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Multigrid methods for solving the linear algebraic equation Au = f posed on a finite
dimensional Hilbert space V can be understood as successive subspace correction (SSC)
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method applied to nested multilevel spaces decomposition V =
∑J
i=0 Vi with nested sub-

spaces
V0 ⊂ V1 . . . ⊂ VJ = V.

In this Chapter, we provide convergence proofs of V-cycle multigrid methods using X-Z
identity [9] for SSC method. We would expect a rate independent or weakly dependent
of the number of unknowns. All constants included in assumptions are presumably such
constants.

Our proofs are based on various assumptions on the smoothers and space decompo-
sitions. These assumptions can be also used as a guideline to design robust multigrid
methods. Generally speaking smoothers satisfies certain smoothing property and the space
admits an A-stable decomposition. The smoothing property can be further build into an
A-stable micro-decomposition of spaces in each level. Therefore a stable space decompo-
sition is the key of a robust multigrid method interpreting as a subspace correction method.

1. X-Z IDENTITY

The problem to solve is Au = f on a finite dimensional Hilbert space V with A being
a symmetric positive definite (SPD) operator with respect to the inner product (·, ·). The
SPD operator A defines a bilinear form A(u, v) := (Au, v) which introduces also a new
inner product (u, v)A = (Au, v).

1.1. Notation. Let Vi ⊂ V , i = 0, . . . , J, be subspaces of V. If V =
∑J
i=0 Vi, then

{Vi} is called a space decomposition of V. The spaces {Vi} are not necessarily nested.
We introduce the following operators for i = 0, 1, . . . , J :
• Ii : Vi ↪→ V the natural inclusion;
• Qi : V 7→ Vi the projection in the inner product (·, ·);
• Pi : V 7→ Vi the projection in the inner product (·, ·)A;
• Ai : Vi 7→ Vi (Aiui, vi) = (Aui, vi) corresponds to the restriction of bilinear

form A on the subspace Vi × Vi;
• Ri : Vi 7→ Vi an approximation ofA−1

i which is often called smoothers or local
subspace solvers.

• Ti : V→ Vi Ti = RiQiA = RiAiPi.

We recall some relations between these operators. By definition Qti coincides with
the natural inclusion Ii which is sometimes are omitted. The inclusion Ii is often called
prolongation operator and Iti = Qi is the restriction operator. It follows from the definition
that AiPi = QiA and Ai = ItiAIi.

All smoothers Ri are assumed to be non-singular but could be non-symmetric. For
each Ri, i = 0, · · · , J , its symmetrization Ri is an operator satisfying Ii −RiAi = (Ii −
RtiAi)(Ii − RiAi). That is Ri is a symmetric smoother by applying smoother Ri and Rti
consecutively. By definition,

Ri = Rti(R
−t
i +R−1

i −Ai)Ri.

When Ri = A−1
i , from the definition, Ti = Pi = A−1

i QiA. Restricted to the subspace
Vi, the projection Pi is identity and thus Ti|Vi = RiAi : Vi → Vi is nonsingular. With a
slight abuse of notation, we still use Ti to denote Ti|Vi and T−1

i = (Ti|Vi)−1. Define the
symmetrization T i = Ti+T ∗i −TiT ∗i = RiAiPi where the adjoint ∗ is taken with respect
to the (·, ·)A inner product. Then

(1) I − T i = (I − T ∗i )(I − Ti).
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The action of Ti and T−1
i is

(Tiu, v)A = (RiAiu,Aiv), (T−1
i u, v)A = (R−1

i u, v) for u, v ∈ Vi.

Similar relation between T i and Ri holds. It is much easier to manipulate one single letter
Ti than RiQiA = RiAiPi.

For k = J, · · · , 1, in each space Vk, we apply an effective smoother Rk, which is
called pre-smoothing, to damp the high frequency relative to that level. In the coarsest
space V0, we will use the exact solver. One post-smoothing using Rtk from k = 1, · · · , J
is supplemented to form a V (1, 1)-cycle. In general m1-step pre-smoothing and m2-post-
smoothing results a V (m1,m2)-cycle.

In operator form, one V-cycle iteration can be written as

uk+1 = uk +B(f −Auk).

Let E = (I−T0)(I−T1)...(I−TJ). The error operator of V (1, 1)-cycle is E := E∗E =
I −BA, i.e.,

u− uk+1 = E(u− uk) = (I −BA)(u− uk).

We want to prove the contraction

‖E‖A ≤ δ, for some δ ∈ [0, 1).

Ideally δ is independent of N the dimension of the space V and a weak dependence of
logN is acceptable.

The main tool is the X-Z identity [9] for the multiplicative methods. For an elementary
proof, we refer to Chen [3] or Chapter: Subspace Correction Methods and Auxiliary Space
Methods. We will collect several versions of the X-Z identity below.

1.2. XZ identities. We assume each local solver is convergent restricted to the subspace.
————————————————————————————————————
(C) Each local solver is a contraction: ‖Ii −RiAi‖Ai < 1 for i = 0, · · · , J
————————————————————————————————————

Exercise 1.1. Prove that if (C) holds, then ‖I −Ti‖A ≤ 1 and consequently ‖E‖A ≤ 1 is
non-expansive.

We first present identities of the V-cycle operator.

Theorem 1.2. Suppose (C) holds. Then B is SPD, and

(B
−1
v, v) = inf∑J

i=0 vi=v

J∑
i=0

‖vi +RtiAiPi

J∑
j>i

vj‖2R−1
i

.(2)

(B
−1
v, v) = ‖v‖2A + inf∑J

i=0 vi=v

J∑
i=0

‖Rti(AiPi
J∑
j=i

vj −R−1
i vi)‖2R−1

i

.(3)

In particular, for Ri = A−1
i , we have

(4) (B
−1
v, v) = ‖v‖2A + inf∑J

i=0 vi=v

J∑
i=0

‖Pi
J∑

j=i+1

vj‖2A.

Based on these identities, we have different versions of the X-Z identity of the error
operator.
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Theorem 1.3 (X-Z identity). Suppose the local iterative method satisfies (C). Then

(5) ‖E∗E‖A = 1− 1

K
,

where

K = sup
‖v‖A=1

inf∑J
i=0 vi=v

J∑
i=0

‖vi +RtiAiPi

J∑
j>i

vj‖2R−1
i

.

Or

(6) ‖E∗E‖A = 1− 1

1 + c0
,

where

c0 = sup
‖v‖A=1

inf∑J
i=0 vi=v

J∑
i=0

‖Rti(AiPi
J∑
j=i

vj −R−1
i vi)‖2R−1

i

.

In particular, for Ri = A−1
i ,

(7) ‖E∗E‖A = 1− 1

1 + c0
,

where

c0 = sup
‖v‖A=1

inf∑J
i=0 vi=v

J∑
i=0

‖Pi
J∑

j=i+1

vj‖2A.

Note that these identities hold for a general space decomposition, i.e., subspaces Vi, i =
0, . . . , J are not necessarily nested. Estimate of constants K or c0 will be obtained by
various decomposition of an element v ∈ V, and when {Vi} are nested, the decomposition
can be constructed using slice operators.

1.3. Some estimates. We collect some useful estimates involving operators T and T in
this subsection. Since the results are applied to a fixed level, the subscript of levels is
skipped. We shall use the notation of comparing symmetric operators: for two SPD oper-
ators A and B, we write A ≤ B if (Av, v) ≤ (Bv, v) for all v ∈ V.

First of all from the identity I − T = (I − T )∗(I − T ), we conclude the maximal
eigenvalue of T is bounded by one.

Lemma 1.4.
λmax(T ) ≤ 1.

Proof. We have I−T = (I−T )∗(I−T ) ≥ 0, i.e., T ≤ I which implies λmax(T ) ≤ 1. �

We then give an identity to connect T and T .

Lemma 1.5. For any u ∈ V,

(8) (Tu, u)A = ‖u‖2A − ‖(I − T )u‖2A = 2(Tu, u)A − ‖Tu‖2A.

Proof. It is an easy consequence of the identity I − T = (I − T )∗(I − T ). �

We estimate the norm of the iterative matrix I − T based on the identity (8).
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Theorem 1.6.

(9) ‖I − T‖2A = ‖I − T‖A = 1− λmin(T ).

Consequently if

(10) (T
−1
u, u)A ≤ K(u, u)A, for all u ∈ V.

then

‖I − T‖2A ≤ 1− 1

K
.

Proof. Rearrange the identity (8) as ‖(I − T )u‖2A = ‖u‖2A − (Tu, u)A and the desired
result (9) follows from the definition of the norm and eigenvalue.

The inequality (10) implies λmax(T
−1

) ≤ K which is equivalent to λmin(T ) ≥ 1/K
and the estimate (10) then follows from (9). �

We now formulate different criterion for the convergence of the operator I − T .
————————————————————————————————————
(Tw) There exists a constant ω ∈ (0, 2) such that

‖Tu‖2A ≤ ω(Tu, u)A, for all u ∈ V.

————————————————————————————————————
————————————————————————————————————
(T̄w) There exists a constant ω ∈ (0, 2) such that

‖Tu‖2A ≤
ω

2− ω
(Tu, u)A, for all u ∈ V.

————————————————————————————————————
————————————————————————————————————
(σ) There exists a constant σ > 0 such that

λmax(TT
−1
T ∗) = λmax((R−t +R−1 −A)−1A) ≤ σ.

————————————————————————————————————

Exercise 1.7. Prove the assumptions (Tw) and (T̄w) are equivalent using the identity (8).

We now prove the assumptions (T̄w) and (σ) are equivalent. Using ρ(AB) = ρ(BA),
(σ) is equivalent to T

−1
T ∗T ≤ σ which is T ∗T ≤ σT , i.e., (T̄w) with σ = ω/(2− ω).

Theorem 1.8. The contraction assumption (C), i.e., ‖I − T‖A < 1 is equivalent to the
condition (Tw).

Proof. First by the identity (9), ‖I − T‖A < 1 is equivalent to λmin(T ) > 0. Then by the
identity (8), (Tu, u)A = 2(Tu, u)A−‖Tu‖2A, we get the equivalence of λmin(T ) > 0 and
2(Tu, u)A > ‖Tu‖2A which is equivalent to (Tw). �

So in later sections, we will use either (C), (Tw), (T̄w), or (σ).

Remark 1.9. By a simple change of variable v = Tu, the condition (Tw) is equivalent
to: there exists a number ω ∈ (0, 2) such that

(11) (Au, u) ≤ ω(R−1u, u), for all u ∈ V.
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When the smootherR is symmetric, T is symmetric in theA-inner product. The relation
I − T = (I − T )∗(I − T ) is reduced to

(12) T = 2T − T 2.

We could have more estimate on the eigenvalue of T and T .

Theorem 1.10. If R is symmetric and (Tw) holds. Then
(1) 0 < λmin(T ) ≤ λmax(T ) ≤ ω < 2.
(2) λmin(T ) = min{λmin(T )(2− λmin(T )), ω(2− ω)}.
(3) (Tu, u)A ≥ (2− ω)(Tu, u)A for all u ∈ V.
(4) (T

−1
u, u)A ≤ (2− ω)−1(T−1u, u)A for all u ∈ V

Proof. When T is symmetric, we use the equivalent condition (11) to derive the bound of
T = RA in (1). The identity (2) is from the relation (12). The inequality (3) follows by
using (Tw) to replace ‖Tu‖2A by (Tu, u)A in the identity (8). The inequality (4) can be
proved by showing

T
−1 − (2− ω)−1T−1 ≤ 0

using the bound of the spectrum of T . �

When T is symmetric in the A-inner product, using the notation of comparing sym-
metric operators (now in (·, ·)A), we can write (3) as T ≥ (2 − ω)T and (4) as T

−1 ≤
(2− ω)−1T−1 which is formally obtained by taking inverse of (3).

The constant ω will enter the estimate of the contraction rate through (4). Thus for a
symmetric smoother, we will use the equivalent condition (Tw) instead of (C) and assume
ω = λmax(T ) is well below 2.

2. ORTHOGONAL TELESCOPE DECOMPOSITION

We assume the subspaces Vi are nested, i.e., V0 ⊂ V1 . . . ⊂ VJ = V. Recall Pk : V→
Vk is the orthogonal projection in the (·, ·)A inner product. DefineP−1 = 0. In this section,
we will choose the orthogonal telescope decomposition uk = (Pk − Pk−1)u, k = 0, ..., J,
in the X-Z identity. The analysis is simplified tremendously due to the orthogonality of
operators in the A-inner product.

2.1. Properties and Assumptions. Since the spaces are nested, we have the following
properties of the projections

(P1) PkPl = Pk for l ≥ k;
(P2) Pk(Pl − Pl−1) = 0 for l > k;
(P3) (Pk − Pk−1)(Pl − Pl−1) = 0 for l > k and (Pk − Pk−1)2 = Pk − Pk−1;
(P4) Pk = A−1

k QkA is symmetric in the A-inner product.
As a consequence of the properties (P3) and (P4), we have

(13)
J∑
k=0

‖uk‖2A = ‖u‖2A.

As a consequence of the property (P2), the first version of X-Z identity (5) can be simplified
to

(14)
J∑
k=0

∥∥∥∥∥uk +RtkAkPk

(∑
l>k

ul

)∥∥∥∥∥
2

R
−1
k

=

J∑
k=0

‖uk‖2R−1
k

.
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Comparing (13) and (14), it is natural to make the following smoothing assumption on the
smoother.
————————————————————————————————————
(S̄P ) The smoother Rk will smooth the frequency (Pk −Pk−1)V, i.e., there exists cR ≥ 0

(15) (R
−1

k uk, uk) ≤ cR(Auk, uk), for all uk ∈ (Pk − Pk−1)V, k = 0, · · · , J.

————————————————————————————————————

Exercise 2.1. Prove if (S̄P ) holds, then the constant cR ≥ 1. Hint: use λmax(RA) ≤ 1.

Consider the Richardson smootherRk = ωIk. Then the contraction rate ‖Ik−RkAk‖Ak
could be very close to 1, say 1 − Ch2

k. But if the smoother Rk = ωIk satisfies (S̄P ), one
can show

‖(Ik −RkAk)|Wk
‖2A = ‖(Ik −RkAk)|Wk

‖A ≤ 1− 1

cR
.

For this example, (S̄P ) implies that restricted to the subspace Wk = (Pk − Pk−1)V, the
contraction rate is well below 1.

One may wonder why the rate of convergence on the whole space Vk is worse than
on a subspace. If we explicitly apply the iteration to the subspace Wk, then from the
minimization of energy point of view, of course, the reduction of the energy on Vk is not
worse than 1 − 1/cR. The point is: in the smoothing, we do not form the space Wk

explicitly. If we knew a bases of (Pk − Pk−1)V, we would have rewritten the operator A
using the orthogonal decomposition

V =

J⊕
k=0

(Pk − Pk−1)V.

The corresponding matrix will be a block diagonal matrix and inverting this block diago-
nal matrix is relatively easy. The best example is the Fourier bases. Then for Laplacian
operator, the corresponding matrix is diagonal. Such nice bases in general, (for example
for variable coefficients, complex domains, and unstructured triangulations), is difficult,
if not impossible, to construct. In multigrid methods, however, we do not form the de-
composition of frequency but just relax on a larger set of basis. The redundancy really
helps.

Exercise 2.2. For linear finite element discretization of 1-D Poisson equation, show that
the hierarchical basis (HB) is A-orthogonal and the corresponding matrix is diagonal.

When the smoother is symmetric, we can use the smoothing property of Rk, which is
easier to verify for symmetric smoothers, instead that of Rk.
————————————————————————————————————
(SP ) The smoother Rk will smooth the frequency (Pk − Pk−1)V, i.e., there exists cR > 0

(16) (R−1
k uk, uk) ≤ cR(Auk, uk), for all uk ∈ (Pk − Pk−1)V, k = 0, · · · , J.

————————————————————————————————————
Using the inequality (4) in Theorem 1.10, we can get (S̄P ) from (SP ).

Lemma 2.3. For a symmetric smoother R, if (C) holds, then

(17) (R
−1
u, u) ≤ 1

2− ω
(R−1u, u), with ω = λmax(RA).
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As a direct consequence of Lemma 2.3, we have the following lemma which says:
(Tw) + (SP )⇒ (S̄P ).

Lemma 2.4. For a symmetric smoother R, if it satisfies (Tw) and (SP ) with constant cR,
then it satisfies (S̄P ) with constant cR/(2− ω).

Example 2.5. Consider Richardson smootherRi = λ−1
max(Ai)Ii. Then ω = λmax(RiAi) =

1 which also implies the convergence of the smoother. To simplify notation, we write V
and VH for two consecutive subspaces Vk and Vk−1 and I − PH for Pk − Pk−1. Then
(SP ) becomes

(18) ‖(I − PH)u‖2 ≤ cR
λmax(A)

‖(I − PH)u‖2A.

In the setting of FEM for elliptic equations, (18) can be proved by the duality argument
using H2-regularity assumption.

When (18) fails to hold, which means the point-wise smoother fails, it is still possible to
design block-wise smoothers to satisfy (SP ) or (S̄P ) by choosing a stable decomposition
of the frequency (I − PH)V; see e.g. [1]. We shall discuss this more in Section 5.

2.2. Convergence. We summarize our first convergence proof of V-cycle multigrid as
follows.

Theorem 2.6. Suppose the smoother Rk satisfies assumptions (C) and (S̄P ). Then the
corresponding V (1, 1)-cycle is uniform convergent with a rate 1− 1/cR, i.e.

‖E∗E‖A ≤ 1− 1

cR
.

Proof. The proof is straightforward using assumptions and the X-Z identity (5):
J∑
k=0

‖uk +RtkAkPk(
∑
l>k

ul)‖2R−1
k

=

J∑
k=0

‖uk‖2R−1
k

≤ cR
J∑
i=0

‖vi‖2A = cR‖v‖2A.

�

Theorem 2.7. Suppose the symmetric smoother Rk satisfies assumptions (Tw) and (SP ).
Then the corresponding V (1, 1)-cycle is uniform convergent with a rate 1− (2− ω)/cR

‖E∗E‖A ≤ 1− 2− ω
cR

.

The assumption (SP ) is easier to verify than (S̄P ) for symmetric smoothers such as
Richardson or weighted Jacobi smoothers. But one needs to check one more constant ω is
well below 2.

3. APPROXIMATION AND SMOOTHING PROPERTY

We shall break the assumption (S̄P ) into two assumptions which are easier to verify.
Recall that the two ingredients of multigrid methods are

(1) use a smoother to damp the high frequency;
(2) use the coarse grid correction to approximate the low frequency.

The smoother has the smoothing property which can damp the high frequency effectively.
The approximation property ensures the subspaces (Pk − Pk−1)V consists of high fre-
quency functions. The analysis based on the approximation and smoothing property is
firstly developed by Hackbusch [7]. The presentation here is simplified using X-Z identity.
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The advantage of this approach is the relatively simple proof and stronger results in-
volving smoothing steps; see Section 7. The limitation of this approach is:

• the smoother is essentially point-wise.
• duality argument involving full regularity assumption is needed to estimate L2-

type norm of the A-projection.
Therefore this approach is not easy to handle elliptic equations with singularity, say, dis-
continuous diffusion coefficients or concave domains, and elliptic operators with nontrivial
kernel for which point-wise smoothers are not adequate.

3.1. High frequency. We begin with the definition of high frequency. Let ρ(A) = λmax(A)

be the spectral radius of A and define a scaled norm ‖u‖ρ =
√
ρ(A)(u, u). For every

u ∈ V, by definition,

(19) ‖u‖2A = (Au, u) ≤ ρ(A)(u, u) = ‖u‖2ρ.

In FEM setting, (19) is known as the inverse inequality |v|1 . h−1‖v‖with ρ(A) = Ch−2.
An element v ∈ V is called high frequency if

(20) ‖u‖2ρ ≤ C‖u‖2A.

Consider the decomposition of u using the eigen-vector bases of A. The constant C in
(20) is introduced to include not only the highest frequency but a range of frequencies
comparable to the highest one. In FEM setting, (20) reads as h−1‖v‖ . |v|1, i.e., the
function oscillates with frequency h. In other words, for high frequency functions, the
inverse of the inverse inequality holds.

3.2. Approximation property.
————————————————————————————————————
(AP ) Approximation property of Pk. There exists a constant ca such that:

(21) ‖(I − Pk−1)uk‖2 ≤
ca

ρ(Ak)
‖uk‖2A for all uk ∈ Vk, k = 1, . . . , J.

————————————————————————————————————
The approximation property (AP ) is equivalent to the difference (I − PH)u is high

frequency, i.e.

(22) ρ(A)‖(I − PH)u‖2 ≤ ca‖(I − PH)u‖2A,

The equivalence can be easily verified by noting that (I−PH)u = (I−PH)2u. Interesting
enough it is also equivalent to Richardson smoother satisfies (SP ); see Example 2.5.

Example 3.1. In the example of FEM for elliptic equations, (AP ) can be proved by the
duality argument as

‖(I − PH)u‖ . h‖(I − PH)u‖A . h‖u‖A.

3.3. Smoothing property. We formulate the smoothing property using the spectral norm.
————————————————————————————————————
(S̄ρ) Smoothing property of high frequency. There exists a constant cs such that

(23) (R
−1

k uk, uk) ≤ csρ(Ak)(uk, uk) for all uk ∈ Vk, k = 0, . . . , J.

————————————————————————————————————
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Using the notation of comparing SPDE operators, we can write (S̄ρ) asR
−1 ≤ csρ(A)I

or I/ρ(A) ≤ csR. That is R
−1

is dominated by a Richardson smoother. The smoother is
essentially a point-wise smoother.

Recall (AP ) is equivalent to a Richardson smoother satisfies (S̄P ). Combining them,
we have the following result.

Lemma 3.2. The assumption (AP ) and (S̄ρ) implies (S̄P ) with cR = cacs.

Proof. For uk ∈ (Pk − Pk−1)V, by the assumptions (S̄ρ) and (AP )

(R
−1

k uk, uk) ≤ csρ(Ak)(uk, uk) ≤ cacs(Auk, uk).

In the last step, we use (P2) to write uk = (Pk − Pk−1)u = (I − Pk−1)(Pk − Pk−1)u =
(I − Pk−1)uk. �

When (AP ) fails, (S̄ρ) alone cannot imply (S̄P ) which simply means the point-wise
smoother is not a good one. For example, standard G-S iteration is not a good smoother
for H(curl ) and H(div) problems although G-S always satisfies (S̄ρ). A good smoother
satisfying (S̄P ) can be obtained by using block G-S smoothers.

For symmetric smoothers, as before, we can modify the smoothing property to
————————————————————————————————————
(Sρ) Smoothing property of high frequency for symmetric smoothers. There exists a con-
stant cs such that

(24) (R−1
k uk, uk) ≤ csρ(Ak)(uk, uk) for all uk ∈ Vk, k = 0, . . . , J.

————————————————————————————————————
Similarly (Sρ) will imply (S̄ρ) with constant cs/(2−ω), ω = λmax(RA). The constant

ω can be estimated by R ≤ ωA−1 or ωR−1 ≥ A; see (11).

3.4. Smoothing property of popular smoothers. We now verify the smoothing prop-
erty (S̄ρ) of popular smoothers, including Gauss-Seidel, Richardson, and weighted Jacobi
iterations. To simplify notation, we skip the subscript associated to levels.

Consider the standard bases decomposition V =
∑N
i=0 Vi. We assume this decompo-

sition is stable under the norm introduced by the default inner product (·, ·). Namely for
u =

∑
j uj

(25) cM

N∑
i=0

‖uj‖2 ≤ ‖u‖2 ≤ CM
N∑
i=0

‖uj‖2.

In FEM setting, (25) means the bases decomposition is stable in the L2 norm which can be
easily proved by the element-wise scaling argument.

One way to verify the smoothing property for multiplicative smoothers is using the
formula of R

−1
and X-Z identity again. For symmetric smoothers, alternative way is to

estimate both λmin(RA) and λmax(RA).

Smoothing property of Gauss-Seidel iteration. Recall that Gauss-Seidel iteration can be
understood as SSC apply to the basis decomposition V =

∑N
i=1 Vi with Ri = A−1

i . We
then use the identity (4) to estimate

(B
−1

GSu, u) =

N∑
i=0

‖Pi
∑
j>i

uj‖2A ≤
N∑
i=0

∑
j∈n(i)

‖uj‖2A ≤ Cdρ(A)

N∑
i=0

‖uj‖2 ≤ csρ(A)‖u‖2.
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Here we use the sparsity of A such that the repetition in the summation is bounded above
by Cd, the number of neighbors of a basis which is the degree of a vertex in the associated
graph of A. The final constant cs = Cdc

−1
M .

Therefore G-S always satisfies the smoothing property (S̄ρ).

Smoothing property of Richardson iteration. We choose R = ωρ−1(A)I . To be a contrac-
tion, the constant ω ∈ (0, 2). Then

R
−1

= R−1(R−1 +R−1 −A)−1R−1 = ρ(A)2(2ωρ(A)I − ω2A)−1.

Therefore (S̄ρ) holds, i.e.,

(26) ρ(R
−1

) ≤ ρ(A)

ω(2− ω)
.

The optimal parameter to minimize the constant 1/(ω(2−ω)) is ω = 1. That is Richardson
iteration R = ρ−1(A) is a good smother.

Richardson iteration needs an estimate of ρ(A) while G-S is parameter free. One tool
for estimating eigenvalues is the Gershgorin circle theorem.

Smoothing property for weighted Jacobi iteration. Jacobi iteration itself may not have the
smoothing property. For example, for 1-D discretization Poisson on uniform grids, the
Jacobi method is the Richardson method with ω = 2 and thus no smoothing property in
view of (26).

Consider the weighted Jacobi smoother R = τD−1. Then the smoothing property is
easy to show

(R−1u, u) = τ−1
N∑
i=1

‖ui‖2A ≤ τ−1ρ(A)

N∑
i=1

‖ui‖2 ≤ τ−1c−1
M ρ(A)‖u‖2.

However, the final smoothing effect (S̄ρ) will be weighted by 1/(2− ω) with

ω = λmax(RA) = τλmax(D−1A) = τλmax(AD),

where AD = D−1/2AD−1/2. Therefore

(R
−1
u, u) ≤ (2− τλmax(AD))−1τ−1c−1

M ρ(A)‖u‖2.
To maximize the constant (2− τλmax(AD))τ , we can chose τ = 1/λmax(AD).

For the scaled SPD matrixAD, the diagonal is always 1. When the matrixA is diagonal
dominate, by the Gershgorin circle theorem, λmax(AD) ≤ 2. Therefore in practice, τ =
0.5 is a recommend for weighted Jacobi iteration when used as a smoother.

Exercise 3.3. Prove the smoothing property (S̄ρ) for SOR iteration R = ω(D + ωL)−1

with a suitable parameter ω.

3.5. Convergence. We state the convergence of V-cycle using the approximation and
smoothing property.

Theorem 3.4. Suppose the nested space decomposition satisfies (AP ) and the smoother
Rk satisfies assumptions (C) and (S̄ρ). Then the corresponding V (1, 1)-cycle converges
with rate 1− 1/(cacs).

Theorem 3.5. Suppose the nested space decomposition satisfies (AP ) and the symmetric
smoother Rk satisfies assumptions (Tw) and (Sρ). Then the corresponding V (1, 1)-cycle
converges with rate 1− (2− ω)/(cacs).



12 LONG CHEN

4. STABLE DECOMPOSITION AND QUASI-ORTHOGONALITY

Verification of (S̄P ) or (AP ) requires the duality argument which in turn needs the
regularity result of elliptic problems. This is a serve restriction in application. In this
section we switch from the subspace (Pk −Pk−1)V to a more general subspace Wk ⊂ Vk
and assume V =

∑J
k=0 Wk. This decomposition should be stable and quasi-orthogonal.

We emphasize again that Wk is introduced for the analysis and do not need to be explicitly
formed in the algorithm.

This framework is introduced by Xu [8] and the proof is simplified using X-Z identity.

4.1. Assumptions. We need the following assumptions on the space decomposition.
————————————————————————————————————
(DW ): The space decomposition V =

∑J
k=0 Wk is A-stable:

(27) inf∑J
i=0 vi=v,vi∈Wi

J∑
i=0

‖vi‖2A ≤ K1‖v‖2A.

————————————————————————————————————
————————————————————————————————————
(OW ): Quasi-Orthogonality. The following Strengthened Cauchy Schwarz (SCS) inequal-
ity holds for any ui ∈ Vi, vi ∈Wi, i = 0, · · · , J

(28)
J∑
i=0

J∑
j=i+1

(ui, vj)A ≤ K2

(
J∑
i=0

‖ui‖2A

)1/2( J∑
i=0

‖vi‖2A

)1/2

.

————————————————————————————————————
If we chose Wi = (Pi − Pi−1)V, then (DW ) holds with constant K1 = 1 and (OW )

holds with K2 = 0. The assumption (DW ) relax the A-orthogonal decomposition to a
stable one and (OW ) means the subspace Wj , which is often of high frequency, is quasi-
orthogonal to the coarser space Vi for i < j.

We revise the smoothing property associated to W.
————————————————————————————————————
(S̄W ) The smoother Rk will smooth the frequency in Wk, i.e., there exists cR ≥ 0

(29) (R
−1

k uk, uk) ≤ cR(Auk, uk), for all uk ∈Wk, k = 0, · · · , J.

————————————————————————————————————

4.2. Convergence. In the estimate below, we shall use the equivalent condition (σ) in-
stead of (C) since the constant σ = ω/(2− ω) will enter the estimate.

Theorem 4.1. Suppose the smoother Rk satisfies assumptions (σ), and (S̄W ) and the
space decomposition satisfies (DW ) and (OW ). Then the corresponding V (1, 1)-cycle is
uniform convergent with a rate bounded by

1− 1

K1(
√
cR +

√
σK2)2

.

Proof. We consider the first X-Z identity (5). Let wi = vi + RtiAiPi(
∑
j>i vj). We split

as
J∑
i=0

‖wi‖2R−1
i

=

J∑
i=0

(wi, vi)R−1
i

+

J∑
i=0

(wi, R
t
iAiPi

∑
j>i

vj)R−1
i

= I1 + I2.
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Using Cauchy-Schwarz inequality and assumption (S̄W ), we can bound the first term

I1 ≤

(
J∑
i=0

‖wi‖2R−1
i

)1/2( J∑
i=0

‖vi‖2R−1
i

)1/2

≤
√
cR

(
J∑
i=0

‖wi‖2R−1
i

)1/2( J∑
i=0

‖vi‖2A

)1/2

.

To bound the second term, we denote by ui = TiT
−1

i wi and bound the norm ‖ui‖A
using (σ) as

‖ui‖2A = ‖TiT
−1

i wi‖2A ≤ σ(T iT
−1

i wi, T
−1

i wi)A = σ(T
−1

i wi, wi)A = σ‖wi‖2R−1
i

.

We then rewrite I2 using operator Ti and T i

I2 =

J∑
i=0

(T
−1

i wi, TiPi
∑
j>i

vj)A =

J∑
i=0

(TiT
−1

i wi,
∑
j>i

vj)A =

J∑
i=0

J∑
j=i+1

(ui, vj)A.

We now apply SCS, i.e., (OW ) to get

I2 ≤ K2

(
J∑
i=0

‖ui‖2A

)1/2( J∑
i=0

‖vi‖2A

)1/2

≤ K2

√
σ

(
J∑
i=0

‖wi‖2R−1
i

)1/2( J∑
i=0

‖vi‖2A

)1/2

.

Combing the bound of I1 and I2 and choosing a stable decomposition v =
∑
i vi, vi ∈

Wi, we get the desirable inequality

J∑
i=0

‖wi‖2R−1
i

≤ (
√
cR +K2

√
σ)2

J∑
i=0

‖vi‖2A ≤ K1(
√
cR +K2

√
σ)2‖v‖2A.

�

Note that (OW ) hold for K2 = J + 1 = O(logN) by a naive application of Cauchy-
Schwarz inequality. The focus in a stable decomposition (DW ). The smoothing property
(S̄W ) can be also verified using a stable decomposition of subspace W; see Section 6.

4.3. Point-wise smoothers. We can use the spectral norm to form slightly different as-
sumptions. To unify the notation, we understand ‖u0‖ρ0 = ‖u0‖A.

————————————————————————————————————

(DWρ): The space decomposition V =
∑J
k=0 Wk is ρ-stable:

(30) inf∑J
i=0 vi=v,vi∈Wi

J∑
i=0

‖vi‖2ρ(Ai) ≤ K1‖v‖2A.

————————————————————————————————————

————————————————————————————————————

(OWρ ): Quasi-Orthogonality. The following Strengthened Cauchy Schwarz (SCS) inequal-
ity holds for any ui ∈ Vi, vi ∈Wi, i = 0, · · · , J

(31)
J∑
i=0

J∑
j=i+1

(ui, vj)A ≤ K2

(
J∑
i=0

‖ui‖2A

)1/2( J∑
i=0

‖vi‖2ρ(Ai)

)1/2

.

————————————————————————————————————
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Using the inequality ‖vi‖A ≤ ‖vi‖ρ(Ai), one can easily verify that (DWρ
) implies (DW )

but (OW ) implies (OWρ
). Therefore the difficulty of verifying assumptions (DW )− (OW )

or (DWρ
) − (OWρ

) are balanced. These two set of assumptions are equivalent if Wi

consists of high frequency functions since then ‖vi‖2A h ‖vi‖2ρ(Ai). The benefit of using
(DWρ

)− (OWρ
) is that we only need to check the weaker smoothing property (S̄ρ) which

holds for most popular point-wise smoothers.
With a minor modification of the proof, we can obtain the following results using as-

sumptions on the spectral norm.

Theorem 4.2. Suppose the smootherRk satisfies assumptions (σ), and (S̄ρ) and the space
decomposition satisfies (DWρ

) and (OWρ
). Then the V(1,1)-cycle is uniform convergent

with a rate bounded by

1− 1

K1(
√
cR +

√
σK2)2

.

Example 4.3. The above results requires an estimate of σ. For symmetric smoother, it is
equivalent to assume ω = λmax(RiAi) is uniformly bounded below 2 which can be en-
sured by imposing a suitable weight. In this example we verify the equivalent assumption
(σ) for the most popular non-symmetric smoother: G-S iteration. For R = (D + L)−1 or
R = (D + U)−1, (R−t + R−1 − A)−1 = D−1. Therefore ρ(TT

−1
T ∗) = ρ(AD) ≤ σ,

where σ = 2 for diagonal dominate matrices and finite for general sparse SPD matrices.

A way to verify the stable decomposition using a stable quasi-interpolation will be dis-
cussed below.

4.4. Decomposition using a stable quasi-interpolation. The assumptions on the space
decomposition (DW ) and (OW ) are not easy to verify, especially to get a uniform bounded
constants K1 and K2. In this subsection we present a simple but nearly optimal conver-
gence proof which only requires the construction of a quasi-interpolation operator with the
following stability and approximation property.
————————————————————————————————————
(BΠ): The operator Πk is stable (bounded) in A-norm, i.e., for k = 1, . . . , J :

‖Πku‖2A ≤ cb‖u‖2A, for all u ∈ V.

————————————————————————————————————
————————————————————————————————————
(AΠ) Approximation property of Πk. For k = 1, . . . , J :

(32) ‖(I −Πk)u‖2 ≤ ca
ρ(Ak)

‖u‖2A, for all u ∈ V.

————————————————————————————————————

Theorem 4.4. Suppose the smoother Rk satisfies assumptions (σ), and (S̄ρ). Suppose
there exist linear operator Πk satisfying the approximation property (AΠ). Suppose ρ(Ak) ≤
crρ(Ak−1). Then the V(1,1)-cycle is nearly uniform convergent with a rate •1

•1 check the constant. not quite
right.

1− 1

4ca(1 + cr)J(cR + σJ)
.

Proof. We consider the decomposition V =
∑
kWk, with Wk = (Πk − Πk−1)V for

k = 0, . . . , J . Here for the convenience of notation, ΠJ := I,Π−1 := 0. We verify the
assumptions (DΠ) and (OΠ). First the assumption (OΠ) holds for K2 = J .
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Using the triangle inequality and (AΠ), we have

J∑
k=1

ρ(Ak)‖(Πk −Πk−1)u‖2 ≤ 2

J∑
k=1

ρ(Ak)(‖(I −Πk)u‖2 + ‖(I −Πk−1)u‖2)

≤ 2ca(1 + cr)J‖u‖2A.

For k = 0, we have to use the stability of Π0 to bound ‖Π0u‖A ≤ cb‖u‖A.
Apply Theorem 4.2 to Wk = (Πk −Πk−1)V to get the desirable result. �

Example 4.5. As an example, we consider linear finite element methods for elliptic prob-
lems based on a sequence of nested meshes by regular refinement. Then ρ(Ak) h h−2

k and
cr = 4.

We have verified the smoothing property and the assumption (σ) for three popular
smoothers: Richardson, Jacobi, and Gauss-Seidel. We chose Πk = Qk, the L2-projection.
The approximation property (AQ) holds by the standard L2 error estimate. The L2 projec-
tion Qk is stable in H1-norm on quasi-uniform grids. Note that we cannot chose the nodal
interpolation Ik since it is not stable in H1-norm.

We thus have proved V-cycle multigrid will converge in a nearly optimal rate 1 −
1/ log2N.

Removing the logN factor is technical and will be discussed in somewhere else.

5. BLOCK SMOOTHERS

If using the orthogonal telescope decomposition, the crucial assumption is the smooth-
ing property (S̄P ). In general, suppose Πk is a stable operator, which is not difficulty to
construct, define Wk = (Πk − Πk−1)V, assumptions (DW ) and (OW ) will hold with
constant J + 1. Again the crucial assumption is the smoothing property (S̄W ).

If the approximation property holds, then point-wise smoother is adequate. When it
fails, block smoothers can be designed to still satisfy the required smoothing property.

A smoother in each level can be further treat as a subspace correction method based
on a decomposition of the space. In this section, we discuss smoothers based on a stable
micro-decomposition.

5.1. Smoothers based on micro-decomposition. We shall construct effective smoother
based a micro-decomposition of each space Wk. The stable decomposition Wk =

∑Nk
i=1 Wk,i

and the quasi-orthogonality will implies a multiplicative subspace correction method based
on this decomposition is an effective one in the sense that the smoothing property (S̄W )
will holds.

————————————————————————————————————

(DWk
): The space decomposition Wk =

∑Nk
i=1 Wk,i is A-stable: for all v ∈Wk

(33) inf∑Nk
i=0 vi=v,vi∈Wk,i

Nk∑
i=0

‖vi‖2A ≤ K1‖v‖2A.

————————————————————————————————————

————————————————————————————————————
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(OWk
): Quasi-Orthogonality. The following Strengthened Cauchy Schwarz (SCS) in-

equality holds for any ui ∈Wk,i, vi ∈Wk,i, i = 0, · · · , Nk

(34)
Nk∑
i=0

Nk∑
j=i+1

(ui, vj)A ≤ K2

(
Nk∑
i=0

‖ui‖2A

)1/2(Nk∑
i=0

‖vi‖2A

)1/2

.

————————————————————————————————————

Theorem 5.1. If there exists a micro-decomposition for each subspace Wk, then the SSC
smoother based on this decomposition will satisfy the smoothing assumption (S̄W ).

The proof is straightforward and left as an exercise.

Remark 5.2. For additive smoother, a scaling is needed.

The quasi-orthogonality is easy to verify. Usually Wk,i is spanned by few bases of Vk
and thus by the finite overlapping property, (OWk

) holds. Therefore the crucial thing is a
stable decomposition.

5.2. Point-wise smoother. Consider the standard basis decomposition V =
∑N
i=0 Vi. We

assume this decomposition is stable under the norm introduced by the default inner product
(·, ·); see (25). In FEM setting, that is the bases decomposition is stable in the L2 norm.

The decomposition is in general not stable in the A-norm. Namely for any v ∈ V, write
v =

∑N
i=1 vi, the inequality

(35)
N∑
i=1

‖vi‖2A ≤ C‖v‖2A

does not hold for a constant C independent of N due to the existence of low frequency. As
an extreme example, one can choose v =

∑N
i=1 φi. Then v is flat except in a band near the

boundary. The derivative of v is zero in most region while |∇vi| is always of order 1/h.
If we use the stability in (·, ·), we can get

N∑
i=1

‖vi‖2A ≤ ρ(A)

N∑
i=1

‖vi‖2 ≤ Cρ(A)‖v‖2.

From which we immediately conclude that (35) holds for high frequency.
When Wk = (Πk−Πk−1)V and Πk satisfies the approximation property (AΠ), then the

difference (Πk−Πk−1)V will be high frequency and thus point-wise smoother is effective.
When the approximation fails, block smoothers can be designed to still satisfy the required
smoothing property. Another direction is to enrich the coarse space which is exploited
mostly in algebraic multigrid methods.

6. DECOMPOSITION INTO LEAFS

The previous theories requires the nested-ness of the space decomposition which is not
suitable for adaptive grids. In this section, we present another framework developed in [4];
see also [6].
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6.1. Assumptions. For each subspace Vk, we can further decompose into micro pieces
Vk =

∑Nk
i=1 Vk,i and the dimension of each leaf Vk,i is small such that direct solvers for

problems restricted on leafs are applicable. For example, the basis decomposition leads to
one dimensional leafs and exact solvers can be applied. For block Gauss-Seidel iterations,
each leaf corresponds to one block of several unknowns. The micro decomposition itself
can be used to define a smoother and thus the assumption of the smoother can be build into
the decomposition.

Consider subspace correction methods for the decomposition V =
∑J
k=0

∑Nk
i=1 Vk,i.

To clean the notation, we merge the index (k, i) to one subscript l and consider the follow-
ing decomposition

V =

L∑
l=0

Vl.

In this decomposition, subspaces are not necessarily nested.
————————————————————————————————————
(DL): The space decomposition V =

∑L
l=0 Vl is A-stable:

(36) inf∑L
l=0 vl=v,vl∈Vl

L∑
l=0

‖vl‖2A ≤ K1‖v‖2A.

————————————————————————————————————
————————————————————————————————————
(OL): Quasi-Orthogonality. For any ui ∈ Vi, vi ∈ Vi, i = 0, · · · , L

(37)
L∑
i=0

L∑
j=i+1

(ui, vj)A ≤ K2

(
L∑
i=0

‖ui‖2A

)1/2( L∑
i=0

‖vi‖2A

)1/2

.

————————————————————————————————————

6.2. Example: Hierarchical Basis. Define HB. The decomposition is unique. Such de-
composition satisfies (OL) due to the strengthened Cauchy-Schwarz but only nearly stable
in 2-D and not stable in 3-D.

Prove the nearly stable decomposition. Good for jump coefficients and adaptive grids.

6.3. Smoothing on leaves. Since each leaf is of small dimension, the smoothing property
can be derived from the contraction rate of each local solver. We state the contraction
assumption again with an explicit constant ρ.
————————————————————————————————————
(Cρ) Each local solver is a contraction ‖Il −RlAl‖Al ≤ ρ < 1 for each l = 0, · · · , L.
————————————————————————————————————

Lemma 6.1. Suppose each local solver satisfy (Cρ). Then we have the estimate of spec-
trum of T l

1 ≤ λmin(T
−1

l ) ≤ λmax(T
−1

l ) ≤ 1

1− ρ2
.

Consequently the smoothing property (S̄) holds with cR = 1/(1− ρ2), i.e,

(R
−1

l u, u) = (T
−1

l u, u)A ≤
1

1− ρ2
(u, u)A, for all u ∈ Vl.
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Proof. First λmax(T i) ≤ 1 since it is a symmetrization. Then

(38) 1− λmin(T l) = ‖Il − T l‖A = ‖Il − Tl‖2Al ≤ ρ
2.

which is equivalent to λmin(T l) ≥ 1− ρ2. �

One can apply Lemma 6.1 to the macro decomposition V =
∑J
k=0 Vk. But each

smoother only take care of certain frequency and the overall rate ρ could be very close to
one, say 1 − Ch2, and thus Lemma 6.1 is useless for macro decomposition. For small
dimensional space Vl, however, one can easily construct local solver with rate ρ < 1
uniformly. One such example is the exact solver with ρ = 0.

6.4. Converges. We first present a simple proof using the simplest X-Z identity for the
exact solver Rl = A−1

l which is practical since the problem on leaves is of small size.

Theorem 6.2. Suppose the space decomposition satisfy (DL) and (OL). For exact local
solver Rl = A−1

l for all l = 0, · · · , L, we have∥∥∥ L∏
l=0

(I − Pl)
∥∥∥2

A
≤ 1− 1

1 +K1K2
2

.

Proof. We apply (31) with ui = Pi
∑J
j=i+1 vj to obtain

J∑
i=0

‖ui‖2A =

J∑
i=0

(ui, Pi

J∑
j=i+1

vj)A =

J∑
i=0

J∑
j=i+1

(ui, vj)A

≤ K2

(
J∑
i=0

‖ui‖2A

)1/2( J∑
i=0

‖vi‖2A

)1/2

.

Consequently, if v =
∑J
k=0 vk is a stable decomposition satisfying (30), we get

J∑
i=0

∥∥∥Pi J∑
j=i+1

vj

∥∥∥2

A
=

J∑
i=0

‖ui‖2A ≤ K2
2

J∑
i=0

‖vi‖2A ≤ K1K
2
2‖v‖2A,

which implies c0 ≤ K2K1. The desired result then follows from X-Z identity (7). �

Theorem 6.3. Suppose the space decomposition satisfy (DL) and (OL) and the local
solver satisfy (Cρ). Then •2

•2 Check details and refine the
constant in the proof ∥∥∥ L∏

l=0

(I − Tl)
∥∥∥2

A
≤ 1− 1− ρ2

2K1(1 + (1 + ρ)2K2)
.

Proof. By Lemma 6.1, the local solver will satisfy (S̄) with constant cR = 1/(1−ρ2). We
can then apply Theorem 4.1 to obtain the desired result. �

For multiplicative smoothers on Vk, it can be understood as SSC for micro scale decom-
position. So the above results can be applied to multigrid with multiplicative smoothers.
The assumptions (DL) and (OL) are verified in [4] for multigrid methods on adaptive grids
where each leaf contains three nodal bases.
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7. SMOOTHING STEPS

In this section we refine the analysis to include the affect of smoothing steps. Suppose
we apply m steps of pre-smoothing and m steps post-smoothing, i.e., V (m,m)-cycle. To
apply the convergence theory we have established before, we treat all m-steps smoothing
as one iteration and check the corresponding smoothing property. Again in this section,
since we work on smoothers on a fixed level, we shall skip the subscript of levels.

7.1. Smoothing property of m-steps of smoothing. Let Rm be the iterator of applying
m-times of the iterative method associated with R. Let T = RA, Tm = RmA and S =
I −RA = I − T . The relation is

I −RmA = (I −RA)m, I − Tm = (I − T )m = Sm.

In the sequel, we further assume the smoother R is symmetric and σ(RA) ∈ (0, 1] which
implies the contraction assumption (C). The assumption λmin(RA) > 0 implies R is an
SPD and the assumption λmax(RA) ≤ 1 is usually characterized by the inequality
————————————————————————————————————
(R). The symmetric smoother R is non-singular and

(R−1u, u) ≥ (Au, u), for all u ∈ V,

or simply R−1 ≥ A.
————————————————————————————————————

Lemma 7.1. Suppose the symmetric smoother R satisfy (R). Then we have

(R
−1

m u, u) ≤ (Au, u) +
1

2m
(R−1u, u) for all u ∈ V.

Proof. The assumption (R) implies σ(T ) = σ(RA) ∈ (0, 1] and thus σ(S) ∈ [0, 1).
For the symmetric smoother, we have Rm = R2m. We now estimate (R−1

2mu, u) =
(T−1

2mu, u)A. To use operator S, we first write as

(T−1
2mu, u)A = ((T−1

2m − I)u, u)A + (u, u)A.

We manipulate the first term as

T−1
2m − I = T−

1
2T

1
2T−1

2m(I − T2m)T
1
2T−

1
2

= T−
1
2 (I − S)

1
2 (I − S2m)−1S2m(I − S)

1
2T−

1
2 .

Therefore for u ∈ V

((T−1
2m−I)u, u)A ≤ max

t∈[0,1)

[
(1− t)(1− t2m)−1t2m

]
(T−

1
2u, T−

1
2u)A ≤

1

2m
(T−1u, u)A.

Consequently the inequality follows. �

A formal proof can be given using the manipulation rules of symmetric operators. From
the elementary inequality

x2m ≤ 1

2m

1− x2m

1− x
, for allx ∈ [0, 1),

we get

(1− x2m)−1 − 1 ≤ 1

2m
(1− x)−1,
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which implies the desirable inequality

(I − S2m)−1 − I ≤ 1

2m
(1− S)−1.

Corollary 7.2. Suppose the symmetric smoother R satisfy (R) and one of the smoothing
property (SP ), (SW ), or (Sρ) with constant cR. Then Rm satisfies the same smoothing
property with constant 1 + cR/2m.

7.2. Convergence. Combine with the convergence theory using (S̄P ), we thus recovery
the classic result in [2].

Theorem 7.3. Suppose the symmetric smoother Rk satisfies assumptions (R) and the
smoothing approximation (SP ). Then the V(m,m)-cycle using Rk is uniform convergent:

‖(I − TJ)m(I − TJ−1)m...(I − T0)2m(I − TJ−1)m...(I − TJ)m‖A ≤
cR

cR + 2m
.

What is a good choice of steps m? Note that in our notation of product, an ordering is
assumed. Thus

ΠJ
i=0(I − Ti)m 6=

[
ΠJ
i=0(I − Ti)

]m
.

The left hand side is V (m,m) while the right hand side is applying V (1, 1) m-times. Al-
though the computation cost of operators in two sided are the same, the rate of convergence
is O(δ/m) v.s. δm. Roughly speaking if we double the smoothing steps, the rate is de-
creased by half. The cost is the same as that applying the original V-cycle twice. Then if
δ2 ≤ δ/2, i.e. δ < 0.5, there is no advantage (in terms of computational cost) to increase
the smoothing step. The main motivation of increasing the smoothing step is to make the
V-cycle MG robust and converges with a contraction number smaller than 0.5.

Combine with the assumption on the decomposition of spaces, we can have the follow-
ing convergences.

Theorem 7.4. Suppose the symmetric smoother Rk satisfies assumptions (R) and the
smoothing property (SW ). Suppose the space decomposition satisfies (DW ) and (OW ).
Then the V(m,m)-cycle is uniform convergent with a rate

1− 1

2((1 + cR/2m)K1 +K1K2)
.

For less smooth problems, i.e., no full regularity, then Theorem 7.3 is not applicable
since the assumption (S̄P ) is difficult to verify. Theorem 7.4 suggests that increasing the
smoothing steps will improve the rate of convergence but the rate will converge to the lower
bound 1−1/2(K1 +K1K2). ForH1-elliptic problems,K2 depends on the refinement rule
of the mesh while K1 will depends on the regularity of the solution. For H1+α-regularity,
refined analysis can be given to improve the rate to C/(C +mα); see Chapter: Recursive
Proof of Multigrid Methods.
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