
PROGRAMMING OF MULTIGRID METHODS

LONG CHEN

In this note, we explain the implementation detail of multigrid methods. We will use the
approach by space decomposition and subspace correction method; see Chapter: Subspace
Correction Method and Auxiliary Space Method. The matrix formulation will be obtained
naturally, when the functions’ basis representation is inserted. We also include a simplified
implementation of multigrid methods for finite difference methods. To distinguish func-
tions and vectors, we use boldface letters for a matrix representation of an operator or a
vector representation of a function.

1. TWO LEVEL METHODS AND TRANSFER OPERATORS

We use a two-level method to illustrate how to realize operators by matrices. The space
decomposition is

V = V1 + V2 with V1 ⊂ V2 = V.

We call V fine space and V1 coarse space since it is usually based on a coarse mesh.
Recall that the PSC for this two level decomposition in operator form is

(1) r = f −Auk;
(2) e = I1R1I

ᵀ
1 r + I2R2I

ᵀ
2 r;

(3) uk+1 = uk + e.

The matrix form of step 1 and 3 is trivial. We only discuss the realization of step 2.
Since V2 = V, I2 = Iᵀ2 = I . The solver R2 can be chosen as the weighted Jacobi

iteration R2 = ωD−1 (ω = 0.5 is recommended as the default choice) or the symmetric
Gauss-Seidel iteration R2 with R2 = (D +L)−1.

The transformation to the coarse V1 is not easy. There are three operators to realize:
I1, R1, and Iᵀ1 .

The prolongation matrix. Let us first discuss the operator I1 = I21 : V1 → V2. By the
definition, it is the natural inclusion V1 ↪→ V i.e. treat a function u1 ∈ V1 as a function in
V2 since V1 ⊂ V2. So it is the identity operator. But the matrix representation is not the
identity matrix since different bases of V1 and V2 are used! We use a 1-D two level grids
in Figure 1 to illustrate the difference.

In this example I2
1 : R3 → R5 will map a shorter vector to a longer one and thus called

the prolongation matrix. We determine this matrix by the following two facts:

(1) u1 and u2 = I2
1u1 represent the same function in V2;

(2) a function in V2 is uniquely determined by the values at the grid points.

For nodes in both fine grids and coarse grids,

u2(1) = u1(1), u2(3) = u1(2), u2(5) = u1(3).

Date: Latest update: November 22, 2017.
1



2 LONG CHEN

1 2 3 4 5

1 2 3

1

2

3

4

5

1

2

3

FIGURE 1. Prolongation

For the nodes only existing in the fine grids, by (1), values at these nodes can be evaluated
in the coarse grids. Since we are using the linear element, we get

u2(2) = (u1(1) + u1(2))/2, u2(4) = (u1(3) + u1(5))/2.

In matrix form, I2
1 ∈ R5×3 can be written as

1 0 0
1/2 1/2 0
0 1 0
0 1/2 1/2
0 0 1


To define the prolongation matrix, we need to know the correspondences of the index of

nodes between two grids. Different index mapping will give different prolongation matrix.
A better hierarchical index of the fine grid nodes is [1 4 2 5 3], for which the prolongation
matrix is 

1 0 0
0 1 0
0 0 1

1/2 1/2 0
0 1/2 1/2

 .
The presentness of the identity matrix can save the computational time of I2

1x.
The construction of the prolongation matrix can be easily generalized to high dimen-

sions for the linear element. The information needed is the index map between coarse grid
points and fine grids points. We classify the grid points in the fine grid into two groups:

• C: the points in both fine and coarse grids
• F : the points in the fine grid only.

For group F , we can use HB (hierarchical basis) matrix with HB(:,2:3) being two par-
ent nodes of the node HB(:,1). Note that HB(:,1) is the index in the fine level while



PROGRAMMING OF MULTIGRID METHODS 3

HB(:,2:3) are in the coarse level. Then the interpolation at the grids points in F can be
realized

uf(HB(1:end,1)) = (uc(HB(1:end,2)) + uc(HB(1:end,3)))/2;

For group C, although those grid points are in both coarse and fine grids, their indices
could be different. For example, in Fig 1, the 3-rd point in the fine grid is the 2-nd one
in the coarse grid. Therefore we need an index mapping, say coarseNodeFineIdx, for
points in group C. In the example in Fig 1, coarseNodeFineIdx = [1 3 5]. The
interpolation for this group of points is simply the identity

uf(coarseNodeFineIdx) = uc;

Using HB and coarseNodeFineIdx, the prolongation matrix do not need to be formed
explicitly. On the other hand, if needed, the prolongation matrix can be easily formed by
the following self-explained code

1 ii = [coarseNodeFineIdx; HB(:,1); HB(:,1)];

2 jj = [coarseNode; HB(:,2); HB(:,3)];

3 ss = [ones(nCoarseNode,1); 0.5*ones(nFineNode,1); 0.5*ones(nFineNode,1)];

4 Pro = sparse(ii,jj,ss,nFineNode,nCoarseNode);

The restriction matrix. How to compute Iᵀ1 = Q1? To compute the L2 projection, we
need to invert the mass matrix which is not cheap. Fortunately, we are not really computing
the L2 projection of a function. Instead we are dealing with a functional! Recall the
definition

(1) (Q1r, u1) = (r, u1) = (r, I1u1).

Q1r is simply to restrict the action of the dual r ∈ V′2 to the elements in V1 only. It is
better to write as I12 : V′2 → V′1 and call it restriction. Note that V1 ⊂ V2 implies that
V′2 ⊂ V′1. So the operator I12 is also a natural inclusion of the functional. Again r and I12r
will have different vector representations. The matrix form of (1) is

(2) (I1
2r)

ᵀu1 = rᵀI2
1u1,

which implies
I1
2 = (I2

1)
ᵀ.

If we have the prolongation matrix Pro formed explicitly, the restriction matrix will be
simply its transpose, i.e., Res = Pro’.

Exercise 1.1. Use HB and coarseNodeFineIdx to code the restriction without forming
the matrix.

Remark 1.2. Interpolation and restriction matrices must be altered at boundary points or
neighbors of boundary points to imposing the correct boundary condition.

The problem matrix and Smoothers in the coarse space. The last component is the
smother R1 and A1. If we know a priori the information of the PDE and the discretization,
we can easily code one in the coarse space. For example, for the 5-point stencil discretiza-
tion of Poisson equation, one step of Gauss-Seidel iteration can be implemented using for
loops:

1 for i = 2:N-1

2 for j = 2:N-1

3 u(i,j) = (b(i,j)+(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1)))/4;

4 end

5 end



4 LONG CHEN

For a general operator A, if we want to choose more accurate local subspace solver, say
Gauss-Seidel method, we need to know the matrix A1. Of course we can assemble one if
we have the coarse grid. But there are several reasons to abandon this approach. First, the
assembling is time consuming. Indeed this is one of the criticism of finite element methods
comparing with finite difference methods. Second it requires the information of the mesh
and the PDE. Then it will be problem dependent. Third, we have a better way to do it.

Recall that the operator A1 is just the restriction of A to the space V1. Namely

(3) (A1u1, v1) := (Au1, v1) = (AI1u1, I1v1) = (Iᵀ1AI1u1, v1),

which implies A1 = Iᵀ1AI1 and in the matrix form

A1 = I1
2A2I

2
1 = Res ∗A ∗ Pro.

So we can apply a triple product to form the matrix on the coarse grid. Due to the bilinear
form (3) used in the derivation, this approach is often referred as the Galerkin method or
the variational method.

2. SSC AND MULTIGRID METHOD

In this section, we discuss implementation of successive subspace correction method
when the subspaces are nested. Let V =

∑1
i=J Vi be a space decomposition into nested

subspaces, i.e.
V1 ⊂ V2 ⊂ · · · ⊂ VJ = V.

Denoted by Ni = dimVi and in practice Ni = γNi−1 for a factor γ > 1. For example,
for spaces based on a sequence of nested meshes in Rd, the factor γ ≈ 2d.

Recall that the operator formation of SSC method is

1 function e = SSC(r)

2 % Solve the residual equation Ae = r by SSC method

3 e = 0; rnew = r;

4 for i = J:-1:1

5 ri = Ii’*rnew; % restrict the residual to subspace

6 ei = Ri*ri; % solve the residual equation in subspace

7 e = e + Ii*ei; % prolongate the correction to the big space

8 rnew = r - A*e; % update residual

9 end

Here we use the for loop from J:-1:1 to reflect to the ordering from fine to coarse. The
operators Iᵀi = Qi : V → Vi and Ii : Vi → V are related to the finest space. As Ni is
geometrically decay, the number of level J = O(logN). At each level, the prolongation
matrix is of size N ×Ni and thus the operation cost at each level is O(N). The total cost
of the direct implementation of SSC is thus O(N logN).

When the subspaces are nested, we do not need to return to the finest space every time.
Suppose ri = Iᵀi (r − Aeold) in the subspace Vi is known, and the correction ei is used to
update enew = eold + ei. We can compute ri−1 by the relation:

ri−1 = Qi−1(r −Aenew)
= Qi−1Qi(r −Aeold −Aei)
= Qi−1(ri −QiAQ

ᵀ
i ei)

= Qi−1(ri −Aiei).



PROGRAMMING OF MULTIGRID METHODS 5

Here in the second step, we make use of the nested property Vi−1 ⊂ Vi to write Qi−1 =
Qi−1Qi. Similarly the correction step can be also done accumulatively. Let us rewrite the
correction as

e = eJ + IJ−1eJ−1 + . . .+ I1e1.

The correction can be computed by the loop

ei = ei + Iii−1ei−1, i = 2 : J

Therefore only the prolongation and restriction operators between consecutive levels are
needed. The cost at each level is reduced to O(Ni) and the total cost is O(N).

From this point of view, SSC on a nested space decomposition will result in a V-cycle
multigrid method. We summarize the algorithm below. We use notation ei, ri to emphasize
that in each level we are solving the residual equation Aiei = ri and assume the transfer
operators and discretization matrices have already been computed using the method dis-
cussed in the previous section.

1 function e = Vcycle(r,J)

2 ri = cell(J,1); ei = cell(J,1);

3 ri{J} = r;

4 for i = J:-1:2

5 ei{i} = R{i}*ri{i}; % pre-smoothing

6 ri{i-1} = Res{i-1}*(ri{i}-Ai{i}*ei{i}); % update and restrict residual

7 end

8 ei{1} = Ai{1}\ri{1}; % exact solver in the coarsest level

9 for i = 2:J

10 ei{i} = ei{i} + Pro{i}*ei{i-1}; % prolongate and correct

11 ei{i} = ei{i} + R{i}’*(ri{i}-Ai{i}*ei{i}); % post-smoothing

12 end

13 e = ei{J};

In the second loop (/) part, we add a post-smoothing step and choose R′i as the smoother
which is the transpose of the pre-smoothing operator. For example, if Ri = (Di + Li)

−1

is the forward Gauss-Seidel method, then the post-smoothing is backward Gauss-Seidel
(Di + Ui)

−1. This choice will make the corresponding iterator B symmetric and thus can
be used as a preconditioner in Preconditioned Conjugate Gradient (PCG) methods.

The function e = Vcycle(r, ...) suggests that the mg V-cycle is used to solve the
residual equation Ae = r and will be used as an iterator in the residual-correction method

u = u + Vcycle(f-A*u,J).

Due to the linearity of the iteration, we can also formulate a direct update form of
multigrid method u = Vcycle(u,f,J); see the next section.

3. SIMPLIFIED IMPLEMENTATION FOR FINITE DIFFERENCE METHODS

We discuss implementation of main components, especially the prolongation and re-
striction operator, for multigrid methods on uniform grids.

In order to evaluate the residual, we need to compute the matrix-vector product Au
which has been discussed in Chapter: Programming of Finite Difference Methods. A
typical Gauss-Seidel smoother is also discussed in detail there. We now discuss the transfer
operators: prolongation and restriction.

We consider the 1-D case first. A coarse grid is refined by adding the middle points.
It is easy to figure out the index map from coarse to fine: i → 2i − 1. We use the linear
interpolation to construct the prolongation. The matrix-free implementation will be



6 LONG CHEN

1 2 3

1 2 3 4 5

FIGURE 2. Indices of a coarse and fine grids

1 N = length(u);

2 uf = zeros(2*N-1,0);

3 j = 2:N-1; % interior nodes of the coarse grid

4 jf = 2*j-1; % index of coarse nodes in the fine grid

5 uf(jf) = u(j);

6 uf(jf-1) = uf(jf-1) + 0.5*u(j);

7 uf(jf+1) = uf(jf+1) + 0.5*u(j);

One can also construct a sparse matrix Ix

1 N = length(u); % number of points

2 Nf = 2*N - 1; % number of points in the fine grid

3 j = 2:N-1; % interiori points

4 jf = 2*j-1; % index of coarse nodes in the fine grid

5 ii = [jf jf-1 jf+1];

6 jj = [j j j];

7 ss = [ones(1,N-2) 0.5*ones(1,N-2) 0.5*ones(1,N-2)];

8 Ix = sparse(ii,jj,ss,Nf,N);

Then uf = Ix*u will produce the desired result. One advantage of using the matrix form
of the prolongation operator is that the restriction operator can be simply taken as the
transpose of the prolongation matrix (with a possible scaling related to h depending on the
scaling used in the 5-point stencil).

When move to 2-D, we can still use subscript to implement a matrix-free version. We
will use the bilinear interpolation to get function values at fine grids. In stencil notation,
the prolongation for fine nodes on horizontal lines, on vertical lines, and in the center of
coarse cells can be summarized as

(0.5, ∗, 0.5),

0.5
∗
0.5

 ,

0.25 0.25
∗

0.25 0.25

 .

Here ∗ indicates the position of the fine grid point.
A more elegant way using the tensor product structure is
uf = Ix*u*Ix’;

Here recall that the unknown vector u(1:n,1:n) is stored as a matrix. The left product
uftemp = Ix*u will prolongate the function value along the column direction and thus
uftemp is of size Nf × N . The right product uftemp*Ix’ will prolongate the function
value along the row direction. One can chose different prolongation for different directions
if the mesh size is non-uniform in each direction.

For a d-dimensional grid, a coarse grid point will have 3d − 1 neighboring points in the
fine grid. Working on the subscript system is more tedious while the tensor product matrix
version still works efficiently by using the permutation trick we mentioned in Chapter:
Programming of Finite Difference Methods.



PROGRAMMING OF MULTIGRID METHODS 7

Due to the matrix-free implementation, for finite difference methods, the direct up-
date form of iteration is preferable. For example, the G-S smoother is better coded as
u = GS(u,f). The direct update form of Vcycle is sketched below. The matrix-vector
product and the exact solver in the coarsest level can be implemented in matrix-free or
tensor product way.

1 function u = MG(u,f,J,mu)

2 %% Direct update form of Multigrid Method

3 if J == 1 % coarsest level: exact solve

4 u = A(J)\f;

5 end

6 % Presmoothing

7 for i = 1:mu

8 u = R(u,f,J);

9 end

10 % Restriction

11 rc = Res(f-A(J)*u);

12 % Coarse grid correction

13 ec = MG(0,rc, J-1,mu);

14 if W-cycle

15 ec = MG(ec,rc,J-1,mu); % W-cycle

16 end

17 % Prolongation

18 u = u + Pro(ec);

19 % Postsmoothing

20 for i = 1:mu

21 u = R’(u,f,J);

22 end

4. ALGEBRAIC MULTIGRID METHODS

The multigrid methods discussed in the previous sections depends heavily on the ge-
ometry of the underlying meshes and therefore called geometric multigrid methods. In
most applications, the grid could be totally unstructured and a hierarchical structure is not
available. In some cases, only the matrix is given without any grid information. It would
be desirable to still solve the algebraic equation using the idea of multigrid.

Looking the procedure carefully, the hierarchical structure of grids is used to construct
the transfer operators. After that, the matrix equation in the coarse grid can be computed by
triple product and the smoother can be algebraically taking as G-S tril(A) or weighted
Jacobi omega*diag(A). Two essential ingredients are needed to construct the prolonga-
tion operator from a coarse grid to a fine grid

(1) Index map from coarse nodes to fine nodes.
(2) Interpolation of the fine variables.

Let us revisit these two ingredients in an algebraic way. Suppose A is an N × N matrix.
The fine nodes are the index set V = {1, 2, · · · , N}. From the given matrix A, we could
construct a weighted graph G = G(A) = (V, E). The edge [i, j] exists if aij 6= 0. As the
matrix is symmetric, the graph G is undirected.

Coarsening. Recall that the node in the fine level can be classified into C and F . Now
if only matrix is given, a node will be understood as an abstract point. No coordinate is
associated to it. The fine nodes are the index set V = {1, 2, · · · , N}. A subset C ofN will



8 LONG CHEN

be identified as the nodes of a ‘coarse grid’ and the rest is F , i.e. N = C ∪ F . In addition,
for any i ∈ F , the neighboring ‘coarse nodes’ J (i) ⊂ C should be found. In hierarchical
meshes case, J (i) is simply HB array which only contains two coarse nodes. In summary
we need to pick up C and construct J (i) for all i ∈ F .


	1. Two Level Methods and Transfer Operators
	The prolongation matrix
	The restriction matrix
	The problem matrix and Smoothers in the coarse space

	2. SSC and Multigrid method
	3. Simplified Implementation for Finite Difference Methods
	4. Algebraic Multigrid Method
	Coarsening


