of several classic iterative methods. We begin with the Richardson method, for which $B=\alpha I$, and discuss the optimal choice of the damping parameter α . For an SPD operator A, define the condition number $\kappa(A):=\lambda_{\max}(A)/\lambda_{\min}(A)$.

Theorem 4.1. The Richardson iteration with $B = \alpha I$ converges if and only if

$$0 < \alpha < \frac{2}{\lambda_{\max}(A)}.$$

Moreover, the optimal convergence rate is obtained at

$$\alpha^* = \frac{2}{\lambda_{\min}(A) + \lambda_{\max}(A)},$$

and the corresponding optimal rate is

$$\rho_{\alpha^*} = \frac{\kappa(A) - 1}{\kappa(A) + 1}.$$

Proof. Since A is SPD, its eigenvalues are real and satisfy $\lambda_{\min}(A) > 0$. We have

$$\rho(I - \alpha A) = \max\{|1 - \alpha \lambda_{\min}(A)|, |1 - \alpha \lambda_{\max}(A)|\}.$$

The optimal α^* minimizes this maximum and is determined by the condition

$$\alpha^* \lambda_{\max}(A) - 1 = 1 - \alpha^* \lambda_{\min}(A).$$

The geometric interpretation is shown in Figure 4.

We now analyze the convergence rate of Jacobi and weighted Jacobi iterations.

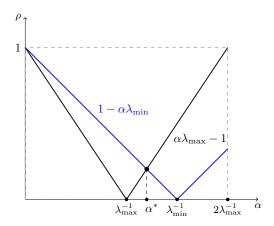


FIGURE 3. Convergence analysis of Richardson method

Theorem 4.2. The Jacobi method converges if and only if

$$2D - A = D - L - U$$

is an SPD matrix.

Proof. Since $B_J = D^{-1}$ is an SPD matrix, the characterization of its convergence follows from Theorem 3.7.

A matrix $A=(a_{ij})$ is called diagonally dominant if $a_{ii} \geq \sum_{j \neq i} |a_{ij}|$ for all i, and strictly diagonally dominant if it is diagonally dominant and there exists at least one i such that $a_{ii} > \sum_{j \neq i} |a_{ij}|$. One can easily prove that a symmetric, strictly diagonally dominant matrix is SPD.

Corollary 4.3. If A is strictly diagonally dominant, then the Jacobi iteration always converges.

Proof. Note that if A = D + L + U is strictly diagonally dominant, then so is

$$2\boldsymbol{D} - \boldsymbol{A} = \boldsymbol{D} - \boldsymbol{L} - \boldsymbol{U}.$$

The result then follows from the previous theorem.

To study the weighted Jacobi iteration, we introduce the scaled matrix

$$A_D = D^{-1/2} A D^{-1/2}.$$

By the following exercise, $\sigma(A_D) = \sigma(D^{-1}A)$. We therefore reduce the analysis of the weighted Jacobi method to the Richardson method.

Theorem 4.4. The weighted Jacobi method with $\mathbf{B} = \alpha \mathbf{D}^{-1}$ converges if and only if

$$0 < \alpha < \frac{2}{\lambda_{\max}(\boldsymbol{A}_D)}.$$

Furthermore, the optimal convergence rate is achieved when

$$\alpha^* = \frac{2}{\lambda_{\min}(\boldsymbol{A}_D) + \lambda_{\max}(\boldsymbol{A}_D)},$$

and the corresponding optimal convergence factor is

$$\rho_{\alpha^*} = \frac{\kappa(\boldsymbol{A}_D) - 1}{\kappa(\boldsymbol{A}_D) + 1},$$

where $\kappa(\mathbf{A}_D) = \lambda_{\max}(\mathbf{A}_D)/\lambda_{\min}(\mathbf{A}_D)$ is the condition number of \mathbf{A}_D .

The diagonal entries of the scaled matrix A_D are always equal to 1. An estimate of $\lambda_{\max}(A_D)$ can be obtained from the Gershgorin circle theorem. For example, if A is diagonally dominated, then $\lambda_{\max}(A_D) \leq 2$.

Theorem 4.5. The Gauss–Seidel method always converges. For the forward Gauss–Seidel method with

$$\boldsymbol{B} = (\boldsymbol{D} + \boldsymbol{L})^{-1},$$

the convergence rate satisfies

$$||I - BA||_A^2 = \frac{c_0}{1 + c_0},$$

where

$$c_0 = \sup_{\|{\bm u}\|_{\bm A} = 1} ({\bm D}^{-1}{\bm U}{\bm u}, \ {\bm U}{\bm u}) = \sup_{{\bm u} \neq 0} \frac{({\bm D}^{-1}{\bm U}{\bm u}, \ {\bm U}{\bm u})}{({\bm A}{\bm u}, \ {\bm u})}.$$

Proof. A direct computation shows that

$$B^{-\intercal} + B^{-1} - A = D.$$

which is SPD. Therefore, by Theorem 3.7, the Gauss–Seidel iteration always converges. Moreover.

$$\overline{\boldsymbol{B}}^{-1} = \boldsymbol{A} + \boldsymbol{L} \, \boldsymbol{D}^{-1} \boldsymbol{U}.$$

Hence,

$$\lambda_{\min}^{-1}(\overline{\boldsymbol{B}}\boldsymbol{A}) = \sup_{\boldsymbol{u} \neq 0} \frac{(\overline{\boldsymbol{B}}^{-1}\boldsymbol{u}, \, \boldsymbol{u})}{(\boldsymbol{A}\boldsymbol{u}, \, \boldsymbol{u})} = 1 + c_0.$$

The result then follows from Theorem 3.8 and the symmetry identity $U = L^{\mathsf{T}}$.

5. Exercise

Exercise 5.1. Derive the direct updated form of the Jacobi iteration and write its algorithmic description. Compare with G-S and list the main difference.

Exercise 5.2. Prove that if B is symmetric and $B^{-1} > \frac{1}{2}A$, then Φ_B converges with a rate

$$||I - BA||_A^2 \le 1 - \lambda_{\min}(B^{-1} + B^{\mathsf{T}^{-1}} - A)\lambda_{\min}(A)||B^{-1}||^{-2}.$$

In view of matrix-splitting method, the condition $B^{-1} > \frac{1}{2}A$ means the matrix $M = B^{-1}$ is dominant (more than half).

Exercise 5.3. Consider k-steps of Richardson methods with different parameters $\alpha_1, \ldots, \alpha_k$. Then the error equation is

$$e_k = (I - \alpha_k A) \cdots (I - \alpha_1 A) e_0.$$

Consider the optimization problem of choosing k-parameters:

(15)
$$\min_{\alpha_i \in \mathbb{R}, i=1,\dots,k} \left\{ \max_{\lambda \in [\lambda_{\min}(A), \lambda_{\max}(A)]} |(I - \alpha_k \lambda) \cdots (I - \alpha_1 \lambda)| \right\}.$$

Find the solution of (15) and derive the rate. This trick is known as Chebyshev acceleration.

Exercise 5.4. Let $A_{n \times r}$ and $B_{r \times n}$ be two matrices. Prove

$$\sigma(AB)\backslash\{0\} = \sigma(BA)\backslash\{0\}.$$

Exercise 5.5. Prove that the convergence rate of Richardson, weighted Jacobi method, and Gauss-Seidel method for the 5-point stencil finite difference method of the Poisson equation on a uniform mesh with size h, is like

$$\rho \le 1 - Ch^2.$$

Thus when $h \to 0$, we will observe slow convergence of those classical iterative methods. Hint: For G-S, use the Hölder inequality of the 2-norm of a matrix M:

$$||M||^2 \le ||M||_{\infty} ||M||_1.$$

REFERENCES

- [1] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics, 2007.
- [2] R. S. Varga. Matrix iterative analysis. Prentice-Hall, Englewood Cliffs, N. J., 1962.
- [3] J. Xia, S. Chandrasekaran, M. Gu, and X. Li. Superfast multifrontal method for large structured linear systems of equations. *SIAM Journal on Matrix Analysis and Applications*, 31(3):1382–1411, 2009.
- [4] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev., 34:581-613, 1992.
- [5] J. Xu. An introduction to multilevel methods. 1997. published by Oxford University Press, New York.
- [6] J. Xu. Multilevel Finite Element Methods. Lecutre Notes, 2004.