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The finite volume method (FVM) is a discretization technique for partial differential
equations, especially those that arise from physical conservation laws. FVM uses a volume
integral formulation of the problem with a finite partitioning set of volumes to discretize
the equations. FVM is in common use for discretizing computational fluid dynamics equa-
tions. Here we consider elliptic equations.

1. GENERAL FORM OF FINITE VOLUME METHODS

We consider finite volume methods for solving diffusion type elliptic equation

(1) −∇ · (K∇u) = f in Ω,

with suitable Dirichlet or Neumann boundary conditions. Here Ω ⊂ Rd is a polyhedral
domain (d ≥ 2), the diffusion coefficient K(x) is a d× d symmetric matrix function that
is uniformly positive definite on Ω with components in L∞(Ω), and f ∈ L2(Ω). We have
discussed finite element methods based on the discretization of the weak formulation and
finite difference methods based on the classic formulation.

We shall now present finite volume methods based on the following balance equation

(2) −
∫
∂b

(K∇u) · n ds =

∫
b

fdx, ∀ b ⊂ Ω,

where n denotes the unit outwards normal vector of ∂b. We first recall how the equation
(1) is derived.

When the equilibrium is reached, numerous physical models are based on conservation
and constitutive laws.
The balance equation for the conservation law:

(3)
∫
∂b

q · n dS =

∫
b

f dx, for any domain b ⊂ Ω,

where q denoting the flux density and n the unit outward normal field of ∂b.
The constitutive equation:

(4) q = −K∇u.
If u denotes the: chemical concentration, temperature, electrostatic potential, or pressure,
then equation (4) is: Fick’s law of diffusion, Fourier’s law of heat conduction, Ohm’s law
of electrical conduction, or Darcy’s law of flow in the porous medium, respectively.

Suppose u and q are smooth enough. In view of Gauss theorem, (3) can be written as

(5)
∫
b

∇ · q dx =

∫
b

f dx, ∀ b ⊂ Ω.

Since b is arbitrary, letting b→ {x}, it implies

(6) ∇ · q(x) = f(x) ∀x ∈ Ω.

Substituting q = −K(x)∇u into (6), we then obtain the classic formulation (1).
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Finite volume methods are discretizations of the balance equation (2) so that the con-
servation holds in the discrete level. The discretization consists of three approximations:

(1) approximate the function u by uh in a N -dimensional space V;
(2) approximate “arbitrary domain b ⊂ Ω” by a finite subset B = {bi, i = 1 : M};
(3) approximate boundary flux (K∇u) · n on ∂bi by a discrete one (K∇huh) · n.

We then end with a method: to find uh ∈ V such that:

(7) −
∫
∂bi

(K∇huh) · n dS =

∫
bi

f dx, ∀ bi ⊂ Ω, i = 1 : M.

We call any method in the form (7) finite volume methods (FVMs).
Since finite volume methods discretize the balance equation (2) directly, an obvious

virtue of finite volume methods is the conservation property comparing with finite element
methods based on the weak formulation. This property can be fundamental for the simula-
tion of many physical models, e.g., in oil recovery simulations and in computational fluid
dynamics in general.

On the other hand, the function space and the control volume can be constructed based
on general unstructured triangulations for complex geometry domains. The boundary con-
dition can be easily built into the function space or the variational form. Thus FVM is
more flexible than standard finite difference methods which mainly defined on the struc-
tured grids of simple domains.

2. CELL-CENTERED FINITE VOLUME METHODS

Let T be a triangular or Cartesian grid of Ω. We choose the finite dimensional space
V = {v ∈ L2(Ω) : v|τ is constant for all τ ∈ T }. Then dimV = NT , the number of
elements of T . We also choose B = T . See Figure 2(a). To complete the discretization,
we need to assign the boundary flux of each element.

This can be done in a finite difference fashion. For example, for an interior side e (an
edge in 2-D and a face in 3-D) shared by two elements τ1 and τ2, we can define

(8) ∇huh · ne :=
uh|τ2 − uh|τ1
cτ2 − cτ1

,

where the normal vector ne is the outward unit normal vector of e in τ1, i.e. pointing
from τ1 to τ2 and cτi ∈ τi, i = 1, 2 are points in each element such that the line segment
connecting cτ2 and cτ1 is orthogonal to the side e. By the symmetry, for rectangles or
cubes cτ is the mass center of τ . For simplex, cτ should be the circumcenters which
imposes restriction on the triangulation. When the mesh is a uniform rectangular grid, it
is reduced to the cell centered finite difference method; see Section 4 of Chapter: Finite
Difference Methods.

The error analysis can be carried out in the finite difference fashion by considering the
truncation error and stability of the resulting system. Theory and computation along this
approach is summarized in the book [8].

Another approach to discretize the boundary flux is through mixed finite element meth-
ods. The gradient operator is understood as ∇ : L2 → H−1. Optimal error estimate can
be easily obtained by using that of mixed finite element methods [13].

Since the control volume is the element (also called cell) of the mesh and the unknown
is associated to each element/cell, it is often called cell-centered finite volume methods and
the difference scheme (8) is also known as cell centered finite difference methods.

http://www.math.uci.edu/~chenlong/226/FDM.pdf
http://www.math.uci.edu/~chenlong/226/FDM.pdf
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2. Finite volume (FV) methods for nonlinear conservation laws
In the finite volume method, the computational domain, Ω ⊂ Rd, is first tessellated into a
collection of non overlapping control volumes that completely cover the domain. Notationally,
let T denote a tessellation of the domain Ω with control volumes T ∈ T such that ∪T∈T T = Ω.
Let hT denote a length scale associated with each control volume T , e.g. hT ≡ diam(T). For
two distinct control volumes Ti and Tj in T , the intersection is either an oriented edge (2-D)
or face (3-D) eij with oriented normal νij or else a set of measure at most d−2. In each control
volume, an integral conservation law statement is then imposed.

Definition 2.1 (Integral conservation law) An integral conservation law asserts that the
rate of change of the total amount of a substance with density u in a fixed control volume T is
equal to the total flux of the substance through the boundary ∂T

d

dt

∫

T
u dx +

∫

∂T
f(u) · dν = 0 . (15)

This integral conservation law statement is readily obtained upon spatial integration of the
divergence equation (1a) in the region T and application of the divergence theorem. The
choice of control volume tessellation is flexible in the finite volume method. For example, Fig.

control volume

storage location

a. Cell-centered b. Vertex-centered

Figure 1. Control volume variants used in the finite volume method:
(a) cell-centered and (b) vertex-centered control volume tessellation.

1 depicts a 2-D triangle complex and two typical control volume tessellations (among many
others) used in the finite volume method. In the cell-centered finite volume method shown in
Fig. 1a, the triangles themselves serve as control volumes with solution unknowns (degrees of
freedom) stored on a per triangle basis. In the vertex-centered finite volume method shown in
Fig. 1b, control volumes are formed as a geometric dual to the triangle complex and solution
unknowns stored on a per triangulation vertex basis.
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(a) Control volumes of the cell-centered FVM
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(b) Control volumes of the vertex-centered FVM

FIGURE 1. Meshes and control volumes of two FVMs. The unknowns
are associated to black nodes.

3. VERTEX-CENTERED FINITE VOLUME METHODS

We now discuss another popular choice of V and B. To simplify the notation, we con-
sider two dimensional triangular grids and homogenous Dirichlet boundary condition. We
refer to [15] for the general treatment in high dimensional simplicial grid and [14] for
rectangle grids.

Let Ω ⊂ R2 be a polygon and let T be a triangular grid of Ω. Denoted by VT be the
linear finite element spaces of H1

0 (Ω) based on T :

VT = {v ∈ H1
0 (Ω) : v|τ ∈ P1(τ), ∀ τ ∈ T },

whereP1(τ) is the linear polynomial space on τ . We shall choose V = VT . The dimension
N is the number of interior vertices of T .

The control volume will be given by another mesh B̄ = {bi, i = 1, · · · ,M} satisfying

Ω̄ = ∪Mi=1bi, and
◦
bi ∩

◦
bj= ∅, i 6= j,

and to reflect to the Dirichlet boundary condition, we set

B = {bi ∈ B̄, bi ⊂
◦
Ω}.

The element bi of B is not necessary to be polygons. But for practical reasons, bi are
chosen as polygons such that the boundary integral is easy to evaluate.

Given a triangulation T , one construction of B̄ is given as follows: for each triangle
τ ∈ T , select a point cτ ∈ τ . The point cτ can coincides with middle points of edges,
but not the vertices of triangles (to avoid the degeneracy of the control volume). In each
triangle, we connect cτ to three middle points on the boundary edges. This will divide
each triangle in T into three regions. For each vertex xi of T , we collect all regions
containing this vertex and define it as bi. In Figure 2 we only draw the control volume
for interior vertices since the Dirichlet boundary condition is build into the space VT and
the unknown is only associated to interior vertices. Obviously for Neumann boundary
condition, we should use B̄.

There are three common choices of cτ :
• Type A: cτ is the barycenter of τ .
• Type B: cτ is the middle point of the longest edge.
• Type C: cτ is the circumcenter of τ .

Type A is preferable for triangulations composed by equilateral triangles. In this case τ
will be divided into three parts with equal area. This symmetric property is important to
get optimal rate of convergence in L2 norm. Type B is better for right triangles, and can
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be easily obtained by the longest edge bisection method. Type C is suitable for Delaunay
triangulations. The edges of the control volumes will be orthogonal to the intersected edges
of triangles, and if the grid T is a Delaunay triangulation, B will be a Voronoi diagram.

1

(a) Type A

1

(b) Type B (c) Type C

FIGURE 2. Three types of grids and dual grids. The gray areas are the
control volumes of interior nodes. TypeA: The point cτ is the barycenter
of τ . TypeB: The points cτ is the middle point of the longest edge. Type
C: The point cτ is the circumcenter of τ .

Since we associate control volumes and unknowns to vertices, it s called vertex-centered
finite volume methods. It is also known as box method [1, 9] (since the control volume
is called box in these work), finite volume element methods [3, 2, 10] (to emphasis the
approximation of u is from finite element space), and generalized finite difference methods
[12, 11]. High order finite volume methods can be found in [5, 11].

4. PETROV-GALERKIN FORMULATION

We shall follow Bank and Rose [1] to formulate the vertex-centered linear finite volume
method as a Petrov-Galerkin method by choosing different trial space and test space for an
appropriate bilinear form.

We first introduce a function space for the dual mesh. Let B be the dual mesh of a
triangulation T constructed in the previous subsection. We define a piecewise constant
function space on B by:

(9) VB = {v ∈ L2(Ω) : v|bi = constant , ∀ bi ∈ B}.
The set of interior sides of the mesh B is denoted by E(B). For each e ∈ E(B), we shall
fix a unit normal direction ne of e. That is ne is independent of the element containing
e. Suppose e is shared by two control volumes bi and bj . Without loss of generality,
we suppose the outward normal direction of e in bi coincides with ne. For any function
v ∈ VB, the jump of v across e is denoted by [v] = v|bi − v|bj .

We define a bilinear form on VT and VB

(10) ā(u, v) = −
∑

e∈E(B)

∫
e

(K∇u) · ne[v]dS, ∀ u ∈ VT , v ∈ VB,

and formulate the linear finite volume method as: find ū ∈ VT such that

(11) ā(ū, v) = (f, v) for all v ∈ VB.

Remark 4.1. For Neumann boundary condition, we shall choose

VT = {v ∈ H1(Ω) : v|τ ∈ P1(τ), ∀ τ ∈ T }, and

VB = {v ∈ L2(Ω) : v|bi = constant, ∀ bi ∈ B̄}.
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For e ∈ ∂bi ∩ ∂Ω, the flux (K∇u) · ne will be given by the boundary condition and can
be moved to the right hand side. All algorithms and analysis in this notes can be applied to
Neumann boundary condition in a straightforward way. �

Since the trial space VT and the test space VB are different, the weak formulation (11)
is known as Petrov-Galerkin method.

5. RELATION TO FINITE ELEMENT METHODS

We shall recall the finite element method and show the close relation between them. Let
a(u, v) be the bilinear form

(12) a(u, v) =

∫
Ω

(K∇u) · ∇v dx.

The linear finite element method is: find uL ∈ VT such that

(13) a(uL, v) = (f, v) for all v ∈ VT .
For FEM, the trial space and the test space are the same, which is known as the Galerkin
method.

To see the close relation, we now formulate the corresponding matrix equations for
(11) and (13). Let N (T ) be the set of interior nodes of T and N = #N (T ). Then
dimVB = dimVT = N . A basis of VB can be chosen as the characteristic function of
each bi, i = 1, · · · , N :

ψi = χbi(x) =

{
1 x ∈ bi,
0 otherwise .

The nodal basis of linear finite element space VT is the standard hat function:

φi ∈ VT , φi(xj) = δij , ∀ xj ∈ N (T ), i = 1, · · · , N.

Let ū =
∑N
j=1 Ūjφj . Choosing v = ψi, i = 1, · · · , N in (11), we obtain a linear algebraic

equation

(14) ĀŪ = F̄ ,

with

Āij = −
∫
∂bi

(K∇φj) · n, F̄i =

∫
bi

fdx.

Let uL =
∑N
j=1 Ujφj . Choosing v = φi, i = 1, · · · , N in (13), we obtain another linear

algebraic equation

(15) AU = F,

with

Aij =

∫
Ω

(K∇φj) · ∇φi, Fi =

∫
Ω

fφidx.

We shall prove that when K(x) is piecewise constant on each triangle, then A = Ā;
See [1, 9, 15]. The solution vectors are point values for uL and ū at vertices. The only
difference is the different way to compute the right hand side. For FEM, Fi =

∫
ωi
fφi dx,

is a weighted average over the star of a vertex. For FVM, F̄i =
∫
bi
f dx is the average over

the control volume bi. When we choose type A control volume, i.e. choosing cτ to be the
barycenter of τ , F̄i can be thought as an approximation of Fi using mass lumping. This
modification enables the solution of linear FVM to satisfy the conservation property. It is
interesting to note that on uniform grids, three methods (FDM, FEM and FVM) result the
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same matrix (up to a scaling). The right hand side are chosen from very different perspec-
tive. And amazingly for all three choices of right-hand side, the resulting approximation
converges to the same solution with the same order.

Lemma 5.1. Given a polyhedron Ω with L-sides in Rn, let |Fi| denote the (n−1)-measure
of the face Fi and ni the unit outward normal of the i-th side for i = 1, 2, . . . , L. Then

(16)
L∑
i=1

|Fi|ni = 0.

Proof. Let {ek} be the canonical basis of Rn. Then by divergence theorem
L∑
i=1

|Fi|ek · ni =

∫
∂Ω

ek · nds =

∫
Ω

div ek dx = 0.

�

The following theorem is critical which says FVM and FEM have the stiffness matrix.
Let us introduce an isomorphism between linear spaces G : VB → VT by mapping ψi →
φi, 1 ≤ i ≤ N . Then for any u =

∑N
i=1 uiψi ∈ VB, Gu =

∑N
i=1 uiφi ∈ VT . Note that

u and Gu share the same vector representation U = (u1, · · · , uN )T . We also use a simple
notation ū to denote Gu.

Theorem 5.2. Assume K(x) is piecewise constant on each τ ∈ T and ∂bi ∩ ∂τ consists
of middle points of edges, then

a(u, v) = ā(u, v̄), ∀u, v ∈ VT .

Proof. Since we assume K(x) is piecewise constant, we need only show the local stiffness
for Poisson equation on one triangle coincides. That reduces to prove

ā(λi, Gλj) = a(λi, λj).

To be specific, let us take λ1, λ2 as an example.
include a figure here.
Since∇λ1 is a constant over the triangle τ , we can pull it out the integral and apply Lemma
16 twice to get

−
∫
e1∪e2

∇λ1 · n ds = −∇λ1 · (|e1|ne1 + |e2|ne2) = ∇λ1 ·
1

2
(|l1|n1 + |l3|n3)

= −∇λ1 ·
1

2
|l2|n2 =

∫
τ

∇λ1 · ∇λ2.

In the last step, we have used the formulae ∇λi; see Section 3.1.3 of Chapter: Program-
ming of Finite Element Methods in MATLAB. �

6. ERROR ANALYSIS

The error analysis of vertex centered linear FVM (11) relies on the close relation be-
tween linear finite element method and the linear finite volume method. From previous
section, linear FVM approximation ū can be thought as a perturbation of the FEM approx-
imation uL. First order optimal convergence rate in the energy norm can be obtained using
this relation.

Note that the right hand sides may be quite different for type B dual mesh. For example,
let f = 1 and consider the control volume in Figure 2(b). Then Fi = |ωi|/3 while F̄i =

http://www.math.uci.edu/~chenlong/226/Ch3FEMCode.pdf
http://www.math.uci.edu/~chenlong/226/Ch3FEMCode.pdf
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|ωi|/4. Nerveless optimal first order convergence in H1 norm can be still derived by
comparing them in H−1 norm [9].

Furthermore if we choose type A dual mesh, then optimal second order convergence in
L2-norm can be also derived [9, 4, 6, 7]. Note that for general choice of control volumes,
finite volume approximation may not lead to optimal L2-norm convergent rate. See [10]
for such an example on type B dual mesh. Optimal L∞ norm estimate can be also obtained
by treating it as a perturbation of finite element methods; See [6, 7]. We are not going to
discuss L∞ error estimate.

Theorem 6.1. Assume K(x) is piecewise constant on each τ ∈ T , the solution u of the
diffusion equation is in the space H1

0 (Ω) ∩ H2(Ω) and the mesh is quasi-uniform with
mesh size h, then the finite volume approximation uh has optimal approximation order

(17) ‖u− uh‖1,Ω . h(‖u‖2,Ω + ‖f‖).

Proof. For any f ∈ L2(Ω), we define Πhf ∈ V′T as

〈Πhf, vh〉 = (f,Gvh), for all vh ∈ VT .

and Qhf ∈ V′T as
〈Qhf, vh〉 = (f, vh), for all vh ∈ VT .

Following the notation of Hackbusch [9], we denoted by uGh as the standard Galerkin (fi-
nite element) approximation and uBh is the box (finite volume) approximation. The equiv-
alence of the stiffness matrices means

Lhu
G
h = Qhf, Lhu

B
h = Πhf.

Therefore by the stability of L−1
h , we have

(18) |uGh − uBh |1 = sup
vh∈VT

〈Qhf −Πhf, vh〉
|vh|1

.

By the definition
〈Qhf −Πhf, vh〉 = (f, vh −Gvh).

Denote the support the hat basis function at xi as ωi. Note that bi ⊂ ωi and the operator
I −G preserve constant function in the patch ωi and thus

(f, vh −Gvh)bi ≤ ‖f‖bi‖vh −Gvh‖ωi
≤ Ch‖f‖bi |vh|1,ωi

.

Summing up and using Cauchy Schwarz inequality, we get the first order convergence

|uGh − uBh |1 ≤ Ch‖f‖.
The estimate (17) the follows from the triangle inequality and the estimate of the finite
element method. �

When the dual mesh is of type A, we have the superconvergence between |uGh − uBh |1
as the perturbation is second order. Then Poincaré inequality implies the optimal order
convergence in L2-norm.

Theorem 6.2. Assume K(x) is piecewise constant on each τ ∈ T , and the solution u
of the diffusion equation is in the space H1

0 (Ω) ∩H2(Ω). The primary mesh Th is quasi-
uniform with mesh size h and the dual mesh consists of type A control volumes. Let uGh
as the standard Galerkin (linear finite element) approximation and uBh is the linear finite
volume approximation, then

(19) |uGh − uBh |1,Ω . h2(‖u‖2,Ω + ‖f‖1,Th),
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where ‖f‖1,Th =
(∑

τ∈Th ‖f‖
2
1,τ

)1/2
. Consequently, when the H2-regularity holds for

(1), we have optimal order L2-error estimate

(20) ‖u− uBh ‖ . h2(‖u‖2,Ω + ‖f‖1,Th).

Proof. For type A control volume, inside one triangle, |bi ∩ τ | = 1
3 |τ | and thus for a linear

polynomial vh,
∫
τ
vh dx =

∫
τ
Gvh dx, i.e., (1, vh−Gvh)τ = 0. Then the data perturbation

is
(f, vh −Gvh) = (f − fτ , vh −Gvh) . h2‖f‖1,Th |vh|1,Ω.

Then estimate (19) is from (18) and (20) is from the Poincaré inequality and L2 error
estimate of uGh for which H2-regularity of elliptic equation (1) is required. �
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[14] E. Süli. Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes. SIAM J.
Numer. Anal., 28(5):1419–1430, 1991. 3

[15] J. Xu and Q. Zou. Analysis of linear and quadratic simplicial finite volume methods for elliptic equations.
Numer. Math., 111(3):469–492, 2009. 3, 5


	1. General form of finite volume methods
	2. Cell-centered finite volume methods
	3. Vertex-centered finite volume methods
	4. Petrov-Galerkin formulation
	5. Relation to Finite Element Methods
	6. Error analysis
	References

