
INTRODUCTION TO MULTIGRID METHODS

LONG CHEN

We give a short introduction to multigrid methods for solving the linear algebraic equa-
tion arising from the discretization of Poisson equation in one dimension.

1. AN ALGEBRAIC EQUATION OF TWO POINT BOUNDARY VALUE PROBLEMS

We consider the discretization of Poisson equation with homogenous Dirichlet bound-
ary condition in one dimension:

(1) − u′′ = f, x ∈ (0, 1) u(0) = u(1) = 0.

For a positive integer N , chose a uniform grid, denoted by Th, of the interval [0, 1] as
follows:

0 = x0 < x1 < . . . xN < xN+1 = 1, xj = jh, j = 0 : N + 1,

where h = 1/(N + 1) is the length of each subinterval. For finite difference methods, we
consider vector v = (v1, . . . , vN )ᵀ where vi ≈ v(xi) for i = 1 : N . The boundary nodes
(i = 0, N +1) are excluded due to the homogenous Dirichlet boundary condition. We can
connect the function value at grid points to get a piecewise linear function v =

∑N
i=1 viφi,

where φi is the hat basis function at xi for i = 1 : N .
The algebraic system of a scaling of finite element or finite difference discretization is

(2) Au = b,

where
A = diag(−1, 2,−1), b = (bi), bi = h2f(xi).

Due to the special structure of the matrixA, we can write out eigenvalues and eigenvectors
ofA explicitly. Recall that the eigenvalues and eigenfunctions for−u′′ = λu in (0, 1) with
u(0) = u(1) = 0 are

λk = k2, ξk = sin(kπx), k = 1, 2, 3, . . .

In continuous level, λmin = 1 and λk → ∞. In the discrete level, the N × N matrix A
has only finite N eigenvalues. Therefore infinite many eigen-pairs (for k > N ) cannot be
preserved in the discretization. With h2 rescaling, λmin → 0 and λmax ≤ 4. To better
describe the eigenvalues ofA, we introduce a uniform grid of the angle interval (0, π)

0 = θ0 < θ1 < . . . θN < θN+1 = π, θk = kπh, k = 0 : N + 1,

The discrete eigenvectors will the nodal interpolation Ih of the continuous one to the uni-
form grid {xj} and eigenvalues will be a function defined on the uniform grid {θk}. Here
for a continuous function u, Ihu(xi) = u(xi), for i = 0, . . . , N + 1, i.e. Ihu is a discrete
function matching the function values at grid points.
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FIGURE 1. Eigenvalues of matrixA with N = 15.

Proposition 1.1. IfA = diag(b, a, b) is anN×N tri-diagonal matrix, then the eigenvalue
ofA is: for k = 1, · · · , N

λk = a+ 2b cos θk

and its corresponding eigenvector is:

ξk =
√
2 Ih sin(kπx).

Proof. It can be easily verified by the trigonometric identity

sin((j − 1)θ) + sin((j + 1)θ) = 2 cos(θ) sin(iθ).

�

It is interesting to note that eigenvectors are independent of a and b. Applying to the
special case that a = 2 and b = −1, we get

(3) λk(A) = 2(1− cos θk) = 4 sin2
θk
2
.

Notice that λ1 = O(h2) and λN = O(1), see Fig 1, and therefore κ(A) = O(h−2), i.e.,
the matrixA is ill conditioned. For the finite difference method, the corresponding matrix
is A/h2 and for finite element method A/h. The scaling will introduce a scaling of all
eigenvalues but not change the condition number.

Exercise 1.2. Apply Proposition 1.1 to the mass matrixM = (mij) withmij =
∫ 1

0
φiφj dx

and conclude M is well conditioned. �

Exercise 1.3. Figure out the eigenvalues and eigenvectors for the Neumann problem−u′′ =
λu in (0, 1) with u′(0) = u′(1) = 0. �

The integer k in the function sin(kπx) is called frequency. For a uniform grid of [0, 1]
with length h = 1/(N + 1), the range of k is 1, . . . , N . Recall that in the continuous
level, there are infinite many frequency of all eigenfunctions. The frequency higher than
N cannot be seen in the grid Th. This phenomenon is called the aliasing.

To illustrate the aliasing phenomenon, we consider a coarse grid with size 2h. When
restricted to the coarse grid T2h, some frequency in the fine grid Th will be aliased with the
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FIGURE 2. Some eigenvectors of A for h = 1/16. (a) Low frequency
part which can be preserved on the coarse grid. (b) High frequency part
which will be aliasing with the low frequency on the coarse grid.

other. Specifically, I2h(ξk) = I2h(−ξk
′
) for k = 1 : N and k′ = N + 1 − k, which can

be verified as follows

I2h sin(kπx) = (sin(kπj2h))j = (sin(j2θk))j

I2h sin(k
′πx) = (sin(k′πj2h))j = (sin(j2θk′))j = −(sin(j2θk))j .

since θk + θk′ = π by the symmetry of the uniform grid of angles. One can also verify the
aliasing by connecting coarse grid values in Fig. 1.

In general the grid Th cannot see the frequency higher than 1/h. So the coarser grid T2h
can only see the frequency less than 1/(2h). The frequency which can be only captured by
the fine grid Th but not T2h,

1

2
(N + 1) ≤ k ≤ N,

will be called high frequency (relative to T2h). We shall show the classic iteration methods
will smooth out the high frequency part of the error very quickly while leave the low
frequency part decay very slowly.
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2. SMOOTHING PROPERTY OF THE RICHARDSON ITERATION

As an illustrative example, we apply the simplest iterative method, Richardson iteration,
to solve (2). Recall that one iteration of Richardson method is

um+1 = um + α(b−Aum).

The error equation is
u− um+1 = (I − αA)(u− um)

and therefore
‖u− um+1‖A ≤ ρ(I − αA)‖u− um‖A.

When α ∈ (0, 2/λmax(A)), the method is convergent and when α = 2/(λmin(A) +
λmax(A)) it achieves the optimal rate

ρ =
κ(A)− 1

κ(A) + 1
≤ 1− Ch2.

It means that the norm of the error, as summation of squares of all components, will decay
with a slow rate 1− Ch2.

We now apply refined analysis to get different decay rate for different frequency. First
we change the coordinate. The set of all eigenvectors of A will form a basis of RN which
is orthogonal in both (·, ·) and (·, ·)A inner products. Expand e0 = u− u0 as

e0 =

N∑
k=1

ckξ
k.

Then

em = u− um = (I − αA)me0 =

N∑
k=1

cm,kξ
k,

where
cm,k = (1− αλk)mck.

Since eigenvectors are also A-orthogonal, we have

‖em‖A =

(
N∑
k=1

c2m,k‖ξk‖2A

)1/2

, ‖e0‖A =

(
N∑
k=1

c2k‖ξk‖2A

)1/2

.

The coefficient of the k-th component decays with rates

|cm,k| ≤ (1− αλk)m|ck|.
We choose α = 1/4 to simplify the rate as

ρk = |1− αλk| =
1

2
(1 + cos θk).

From the graph of ρk, see Fig 2 (a), it is easy to see that

ρ1 h 1− Ch2,
but

ρN ≤ Ch2, and ρ(N+1)/2 = 1/2.

This means that high frequency components get damped very quickly, which is known
smoothing property, while the low frequency converges very slowly.
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(a) Richardson iteration α = 1/4 (b) Gauss-Seidel iteration

FIGURE 3. Smoothing effect of classic iterative methods.

Gauss-Seidel method, as a better iterative method, has the same affect. Indeed it is a
better smoother than the Richardson method. Interesting enough, Jacobi method, corre-
sponding to α = 1/2, does not have a smoothing property, see Fig. 4 (b). We use the same
example to compute the rate for α = 1/2:

ρ1 = ρN h 1− Ch2.
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(a) Richardson iteration: α = 1/4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 115

(b) Richardson iteration: α = 1/2

FIGURE 4. Contraction rate of the Richardson iteration for different parameters

Exercise 2.1. Although Jacobi method will not damp the high frequency, due to the shift,
the rate of ρk is O(h) for k near N/2. Recall that for α = 1/4, the rate is only 1/2 for
the same range of frequency. One can then apply two Richardson iterations consecutively
with different parameters to acheive a better smoothing effect. In general, one can use
Chebyshev acceleration technique

(I − α`A) · · · (I − α1A)

and chose optimal `-parameters by the following optimization problem:

(4) min
αi∈R,i=1,...,l

{
max

λ∈[λN/2(A),λN (A)]
|(I − α`λ) · · · (I − α1λ)|

}
.

Figure out an approximated solution for ` = 1, 2, 3. �



6 LONG CHEN

3. MULTIGRID METHODS

The multigrid methods is based on the following two observation

• High frequency will be damped by a smoother.
• Low frequency can be approximated well by a coarse grid.

A crucial idea is that part of low-frequency errors on a fine mesh becomes the high-
frequency errors on a coarser mesh. For the coarse grid problem, we can apply the smooth-
ing and the separation of scales again. Recursively application of the smoothing to each
level results in the classical formulation of multigrid.

We present the following recursive subroutine of a multigrid method below.

1 function e = MG(r,J,mu)

2 % r: residual; J: level; mu: smoothing steps

3 if J == 1 % coarsest level: exact solve

4 e = A{J}\r;

5 return

6 end

7 e = 0;

8 % Presmoothing

9 for i = 1:mu

10 e = e + R(r-A{J}*e);

11 end

12 % Restriction

13 rc = Res(r-A{J}*e);

14 % Coarse grid correction

15 ec = MG(rc,J-1,mu);

16 if W-cycle

17 ec = ec + MG(rc-A{J}*ec,J-1,mu); % W-cycle

18 end

19 % Prolongation

20 e = e + Pro(ec);

21 % Postsmoothing

22 for i = 1:mu

23 e = e + R’(r-A{J}*e);

24 end

The operator (or a subroutine) R in the pre-smoothing can be chosen as the Richardson
or the Gauss-Seidel iteration and in the post-smoothing step we use its transpose R’ to
make the whole iteration symmetric. There are two subroutine Res and Pro to connect
the fine level and coarse level which will be discussed in detail in the Programming of
Multigrid Methods. The function e = MG(r,*,*) suggests that mg cycle is used to solve
the residual equation Ae = r and will be used as an iterator in the residual-correction form
of the iterative method

uk+1 = uk +MG(f −Auk).

Due to the linearity of the iteration, we can also formulate a direct update form of multigrid
method u = MG(u,f,J,mu); see Programming of Multigrid Methods.

The above MG is named V-cycle. If we apply one more coarse grid corrections using
MG (line 16 - 18), we will obtain W-cycle. The two typical MG cycles are illustrated in
the following figure.

http://www.math.uci.edu/~chenlong/226/MGcode.pdf
http://www.math.uci.edu/~chenlong/226/MGcode.pdf
http://www.math.uci.edu/~chenlong/226/MGcode.pdf
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FIGURE 5. Multigrid Cycles. Left: V-cycle. Right: W-cycle

4. INTERPRETATION AS SUCCESSIVE SUBSPACE CORRECTION METHOD

We can interpret the multigrid method as a special case of the successive subspace
correction method by choosing a multilevel decomposition of the space:

V1 ⊂ V2... ⊂ VJ = V,

and a space decomposition

(5) V =

J∑
i=1

Vi.

Denoted by Ni = dimVi and in practice Ni = γNi−1 for a factor γ > 1. For example,
spaces based on a sequence of nested meshes in Rd, the factor γ ≈ 2d.

Introduce operators

• Ii : Vi ↪→ V the natural inclusion;
• Qi : V 7→ Vi the projection in the inner product (·, ·);
• Ai : Vi 7→ Vi the restriction of A on the subspace Vi × Vi;
• Ri : Vi 7→ Vi an approximation of A−1i which is often called a smoother.

By definition

(Qᵀ
i vi, v) = (vi, Qiv) = (vi, v) = (Iivi, v) ∀ vi ∈ Vi, v ∈ V,

therefore Qᵀ
i coincides with the natural inclusion Ii or equivalently Iᵀi = Qi. Then the

restriction of A on subspaces is Ai = Iᵀi AIi = QiAQ
ᵀ
i .

Given the current iteration uk, one step of the successive (multiplicative) subspace cor-
rection (SSC) method is : let

(6) v1 = uk, vi+1 = vi + IiRiI
ᵀ
i (f −Avi), i = 1, . . . , J, uk+1 = vJ+1.
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That is: for i = 1, 2, . . . , J , we solve Aiei = ri with ri = Qi(f − Avi) approximately
using a smoother ei = Riri and update vi+1 = vi + ei. The new approximation is
uk+1 = vJ . The procedure is illustrated in the following figure.

Outline Introduction Solve Refine/Coarsen

Subspace Correction Methods

Parallel Subspace Correction methods (PSC)

% V1 &
r �! V2 �! e
& V3 %

PSC will be mainly used as preconditioners. Examples:
Hierarchical Basis (HB) and BPX preconditioners.

Successive Subspace Correction methods (SSC)

r ! V1 ! e ! r ! V2 ! e ! r ! V3 ! e.

For nested space decomposition based on uniform refinement,
Multigrid method is a special form of SSC.FIGURE 6. Successive subspace correction methods

When the subspaces are nested, we do not need to return to the finest space in each
subspace. Suppose ri = Iᵀi (r −Aeold) in the subspace Vi is known, and the correction ei
is used to update enew = eold + ei. We can compute ri−1 by the recrusion:

ri−1 = Qi−1(r −Aenew)
= Qi−1Qi(r −Aeold −Aei)
= Qi−1(ri −QiAQᵀ

i ei)

= Qi−1(ri −Aiei).
Here in the second step, we make use of the nestedness property Vi−1 ⊂ Vi to write
Qi−1 = Qi−1Qi. Similarly the correction step can be also done accumulatively. Let us
rewrite the correction as

e = eJ + IJ−1eJ−1 + . . .+ I1e1.

The correction can be computed by the recrusion

ei = ei + Iii−1ei−1, i = 2 : J

Therefore only the prolongation and restriction operators between consecutive levels are
needed. The cost at each level is reduced to O(Ni) and the total cost isO(N) as

∑
iNi =

O(N).
From this point of view, SSC on a nested space decomposition will result in a V-cycle

multigrid method. This interpretation of multigrid methods is not only helpful for the
convergence analysis but also results in the following non-recursive implementation of
multigrid V-cycle.

1 function e = Vcycle(r,J)

2 ri = cell(J,1); ei = cell(J,1);

3 ri{J} = r;

4 for i = J:-1:2

5 ei{i} = R{i}*ri{i}; % pre-smoothing: one step

6 ri{i-1} = Res{i-1}*(ri{i}-Ai{i}*ei{i}); % update and restrict residual

7 end

8 ei{1} = Ai{1}\ri{1}; % exact solver in the coarsest level

9 for i = 2:J

10 ei{i} = ei{i} + Pro{i}*ei{i-1}; % prolongation and correction

11 ei{i} = ei{i} + R{i}’*(ri{i}-Ai{i}*ei{i}); % post-smoothing: one step

12 end

13 e = ei{J};

We refer to Subspace Correction Method and Auxiliary Space Method for detailed ex-
planation and convergence analysis of subspace correction methods and Programming of
Multigrid Methods for implementation.

https://www.math.uci.edu/~chenlong/226/SubspaceCorrection.pdf
http://www.math.uci.edu/~chenlong/226/MGcode.pdf
http://www.math.uci.edu/~chenlong/226/MGcode.pdf
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