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1. INTRODUCTION

We consider multigrid methods for solving the linear algebraic equation

(1) Au = f

on a finite dimensional Hilbert space V with a symmetric positive definite (SPD) operator
A. Multigrid methods are efficient iterative methods using a hierarchy of nested spaces

V0 ⊂ V1 . . . ⊂ VJ = V,
and is usually defined and implemented recursively; see Introduction to Multigrid Methods.

In this chapter, we provide convergence proofs of multigrid methods utilizing the recur-
sive structure. We shall present proofs mainly based on the smoothing property and the
approximation property and refer to Convergence Theories of Multigrid Methods based on
the X-Z Identity for the approach based on subspace correction methods [10, 12].

1.1. Multigrid Methods. For completeness, we present the following recursive subrou-
tine of a multigrid method below.

1 function e = MG(r,J,m1,m2)

2 % r: residual; J: level; mu: smoothing steps

3 if J == 1 % coarsest level: exact solve

4 e = A{J}\r;

5 return

6 end

7 e = 0;

8 % Presmoothing

9 for i = 1:m1

10 e = e + R1(r-A{J}*e);

11 end

12 % Restriction

13 rc = Res(r-A{J}*e);

14 % Coarse grid correction

15 ec = MG(rc,J-1,m1,m2);

16 if W-cycle

17 ec = ec + MG(rc-A{J}*ec,J-1,m1,m2); % W-cycle

18 end

19 % Prolongation

20 e = e + Pro(ec);

21 % Postsmoothing

22 for i = 1:m2

23 e = e + R2(r-A{J}*e);

24 end

The function e = MG(r, ...) suggests that the mg cycle is used to solve the residual
equation Ae = r and will be used as an iterator in the residual-correction form of the
iterative method, i.e.

uk+1 = uk +MG(f −Auk).

1.2. Basic Identities. Denoted by B as one multigrid iteration. Our goal is to show the
error operator E = I −BA is a contraction, i.e.,

‖E‖X ≤ δ < 1

in a suitable norm ‖ · ‖X and ideally the contraction rate δ ∈ (0, 1) is independent of the
size of the problem.

http://www.math.uci.edu/~chenlong/226/MGintroduction.pdf
http://www.math.uci.edu/~chenlong/226/MGproofshort.pdf
http://www.math.uci.edu/~chenlong/226/MGproofshort.pdf
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To define B, we first introduce the smoother R and the smoothing operator S = I −
RA. We then introduce necessary notation to describe the coarse grid correction. Due
to the recursion, in most places we consider two consecutive levels only. Following the
convention of finite element methods, we use subscript H to denote quantities associated
to the coarse grid and skip the subscript for fine grid quantities. Let VH ⊂ V be a coarse
space and let QH : V → VH be the projection in the default inner product (·, ·) of V.
The operator Qᵀ

H is the natural inclusion IH : VH ↪→ V and thus will be skipped in most
places. Denoted by AH = Qᵀ

HAQH = IHAI
ᵀ
H as the restriction of A (treating A as

a bilinear mapping) on the coarse space. In the implementation, the prolongation matrix
is the matrix representation of IH relative to certain bases and the transpose IᵀH is the
restriction matrix.

Using these notation, we can define B for the two grid method as the operator satisfies

(2) I −BA = (I −R2A)m2(I −Qᵀ
HA
−1
H QHA)(I −R1A)m1 ,

which is derived from the way how the error is reduced in each step. The pre-smoothing
operator R1 could be different with the post-smoothing operator R2. So are the smoothing
steps m1 and m2. When R2 = Rᵀ

1 and m1 = m2, which is recommended in practice, B
is symmetric. A symmetric multigrid cycle B is advantageous since it can be also used as
a preconditioner for Krylov space methods.

Let PH : V→ VH be the projection with respect to the inner product (·, ·)A := (A·, ·)
introduced by the SPD operator A. Then by definition AHPH = QHA. Using these
notation, the error operator of the two grid method can be simply written as

(3) ETG = Sm2
2 (I − PH)Sm1

1 = Sm2
2 CHS

m1
1 .

A more precise formulation of the coarse grid correction operator CH is CH = I − PH =
I − IHPH but the inclusion IH is usually suppressed.

The V-cycle method is obtained by replacing the exact coarse-grid solver A−1H in the
two-grid method (2) by an approximated one BH , i.e., the operator B for the V-cycle
method satisfies

I −BA = Sm2
2 (I −BHQHA)Sm1

1 = Sm2
2 DHS

m1
1 .

Starting from B0 = A−10 , the above recursion will define Bk for k = 1, . . . , J . Namely,
the operator Bk is defined recursively as

B0 = A−10 , Ik −BkAk = Sm2

k,2 (I −Bk−1Qk−1Ak)Sm1

k,1 , for k = 1, . . . , J.

Exercise 1.1. Prove Bk is SPD when Sk,1 = Sk,2 and m1 = m2, for k = 1, 2, · · · , J , by
induction. �

The difference between exact coarse grid solver CH and inexact one DH is related by

DH − CH = (I −BHAH)PH = EHPH

Using this relation, we can relate the error operator for the V-cycle and the two-grid method
as follows

(4) E = ETG + Sm2
2 EHPHS

m1
1 .

The W-cycle method is obtained by applying the approximated coarse grid solver twice,
i.e., the operator B for the W-cycle method satisfies

I −BA = Sm2
2 (I −BHQHA)2Sm1

1 .
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Similarly the relation between the two-grid method and the W-cycle is

(5) E = ETG + Sm2
2 E2

HPHS
m1
1 .

Exercise 1.2. Derive identity (5).

1.3. Smoothing and Approximation Properties. We shall present convergence proofs
based on the smoothing and approximation property introduced by Hackbusch [8]. We
follow Bornemann and Krause [3] to introduce two Sobolev spaces X− and X+. The
space X+ has better smoothness than X−. Throughout this notes, η : R+ → R+ is a
function of smoothing steps m satisfying limm→∞ η(m) = 0 and α > 0 is a positive
constant relating the scaling of norms in X− and X+. The space V is usually defined on a
mesh Th with a mesh size parameter h.

————————————————————————————————————

(Sm) Smoothing property: ‖Smu‖X+ ≤ η(m)h−α‖u‖X− for all u ∈ V.

————————————————————————————————————

When u is of high frequency, i.e., h−α‖u‖X− . ‖u‖X+ , (see Section 3 for a precise
definition of high frequency), the smoothing property implies that Sm restricted to the high
frequency subspace is an effective contraction operator.

————————————————————————————————————

(AP ) Approximation property: ‖u− PHu‖X− . h
α‖u‖X+

for all u ∈ V.

————————————————————————————————————

Remark 1.3. The scaling hα used here is convenient to conceive for the model problem:
linear finite element method for Poisson equation. For example, set X+ = H1

0 , X− = L2,
and α = 1. The smoothing property can be thought of as a refined version of inverse
inequality and the approximation property is L2-error estimate of the Galerkin projection.

For more general and abstract elliptic operator or SPD matrix A, the scaling hα can be
replaced by the inverse of ρ(A) = λmax(A) or the scaling can be implicitly included in the
definition of the norm ‖ · ‖X− , e.g. the norm induced by the smoother ‖ · ‖R−1 . �

Using the identity (I − PH)2 = (I − PH), the approximation property implies

‖u− PHu‖X− = ‖(I − PH)((I − PH)u)‖X− . h
α‖u− PHu‖X+ .

That is (I −PH)u is a high frequency. Therefore it can be effectively smoothed out by the
smoothing operator Sm using the smoothing property. Two-grid convergence proof is a
straightforward application of assumptions (AP ) and (Sm). W -cycle convergence, when
the smoothing steps m is sufficiently large, can be derived from the two-grid convergence
by recursion arguments.

For V -cycle, we write a symmetric V-cycle operator as

I −BA = Sm(I − PH)Sm + Sm(I −BHAH)PHS
m.

The space V can be split as V = VH ⊕A Vf with Vf = (I − PH)V. The high frequency
space Vf will be be taken care of by the smoother. Note that PHVf = PH(I−PH)V = 0.
So the range of PH will exclude the high frequency and thus contains low frequency only
which will be taken care by the contraction operator EH = I−BHAH in the coarse level.
In the following sections we will make this heuristic arguments more rigorous and present
proofs using the symmetry structure of the V -cycle error operator.
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2. CONVERGENCE OF TWO-GRID METHOD AND W-CYCLE METHOD

We shall prove the convergence of the two-grid method using smoothing and approxi-
mation property and then use the recursive arguments to prove the convergence of W-cycle
provided the smoothing steps are sufficiently large.

2.1. Convergence of Two-Grid Method.

Theorem 2.1. Assume the symmetric smoother R satisfies the smoothing property (Sm).
Assume the approximation property (AP ) holds. Then the two grid method with one-side
smoothing converges with sufficiently many smoothing steps m. More precisely:

• ‖(I − PH)Sm‖X− ≤ Cη(m).

• ‖Sm(I − PH)‖X+ ≤ Cη(m).

Proof. It is a straight forward application of the assumptions. For every u ∈ Vh,

‖(I − PH)Smu‖X− . h
α‖Smu‖X+

≤ Cη(m)‖u‖X− ,

‖Sm(I − PH)u‖X+ . η(m)h−α‖(I − PH)u‖X− ≤ Cη(m)‖u‖X+ .

�

Remark 2.2. To get convergence of two-grid methods with both pre- and post-smoothing
steps, we need either ‖Sm‖X− ≤ C or ‖Sm‖X+

≤ C which is usually easy to verify. �

The proof is traversal between different scales. Approximation property moves up and
smoothing property is going down; see Fig 1. The scaling will be canceled out in one up-
down or down-up cycle and a factor Cη(m) is obtained which can be uniformly bounded
below one provided m is sufficiently large since η(m)→ 0 as m→∞.

FIGURE 1. Convergence of Two-Grid Method.

2.2. Two-Grid Convergence Implies W-cycle Convergence. We consider the W-cycle
method with pre-smoothing only i.e., m1 = m,m2 = 0.

Theorem 2.3. Assume the two-grid method converges with ‖ETG‖ ≤ η(m) < 1/2 and
the smoothing operator is stable in that norm, i.e., ‖Sm‖ ≤ C. Then for m large enough,
the W-cycle convergences with rate 2η(m)

(6) ‖E‖ ≤ 2η(m).

Proof. We prove (6) by induction. For the coarsest level, the equation is solved exactly i.e.
‖E0‖ = 0. Assume ‖EH‖ ≤ 2η(m). We recall the relation

E = ETG + E2
HPHS

m = ETG + E2
H(Sm − ETG).

In the second step, we write PHSm = (PH−I)Sm+Sm = −ETG +Sm. By the triangle
inequality

‖E‖ ≤ ‖ETG‖+ ‖EH‖2
(
‖Sm‖+ ‖ETG‖

)
.
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Using the induction assumption and the two-grid convergence estimate, we obtain

‖E‖ ≤ η(m) + [2η(m)]
2

[C + η(m)] ≤ η(m)
[
1 + 4η2(m)(C + η(m))

]
≤ 2η(m),

for m large enough such that 4η2(m)(1 + η(m)) ≤ 1 which is possible since η(m) → 0
as m→∞. �

2.3. Typical Choices of Spaces. What are possible choices of X− and X+? Take finite
element discretization of the Poisson equation as an example. For finite element functions,
u ∈ H1+α for α ∈ [0, 1/2). Following [2], we introduce norms using powers of A:

‖u‖2As = (Asu, u) = ‖As/2u‖2.

Then ‖u‖A = ‖∇u‖ and ‖u‖A2 = ‖Au‖. One can show the equivalence between the
As-norm and the Sobolev norm Hs for s ∈ (−3/2, 3/2) [11].

Using the operator dependent norm, examples of the spaces are listed below:

• [X−, X+] = [‖ · ‖, ‖ · ‖A2 ].

• [X−, X+] = [‖ · ‖A, ‖ · ‖A1+α ].

• [X−, X+] = [‖ · ‖, ‖ · ‖A].

Smoothing properties in the above examples will be verified in Section 3. Approxima-
tion property will be proved in Section 4 for finite element approximation of the Poisson
equation. A clever choice by Bank and Douglas [1] using a fraction norm involving both
smoother R and A will be discussed in Section 7.

2.4. Pro and Con of the Smoothing and Approximation Framework. In the above
convergence proof of two-grid and W-cycle methods, the SPD operator A does not play
an important role. Indeed this framework works for non-SPD operators provided smooth-
ing and approximation properties can be verified in appropriate spaces and norms. The
application domain of this approach is thus quite large.

The drawback of this framework is the annoying assumption: sufficiently large smooth-
ing steps. In practice, for the SPD problem considered here, a V-cycle with only one
smoothing converges uniformly. A sharper proof, which makes use of the structure of A,
is needed to fill this gap.

In addition, when verifying the approximation property, strong regularity assumption is
usually needed. In practice, multigrid methods work well with less regularity. Although it
will deteriorate a little bit, the convergence rate is still uniform to the size of the problem.

3. SMOOTHING PROPERTY OF SYMMETRIC SMOOTHERS

We shall discuss smoothing property of a symmetric smootherR in this section. We first
give a definition of high frequency and then introduce two assumptions on the smootherR.
The first one restricts the spectrum of S in (0, 1] and the second one is another formulation
of smoothing property for high frequency. Using the ordering of symmetric operators, they
can be simply written as

A ≤ R−1 ≤ csρAI.

We then use the spectral analysis of symmetric operators to derive smoothing properties in
various norms.
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3.1. High Frequency. We define the high frequency as follows. Let ρA = maxλ∈σ(A) |λ|
be the spectral radius of A and define a scaled norm ‖u‖ρ =

√
ρA(u, u). For every u ∈ V,

by definition,

(7) ‖u‖2A = (Au, u) ≤ ρA(u, u) = ‖u‖2ρ.

In FEM setting, (7) is known as the inverse inequality |v|1 . h−1‖v‖ with ρA = Ch−2.
An element v ∈ V is called high frequency if there exists a universal constant such that

(8) ‖u‖ρ ≤ C‖u‖A.

Consider the decomposition of u using the eigen-vector bases of A. Inequality (8) implies
u can be expanded by eigen-vectors of high frequency. The constant C in (8) is introduced
to include not only the highest frequency but a range of frequencies comparable to the
highest one. In FEM setting, that is h−1‖v‖ . |v|1, i.e., the function oscillates with
frequency 1/h. In other words, for high frequency functions, the inverse of the inverse
inequality holds.

For high frequency v, (Sm) implies that ‖Smv‖2A . η(m)‖v‖2A. Then m-steps of
smoothing will damp the high frequency with a rate independent of h.

Remark 3.1. Here we use the spectrum of A to define the high frequency and assume the
smoother can damp the high frequency and the coarse grid correction can capture the low
frequency. One can also define (I − PH)Vh as the high frequency. Namely the part which
cannot be captured by the coarse grid correction is defined as the high frequency. �

3.2. Assumptions of Symmetric Smoothers. We impose the following assumption of the
symmetric smoother R.
————————————————————————————————————
(R) The symmetric smoother R is non-singular and

(Au, u) ≤ (R−1u, u), for all u ∈ V,

or simply A ≤ R−1 or λmax(RA) ≤ 1.
————————————————————————————————————

Exercise 3.2. Prove that the assumption (R) implies that the spectrum σ(RA) ∈ (0, 1] and
consequently σ(S) = σ(1−RA) ∈ [0, 1). Therefore the smoothing operator S = I−RA
is convergent. Note that to be convergent, the spectrum σ(RA) ∈ (0, 2) can be larger. In
other words, not all convergent iterative methods can be used as smoothers. �

The assumption (R) is not restrictive. For a convergent iterator R, a properly weighted
version ωRwill satisfy (R). More precisely, if the following generalized inverse inequality

(Au, u) ≤ cI(R−1u, u), for all u ∈ V,

holds with a constant cI . Then ωRwith ω ≤ c−1I will satisfy assumption (R) as λmax(ωR) =
ωλmax(R) ≤ 1.

Another way to satisfy (R) is to consider the so-called symmetrization by applying R
and Rᵀ consecutively. The corresponding smoother R̄ satisfies the relation

I − R̄A = (I −RᵀA)(I −RA) = (I −RA)ᵀ(I −RA) ≥ 0,

which implies R̄ will satisfy assumption (R).
Even (R) violates and consequently σ(S) could contain negative eigenvalues, smooth-

ing property can be still proved. Indeed |(1− x)x2m| ≤ (1 + ω)ω2m for −ω < x < 0. As
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long as |ω| < 1, i.e., S converges, we have η(m) = max{(1 + ω)ω2m, 1/(2m+ 1)} → 0
as m→∞.

We then formulate a smoothing property using the spectral norm ‖ · ‖ρ.
————————————————————————————————————
(Sρ) There exists a constant cs such that

(9) (R−1u, u) ≤ csρA(u, u) for all u ∈ V,
or simply R−1 ≤ csρAI .
————————————————————————————————————
For high frequency functions u, we have (R−1u, u) ≤ C(Au, u) which implies the smooth-
ing operator restricted to the subspace of high frequency will be uniformly convergent.

We derive important inequalities from (9) which are also referred as smoothing proper-
ties in literature. For example, a more popular formulation of (Sρ) is

‖R−1‖ = ρ(R−1) ≤ csρA = cs‖A‖.
Let us write (9) as I ≤ csρAR. Multiplying A from left and right, we get another form

(10) A2 ≤ csρAARA = csρAA(I − S),

which can be rigorously written as

(11) (Au,Au) ≤ csρA((I − S)u, u)A, for all u ∈ V.

3.3. Smoothing Property. We will show (Sρ) + (R) implies (Sm). We shall make use of
the fact that for two SPD operators M and A, the product MA is symmetric in the inner
product (·, ·)A and (·, ·)M−1 . In the right inner product, we can estimate the spectral radius
instead of norms.

Lemma 3.3. Assume the symmetric smoother R satisfy (R) and (Sρ). Then R satisfies the
following smoothing properties

‖Smv‖2A2 ≤
cs

2m+ 1
ρA‖v‖2A,(12)

‖Smv‖2A ≤
cs

2m+ 1
ρA‖v‖2,(13)

‖Smv‖A2 ≤ cs
m+ 1

ρA‖v‖.(14)

Proof. The assumption (R) implies σ(S) = σ(I−RA) ∈ [0, 1). We will use the inequality

(15) max
x∈(0,1)

(1− x)xp ≤ 1

p+ 1
, for p ∈ R+,

which can be proved easily by calculus.
1 We use (11) derived from (Sρ) and the symmetry of S with respect to A to get

(ASmv,ASmv) ≤ csρA((I − S)Smv, Smv)A = csρA((I − S)S2mv, v)A.

The operator form of (15) in A-inner product is

((I − S)S2mv, v)A ≤
1

2m+ 1
(v, v)A,

and thus the inequality (12) follows.
2 We then prove the second smoothing property. First we obtain an identity

(16) (Smv, Smv)A = (AS2mv, v) = (RAS2mv, v)R−1 = ((I − S)S2mv, v)R−1 .



RECURSIVE PROOFS FOR MULTIGRID METHODS 9

We use the fact S = I −RA is symmetric in the (·, ·)R−1 , inequality (15), and assumption
(Sρ) to conclude

((I − S)S2mv, v)R−1 ≤ 1

2m+ 1
(v, v)R−1 ≤ cs

2m+ 1
ρA‖v‖2.

3 Let u = Sm/2v. We apply inequality (12) to u, i.e.,

‖Smv‖A2 = ‖Sm/2u‖A2 ≤
√

cs
m+ 1

ρA‖u‖A.

and inequality (13) to v, i.e.,

‖u‖A = ‖Sm/2v‖A ≤
√

cs
m+ 1

ρA‖v‖A.

to get inequality (14). �

With the trivial inequality ‖Smv‖A ≤ ‖v‖A (since ‖S‖A ≤ 1), we can apply interpo-
lation of operators to get smoothing properties in fractional norms ‖ · ‖As = ‖As/2 · ‖ for
s ∈ [0, 2].

Corollary 3.4 (Smoothing Property in Fractional Norm). Assume the symmetric smoother
R satisfy (R) and (Sρ). Then R satisfies the following smoothing properties, for all α ∈
[0, 1]:

‖Smv‖A1+α ≤
(

cs
2m+ 1

)α/2
ρ
α/2
A ‖v‖A,(17)

‖Smv‖A ≤
(

cs
2m+ 1

)α/2
ρ
α/2
A ‖v‖A1−α .(18)

We will formulate a slightly different formulation of the smoothing property which will
be used in the convergence proof of V-cycle multigrid methods.

Lemma 3.5 (Improved Smoothing Property). Assume the symmetric smoother R satisfy
(R) and (Sρ). Then R satisfies the following smoothing properties

(19) ‖Smv‖2A2 ≤
csρA
2m

((I − S2m)v, v)A.

Proof. We use (11) and the symmetry of S with respect to A to get

(ASmv,ASmv) ≤ csρA((I − S)Smv, Smv)A = csρA((I − S)S2mv, v)A.

From the elementary inequality

x2m ≤ 1

2m

1− x2m

1− x
, for x ∈ [0, 1),

we obtain the corresponding operator form

((I − S)Smv, Smv)A ≤
1

2m
((I − S2m)v, v)A,

and thus inequality (19) follows. �

Here the factor 1/(2m) is slightly bigger than 1/(2m+1) obtained before, but the term
((I − S2m)v, v)A = ‖v‖2A − ‖Smv‖2A is smaller than ‖v‖2A.
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Remark 3.6. The smoothing operator S is symmetric in theA-inner product and in general
not symmetric in the standard L2 inner product. Only one exception: for Richardson
iteration, S = I − ωA is symmetric in both (·, ·) and (·, ·)A, which makes the analysis of
multigrid methods using Richardson smoother easier. �

Exercise 3.7. For Richardson smoother, use identity (16) to prove

(20) ‖Smv‖2A ≤
csρA
2m

((I − S2m)v, v).

3.4. Smoothing Property of Point-wise Smoothers. We now verify assumption (R) and
the smoothing property (Sρ) of point-wise smoothers, including Richardson, weighted
Jacobi, and symmetric Gauss-Seidel iterations.

Consider a decomposition V =
∑N
i=1 Vi. We assume this decomposition is stable under

the norm introduced by the default inner product (·, ·). Namely for u =
∑
j uj

(21) cM

N∑
j=1

‖uj‖2 ≤ ‖u‖2 ≤ CM
N∑
j=1

‖uj‖2.

In FEM setting, (21) means the basis decomposition is stable in the L2 norm which can be
easily proved by the element-wise scaling argument. In addition to basis decomposition,
one can chose a block decomposition satisfying (21).

Smoothing property of Richardson iteration. We choose R = ωρ−1(A)I . To satisfy (R),
ω ∈ (0, 1]. The assumption (Sρ) holds with constant ω−1. So a practical choice is ω = 1,
i.e., Richardson iteration R = ρ−1(A) is a good smother. Again to be convergent, the
bound of ω is (0, 2).

Richardson iteration needs an estimate of ρ(A). One tool for estimating eigenvalues is
the Gershgorin circle theorem.

Smoothing property for weighted Jacobi iteration. Jacobi iteration itself may not have the
smoothing property. For example, for 1-D discretization Poisson on uniform grids, the
Jacobi method is the Richardson method with ω = 2 and thus no smoothing property.

Consider the weighted Jacobi smoother R = ωD−1. Then the smoothing property is
easy to show

(R−1u, u) = ω−1
N∑
i=1

‖ui‖2A ≤ ω−1ρ(A)

N∑
i=1

‖ui‖2 ≤ ω−1c−1M ρ(A)‖u‖2.

To satisfy the assumption (R), we compute

λmax(RA) = ωλmax(D−1A) = ωλmax(AD),

where AD = D−1/2AD−1/2 and require ω ≤ λmax(AD). To minimize the constant in
(Sρ), we chose ω = 1/λmax(AD).

For the scaled SPD matrixAD, the diagonal is always 1. When the matrixA is diagonal
dominate, by the Gershgorin circle theorem, λmax(AD) ≤ 2. Therefore in practice, ω =
0.5 is recommend for weighted Jacobi iteration when used as a smoother.

Smoothing property of symmetric Gauss-Seidel iteration. Let A = D + L + U be the
decomposition of diagonal, lower triangular and upper triangular part. Then for symmetric
Gauss-Seidel smoother R, as L = Uᵀ the error operator satisfies

I −RA = (I − (D + L)−1A)(I − (D + U)−1A) ≥ 0,

which implies the assumption (R).
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Recall that Gauss-Seidel iteration can be understood as SSC apply to the basis decom-
position V =

∑N
i=1 Vi with Ri = A−1i . For symmetric G-S, we have the identity

(22) (R−1v, v) = ‖v‖2A + inf∑J
i=1 vi=v,vi∈Vi

N∑
i=1

‖Pi
J∑

j=i+1

vj‖2A.

To control the overlapping parts, we assume A is uniformly sparse in the sense that the
cardinality of n(i) = {j ∈ [1, N ] |Vj ∩ Vi 6= ∅} is uniformly bounded. Algebraically it
is equivalent to the degree of a vertex in the associated graph of A is uniformly bounded
above.

It suffices to estimate
N∑
i=1

‖Pi
∑
j>i

uj‖2A ≤
N∑
i=0

∑
j∈n(i)

‖uj‖2A ≤ CdρA
N∑
i=0

‖uj‖2 ≤ csρA‖u‖2.

The final constant cs = Cdc
−1
M .

Therefore symmetric G-S for a sparse SPD matrix always satisfies the smoothing prop-
erty (Sρ) and (R). For this reason, SGS is the default smoother used in algebraic multigrid
(AMG) methods.

4. REGULARITY AND APPROXIMATION PROPERTY

We have verified the smoothing property (Sm) for popular point-wise smoothers. In
this section we discuss approximation property (AP ) which requires regularity results of
the corresponding partial differential equations and error analysis of finite element approx-
imation.

4.1. Full Regularity. We consider first the full regularity case. Let us use A and Ah to
distinguish operators in the continuous level and the discrete level using finite element
discretization based on a mesh with size h. Suppose in the continuous level Au = f has
the full regularity, i.e.,

‖u‖2 ≤ CR‖f‖.
Let uh and uH be the Galerkin approximation of u in Vh and VH , respectively. That

is Ahuh = Qhf and AHuH = QHf . We want to apply multigrid solvers to solve the
equation Ahuh = Qhf .

Now the approximation property to be verified is in the form

(23) ‖uh − PHuh‖A . H‖Ahuh‖.
Classical error estimate is ‖uh−PHuh‖A = infvH∈VH ‖uh−vH‖A ≤ CH‖uh‖2. But

the finite element function uh is not in H2(Ω). To prove (23), we resort to the continuous
problem. Let u be the solution of continuous problem with source Ahuh, i.e., Au = Ahuh
and use the error estimate and regularity result to conclude

‖u− uh‖A . h‖u‖2 . h‖Ahuh‖.
Due to the nestedness of the spaces VH ↪→ Vh, uH is the Galerkin approximation of u in
VH and similarly we have

‖u− uH‖A . H‖u‖2 . H‖Ahuh‖.
Then by the triangle inequality and the bound H/h ≤ C, we obtain (23).

The approximation property in L2-norm can be proved using the duality argument, i.e.,

‖uh − PHuh‖ . H‖uh − PHuh‖A,
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from which we can obtain two versions of approximation property in L2-norm

‖uh − PHuh‖ . H‖uh‖A,(24)

‖uh − PHuh‖ . H2‖uh‖A2 .(25)

If we use smoothing property (Sρ) and approximation property (23) for the pair X+ =
(Vh, ‖ · ‖A2) and X− = (Vh, ‖ · ‖A), we can obtain the convergence of symmetric V-cycle
and W-cycle; cf. Theorem 5.4.

If we chose the pair X+ = (Vh, ‖ · ‖A2) and X− = (Vh, ‖ · ‖). Using the smoothing
property (Sm) (14) and approximation property (25), we can obtain the convergence of
two-grid and thus W-cycle in L2-norm with large enough smoothing steps.

4.2. Partial Regularity. For elliptic equation Au = f , the partial regularity reads as

(26) ‖u‖1+α . ‖f‖α−1, for some α ∈ (0, 1].

The spaces pair will be X− = (Vh, ‖ · ‖Ah) and X+ = (Vh, ‖ · ‖A1+α
h

). We follow
Bank and Dupont [2] to verify the approximation property using the partial regularity as-
sumption. The corresponding smoothing property (17) has been proved in Corollary 3.4
provided a symmetric smoother satisfying (R) and (Sρ).

Theorem 4.1. Assume the partial regularity (26) holds. Then we have the following ap-
proximation properties

‖(I − PH)uh‖A1−α . Hα‖uh‖A,(27)

‖(I − PH)uh‖A . Hα‖uh‖A1+α .(28)

Proof. We estimate the norm ‖(I − PH)uh‖A1−α by the standard duality argument. Let
ρ ∈ Hα−1 and η ∈ H1+α satisfy

(η, v)A = 〈ρ, v〉 for all v ∈ V.

Taking v = (I − PH)uh, we have, for any ηH ∈ VH ,

〈ρ, (I − PH)uh〉 = (η, (I − PH)uh)A = (η − ηH , (I − PH)uh)A

. Hα‖η‖1+α‖(I − PH)uh‖A . Hα‖ρ‖α−1‖(I − PH)uh‖A,

which implies

‖(I − PH)uh‖1−α = sup
ρ∈Hα−1

〈ρ, (I − PH)uh〉
‖ρ‖α−1

. Hα‖(I − PH)uh‖A.

Then use the norm equivalence ‖(I − PH)uh‖A1−α . ‖(I − PH)uh‖1−α, we get the
desired result (27).

We then split the error as following:

(29) ‖(I − PH)uh‖2A = ((I − PH)uh, Auh) ≤ ‖(I − PH)uh‖A1−α‖uh‖A1+α ,

and obtain (28) by (27). �

5. CONVERGENCE WITHOUT SUFFICIENTLY MANY SMOOTHING STEPS

In the convergence proof of two-grid method and W-cycle method, we have used an
assumption: sufficiently many smoothing steps. In practice, for SPD problems, V-cycle
method converges with only one smoothing step. In this section, we shall discuss tricks to
eliminate this assumption. The key is to make use of the inner product (·, ·)A.
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5.1. Proofs for Two-Grid Methods. We use the approximation property of I − QH in-
stead of I − PH .

————————————————————————————————————

(AQ) Approximation property: ‖u−QHu‖2 ≤ caρ−1A ‖u‖2A for all u ∈ V.

————————————————————————————————————

Lemma 5.1. Assume (AQ) holds. Then ṽ = (I−PH)v is high frequency in the sense that

‖ṽ‖2A ≤ caρ−1A ‖ṽ‖
2
A2

Proof. We use the A-orthogonality of I − PH , Cauchy-Schwarz inequality, and approxi-
mation property (AQ) to get

‖ṽ‖2A = (ṽ, ṽ)A = (ṽ, ṽ −QH ṽ)A ≤ ‖Aṽ‖‖ṽ −QH ṽ‖ ≤ c1/2a ρ
−1/2
A ‖ṽ‖A2‖ṽ‖A.

Cancel one ‖ṽ‖A and square both sides to finish the proof. �

We still assume the smoother R is symmetric and satisfies (R) and (Sρ). We consider
the A-norm of the two-grid error operator ‖S(I − PH)‖A. The following result is due to
Mandel [9].

Theorem 5.2. Assume the symmetric smoother R satisfies (R) and (Sρ). Assume the
approximation property (AQ) holds. Then

‖S(I − PH)‖A ≤ δ1/2,

where δ = 1− 1/cacs with constant ca, cs in the assumption (AQ) and (Sρ).

Proof. The assumption (R) implies ‖S‖A ≤ 1. Let ṽ = (I − PH)v. We have

‖Sṽ‖2A ≤ ‖S1/2ṽ‖2A = (Sṽ, ṽ)A = ‖ṽ‖2A − (ARAṽ, ṽ).

The assumption (Sρ) implies csρAARA ≥ A2, c.f., (10). Substitute into the above in-
equality and use the fact ṽ is a high frequency to get

‖S(I − PH)v‖2A = ‖Sṽ‖2A ≤ ‖ṽ‖2A − c−1s ρ−1A ‖ṽ‖A2 ≤ δ‖ṽ‖2A ≤ δ‖v‖2A.

�

Comparing with the previous argument, we get a sharper upper bound due to a negative
term in the upper bound of ‖Sv‖A.

For a symmetric two-grid method, we now refine the estimate using theA-inner product.
During the up-down path, when going down, the refined smoothing property (19) is used
to introduce a negative term in the upper bound.

Lemma 5.3. Let ETG = Sm(I − PH)Sm be the error operator of a symmetric two-grid
method using a symmetric smoother R. Assume

• inverse inequality (R): (Au, v) ≤ (R−1u, u);
• smoothing property (Sρ) : (R−1u, u) ≤ csρA(u, u);

• approximation property (AP ) : ‖u− PHu‖2A ≤ caρ
−1
A ‖u‖2A2 .

Then

(30) (ETGu, u)A ≤
cacs
2m

((I − S2m)u, u)A.
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Proof. Using the symmetry of Sm in (·, ·)A and the projection property of PH , i.e., (I −
PH)2 = (I − PH) and improved smoothing property, c.f., (19), we have

(ETGu, u)A = ‖(I − PH)Smu‖2A ≤
ca
ρA
‖Smu‖2A2 ≤

cacs
2m

((I − S2m)u, u)A.

�

5.2. Proofs for V-cycle Method. The convergence of V-cycle method can be followed
by a simple induction argument due to Braess and Hackbusch [4]; see also Bramble and
Pasciak [5].

Theorem 5.4 (V-cycle). Let E be the error operator of a symmetric V-cycle method using
a symmetric smoother R. Assume

• inverse inequality (R): (Au, v) ≤ (R−1u, u);
• smoothing property (Sρ) : (R−1u, u) ≤ csρA(u, u);
• approximation property (AP ) : ‖u− PHu‖2A ≤ caρ

−1
A ‖u‖2A2 .

Then, with C = cacs, for all u ∈ V

(31) (Eu, u)A ≤
C

C + 2m
(u, u)A.

Proof. We prove (31) by induction. For the coarsest level, E0 = 0 and (31) holds trivially.
Assume (EHuH , uH)A ≤ δ(uH , uH)A. Recall the relation

E = ETG + SmEHPHS
m.

By the above identity and the symmetry of Sm in (·, ·)A
(Eu, u)A = (ETGu, u)A + (SmEHPHS

mu, u)A

= (ETGu, u)A + (EHPHS
mu, PHS

mu)A

Recall ETG = Sm(I − PH)Sm. Using the induction assumption and the refined two-grid
estimate (30), we get

(Eu, u)A ≤ (ETGu, u)A + δ(PHS
mu, PHS

mu)A

= (1− δ)(ETGu, u)A + δ(S2mu, u)A

≤ (1− δ)cacs
2m

((I − S2m)u, u)A + δ(S2mu, u)A.

We then chose δ to balance the weight

(1− δ)cacs
2m

= δ, → δ =
cacs

cacs + 2m
,

to get the desired estimate. �

Exercise 5.5. Show that in the above theorem, the approximation property can be replaced
by one in lower order norm ‖u− PHu‖2 ≤ caρ−1A ‖u‖2A. �

Since E is symmetric with respect to (·, ·)A, the inequality (31) implies the conver-
gences of the V-cycle in A-norm, i.e., ‖E‖A ≤ δ. Following the same proof, we can
obtain the convergence of the symmetric W-cycle.

6. CONVERGENCE OF V-CYCLE METHOD WITH PARTIAL REGULARITY

In Section 5, we have successfully removed the assumption of sufficiently many smooth-
ing steps. The approximation property, however, is still verified with full regularity as-
sumption. In this section, we move one step forward to partial regularity.
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6.1. Modified Approximation Property. Bramble and Pasciak [5] propose the following
modified approximation property.
————————————————————————————————————

(AαP ) ‖(I − PH)u‖2A ≤ C2
α

(
‖Au‖2

ρA

)α
‖u‖1−αA , for some α ∈ (0, 1].

————————————————————————————————————
The verification (AαP ) is a continuation of (28) by a refined L2-error estimate. The

fractional A1+α-norm is bounded by A−norm and A2−norm.

Lemma 6.1.
‖u‖2A1+α ≤ ‖u‖2(1−α)A ‖u‖2αA2 .

Proof. Let φi be the eigen-functions of A for i = 1, . . . ,dimV which forms an orthonor-
mal basis of L2. We expand u =

∑
i ciφi. Then ‖u‖2As =

∑
i c

2
iλ
s
i . We apply Hölder’s

inequality to the left hand side

‖u‖2A1+α =

N∑
i=1

c2iλ
1+α
i =

N∑
i=1

(c2αi λ2αi )(c
2(1−α)
i λ1−αi )

≤

[
N∑
i=1

(c2αi λ2αi )1/α

]α [ N∑
i=1

(c
2(1−α)
i λ1−αi )1/(1−α)

]1−α
= ‖u‖2αA2 ‖u‖2(1−α)A .

�

The benefit of using (AαP ) is that we can use the refined version of the smoothing prop-
erty and two-grid estimate (30).

6.2. V-cycle with Partial Regularity. We sketch the proof in Bramble and Pasciak [5]
below. First recall that

(Eu, u)A ≤ (1− δH)(ETGu, u)A + δH(S2mu, u)A.

By (AαP ) and (Sm), we can bound the two-grid part

(ETGu, u)A = ‖(I − PH)Smu‖2A ≤
c2αcs

(2m)α
((I − S2m)u, u)αA (S2mu, u)1−αA .

Using a generalized arithmetic-geometric mean inequality, we can split it as

(ETGu, u)A ≤ w1((I − S2m)u, u)A + w2(S2mu, u)A,

and use the relation of two-grid and V-cycle to obtain

(Eu, u)A ≤ [(1− δH)w1] ((I − S2m)u, u)A + [(1− δH)w2 + δH ] (S2mu, u)A.

A technical estimate shows that one can chose appropriate weight w1, w2 such that

(32) (1− δH)w1 ≤ δ, (1− δH)w2 + δH ≤ δ.
The second inequality in (32) implies {δk} is like an arithmetic sequence and thus δJ =
O(J). In the first inequality in (32), w1 contains m−α which implies δJ = O(m−α). For
V-cycle, the rate reads as

(33) δJ =
C(J)

C(J) +mα
, with C(J) = O(J

1−α
α ).

The proof is elementary but technical. Note that the result is quasi-optimal for α < 1 due
to the factor J .
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6.3. W-cycle and Variable V-cycle. For W-cycle, the rate can be improved to be inde-
pendent of the number of levels: the contraction rate of W-cycle is

δ =
Mα

mα +Mα
.

We sketch the proof for W-cycle below. Using the recursion, the inequalities in (32) be-
come

(1− δ2)
C1

m
γ ≤ δ, (1− δ2)C2γ

−α/(1−α) + δ2 ≤ δ.

Cancel γ in these two inequalities yields the inequality

(34) (1− δ)C3

m
≤
(

δ

1 + δ

)1/α

.

A simple manipulation of (34) shows δ = O(m−α). To make it precise, we relate m with
δ by the relation m = Mα(1− δ−1/α) and consider the minimization problem

min
δ>0

(
δ

1 + δ

)1/α
1− δ−1/α

1− δ
,

to figure out the constant Mα.
Again it is technical to show one can chose w1 such that (1 − δ2)w1 = δ and (1 −

δ2)w2 + δ2 ≤ δ.
The W-cycle can be modified to a variable V-cycle with comparable cost. That is the

smoothing step m(k) depends on the level and increase geometrically. Variable V-cycle is
easier to implement than W-cycle since no recursion is needed. A typical choice ismk−1 =
βmk with β ∈ [3/2, 2]. A practical sequence of smoothing steps is: 1, 2, 3, 5, 8, 12 . . ..

7. CONVERGENCE PROOF USING A SPECIAL FRACTIONAL NORM

In this section we present sharp estimates for multigrid rates of convergence developed
by Bank and Douglas [1]. The assumption is weaker than previous smoothing and approx-
imation approach. The key is a fractional norm defined using both smoother R and the
SPD matrix A.

7.1. Definition of the Norm and Assumption. LetR be a symmetric and positive definite
smoother. Then RA is SPD in the inner product (·, ·)R−1 . We can define a fractional norm

|||u|||2s = ((RA)su, u)R−1 .

Note that |||u|||0 = ‖u‖R−1 and |||u|||1 = ‖u‖A. So the norm |||u|||s is an interpolation
between these two. Unlike the ‖u‖As norm, the scaling is build into the definition of |||u|||s.
For example, consider Richardson smoother R = h2. Then |||u|||0 = ‖u‖R−1 = h−1‖u‖.

A smoothing property is a consequence of the definition of norms. Define

η(m, γ) = mmγγ(m+ γ)−(m+γ) = sup
x∈[0,1]

xm(1− x)γ .

Notice that ηp(m, γ) = η(pm, pγ) for any p > 0.

Lemma 7.1. For any 0 ≤ α < β ≤, we have the smoothing property

|||Smu|||2β ≤ η(2m,β − α)|||u|||2α for all u ∈ V.
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Proof. As RA and S = I −RA are symmetric in (·, ·)R−1 , we can safely switch the order
to get

Sm(RA)βSm = (RA)α/2(I − S)β−αS2m(RA)α/2.

Then

|||u|||2β = ((I − S)β−αS2m(RA)α/2u, (RA)α/2u)R−1 ≤ η(2m,β − α)|||u|||2α.

�

We can further take square root to get an inequality of norm only.
The approximation property is implied by the following assumption.

————————————————————————————————————

(AαBD) There exist constant κ ≥ 1 and α > 0 such that

|||u|||21−α ≤ κ
α|||u|||21, for all u ∈ (I − PH)V.

————————————————————————————————————

If α = 1 in (A1
BD), we obtain a kind of smoothing property

(35) (R−1u, u) ≤ κ(Au, u), for all u ∈ (I − PH)V.

The constant κ is called the generalized condition number of the matrix A and the smooth-
ing matrix R−1 in [1]. Obviously the assumption (A0

BD) becomes an equality with κ = 1.
Therefore (A1

BD) implies (AαBD) by interpolation and (AβBD) implies (AαBD) for any
0 ≤ α ≤ β ≤ 1. Verifying (AαBD) requires only partial regularity. Add verification
of the assumption for popular smoothers.

Lemma 7.2. Suppose (AαBD) holds. Then we have the following approximation proper-
ties: for all u ∈ V

|||(I − PH)u|||1 ≤ κ
α/2|||u|||1+α,

|||(I − PH)u|||1−α ≤ κ
α/2|||u|||1,

|||(I − PH)u|||1−α ≤ κ
α|||u|||1+α.

Proof.

|||(I − PH)u|||21 = ((I − PH)u, u)A

≤ |||(I − PH)u|||1−α|||u|||1+α
≤ κα/2|||(I − PH)u|||1|||u|||1+α.

The second approximation property is a simple consequence of (AαBD) and the third one
is a combination of the first two. �

7.2. Two-Grid: one smoothing step + partial regularity. Convergence proof of two-
grid method is straight forward using the smoothing and approximation property to traverse
among different scales.

Theorem 7.3. Let ETG = Sm(I −PH)Sm be the error operator of a symmetric two-grid
method using a symmetric smoother R. Assume assumptions (R) and (AαBD) hold. Then
the two-grid method converges uniformly

(ETGu, u)A ≤ η(2m,α)κα‖u‖2A for all u ∈ V.
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Proof.

(ETGu, u)A = ‖(I − PH)Smu‖2A ≤ κα|||Smu|||
2
1+α ≤ η(2m,α)κα|||u|||21.

�

7.3. W-cycle: sufficiently many smoothing steps + partial regularity. If the rate of
convergence of two-grid is less than 1/2, then W-cycle converges uniformly.

This implicitly requires sufficiently smoothing steps but only partial regularity. Add a
proof

7.4. V-cycle: one smoothing step + full regularity. We can relax the smoothing step
but have to work with full regularity to verify the assumption (A1

BD). Convergence proof
of multigrid V-cycle using X-Z identity and with assumption (35) is relatively easy; see
Convergence Theories of Multigrid Methods based on the X-Z Identity.

We sketch the approach using smoothing property and approximation property below.
(1) Improved smoothing property c.f. Lemma 3.5.

|||Smv|||2 ≤
1

2m
(|||v|||1 − |||S

mv|||1) .

(2) Two-grid estimate. Use approximation property to get

(ETGu, u)A = ‖(I − PH)Smu‖2A ≤ κ|||Smv|||
2
2.

(3) Relation between two-grid and V-cycle, c.f. Theorem 5.4.

(Eu, u)A ≤ (ETGu, u)A + δ(PHS
mu, PHS

mu)A

= (1− δ)(ETGu, u)A + δ(S2mu, u)A.

8. SUMMARY

The framework based on smoothing and approximation properties, developed by Hack-
busch [8], can be applied to a broader class of problems provided that we are comfortable
to work with: sufficient many smoothing steps and full regularity.

Remove assumptions on smoothing steps but still keep full regularity is relatively easy
by utilizing the structure in the A-inner product; see Braess and Hackbusch [4].

Remove the full regularity but still use sufficient many smoothing steps is achieved by
using the matrix dependent norm and a refined duality argument; see Bank and Dupont [2].

Remove both assumptions seems not easy but possible if we accept less sharp results,
c.f., (33) obtained by Bramble and Pasciak. In the framework based on subspace correction
method by Xu [10, 12], see also [6], we can prove the uniform convergence of V-cycle with
one smoothing steps and with partial regularity. But we lost the precise characterization of
the rate in terms of the smoothing step, i.e., missing a factor O(m−α). In this direction, a
recent contribution is given by Brenner [7] for the Richardson smoother.

Sort by the difficulty of analysis, two grid<W-cycle<V-cycle. And for the smoothers,
Richardson is easier to analyze than Gauss-Seidel as the smoothing operator of Richardson
relaxation is symmetric in both L2 and A-inner product.
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