HW2 OF MATH 226 B

LONG CHEN

Due date: Feb 4
(1) Construct an example to show that if $\Delta t>h^{2} / 2$, then

$$
\left\|\boldsymbol{U}^{n}\right\|_{\infty}>\left\|\boldsymbol{U}^{0}\right\|_{\infty}
$$

(2) Apply backward Euler to the example you constructed in (1) to show numerically the scheme is stable.
(3) Prove the maximum norm stability of Crack-Nicolson method. What is the weakest assumption on λ you need? Is it necessary?
(4) (The θ method). For $\theta \in[0,1]$, we use the scheme

$$
\begin{equation*}
\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}=(1-\theta) \frac{U_{i-1}^{n}+U_{i+1}^{n}-2 U_{i}^{n}}{h^{2}}+\theta \frac{U_{i-1}^{n+1}+U_{i+1}^{n+1}-2 U_{i}^{n+1}}{h^{2}} . \tag{1}
\end{equation*}
$$

Give a complete error analysis (consistency, stability, and convergence) of the θ method.

