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In this chapter we shall discuss subspace correction method and auxiliary space method
developed by Xu [5, 7, 8] on solving the linear operator equation

(1) Au = f,

posed on a finite dimensional Hilbert space V ∼= RN equipped with an inner product (·, ·).
Here A : V 7→ V is an symmetric and positive definite (SPD) operator, f ∈ V is given, and
we are looking for u ∈ V such that (1) holds. How to solve (1) efficiently remains a basic
question in numerical PDEs (and in all scientific computing).

1. SPACE DECOMPOSITION AND SUBSPACE CORRECTION METHODS

In the spirit of dividing and conquering, we decompose the space V as the summation of
subspaces and correspondingly decompose the problem (1) into sub-problems with smaller
size which are relatively easy to solve. This method is developed by Xu [5].

Let Vi ⊂ V , i = 1, . . . , J, be subspaces of V. If V =
∑J

i=1 Vi, then {Vi} is called a
space decomposition of V. By the definition, for any u ∈ V, we can decompose u as

u =

J∑
i=1

ui, ui ∈ Vi, i = 1, . . . , J.

Since
∑J

i=1 Vi is not necessarily a direct sum, decompositions of u ∈ V of the form
u =

∑J
i=1 ui are in general not unique. We recall some background on the sum of linear

spaces in the appendix.
We introduce the following operators for i = 1, 1, . . . , J :
• Ii : Vi ↪→ V the natural inclusion;
• Qi : V 7→ Vi the projection in the inner product (·, ·);
• Pi : V 7→ Vi the projection in the inner product (·, ·)A;
• Ai : Vi 7→ Vi the restriction of A on the subspace Vi × Vi;
• Ri : Vi 7→ Vi an approximation of A−1

i which is often known as smoothers or
local subspace solvers.

• Ti : V→ Vi Ti = RiQiA = RiAiPi.

We then explore relations between these operators. By definition

(Qᵀ
i vi, v) = (vi, Qiv) = (vi, v) = (Iivi, v) ∀ vi ∈ Vi, v ∈ V,

therefore Qᵀ
i coincides with the natural inclusion Ii or equivalently Iᵀi = Qi. In the

continuous level, Ii is the identity operator and thus skipped in many places. In the imple-
mentation, the prolongation matrix is the representation of Ii relative to certain bases and
the transpose Iᵀi is the restriction matrix. The matrix or operator A is understood as the
bilinear function on V× V. Then the restriction on subspaces is Ai = Iᵀi AIi.

It follows from the definition that

AiPi = QiA,
1
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namely the following diagram is commutative

V A−−−−→ VyPi

yQi

Vi
Ai−−−−→ Vi

The consistent notation for the smoother Ri is Bi, the iterator for each local problem.
But we reserve the notation B for the iterator of the original problem.

Last, let us look at Ti = RiQiA = RiAiPi. When Ri = A−1
i , from the definition,

Ti = Pi = A−1
i QiA. When Ti|Vi

: Vi → Vi, the projection Pi is identity and thus
Ti|Vi = RiAi. With a slight abuse of notation, we use T−1

i = (Ti|Vi)
−1. The action of Ti

and T−1
i is

(Tiui, ui)A = (RiAiui, Aiui), (T−1
i u, u)A = (R−1

i u, u).

Now we describe the method of subspace correction. For a given residual r, let ri = Qir
denote the restriction of the residual to the subspace, we shall solve the residual equation
in the subspaces

Aie
∗
i = ri by ei = Riri.

Subspace corrections ei are assembled to give a correction in the space V and therefore the
method is called subspace correction method.

Basically there are two ways to assemble subspace corrections.

Parallel Subspace Correction (PSC). This method is to do the correction on each sub-
space in parallel. In operator form, it is

(2) uk+1 = uk +Ba(f −Auk) = (I −BaA)uk +Baf,

where

(3) Ba =

J∑
i=1

IiRiI
ᵀ
i .

The subspace correction is ẽi = IiRiI
ᵀ
i (f−Auk), and the correction in V is ẽ =

∑J
i=1 ẽi.

Successive Subspace Correction (SSC). This method is to do the correction in a succes-
sive way. In operator form, it reads

(4) v1 = uk, vi+1 = vi + IiRiI
ᵀ
i (f −Avi), i = 1, . . . , J, uk+1 = vJ+1.

The iterator Bm is not easy to formulate.

Outline Introduction Solve Refine/Coarsen

Subspace Correction Methods
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PSC will be mainly used as preconditioners. Examples:
Hierarchical Basis (HB) and BPX preconditioners.
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For nested space decomposition based on uniform refinement,
Multigrid method is a special form of SSC.
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FIGURE 1. Illustration of PSC and SSC.

We have the following error formula for PSC and SSC.
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• Parallel Subspace Correction (PSC):

u− uk+1 =

[
I −

J∑
i=1

Ti

]
(u− uk);

• Successive Subspace Correction (SSC):

u− uk+1 =

[
J∏

i=1

(I − Ti)
]

(u− uk).

Thus PSC is also called additive methods while SSC is called multiplicative method. In the
notation

∏J
i=1 ai, we assume there is a build-in ordering from i = 1 to N i.e.

∏J
i=1 ai =

a0a1 . . . aN .
We present algorithms of PSC and SSC in the following form to emphasis it is a pro-

cedure to solve the residual equation, i.e., given a residual r, return a correction e. One
iteration of PSC or SSC can be used as a preconditioner in PCG.

1 function e = PSC(r)

2 % Solve the residual equation Ae = r by PSC method

3 for i = 1:J

4 ri = Ii’*r; % restrict the residual to subspace

5 ei = Ri*ri; % solve the residual equation in subspace

6 e = e + Ii*ei; % prolongate the correction to the big space

7 end

1 function e = SSC(r)

2 % Solve the residual equation Ae = r by SSC method

3 rd = r;

4 for i = 1:J

5 ri = Ii’*rd; % restrict the residual to subspace

6 ei = Ri*ri; % solve the residual equation in subspace

7 e = e + Ii*ei; % prolongate the correction to the big space

8 rd = r - A*e; % update residual

9 end

Comparing the above PSC and SSC functions, one can immediately see that in SSC,
the residual is updated for each subspace correction while not in PSC. In terms of rate of
convergence, SSC is superior. On the other hand, PSC is embarrassingly parallel while
SSC is essentially a sequential method.

Example 1.1. Let us consider the matrix equation

Au = f,

where A is an N × N SPD matrix. Let us take the trivial decomposition of RN =∑N
i=1 span{ei}, where {ei, i = 1, . . . , N} is the canonical basis of RN . Then

• for Ri = ωI , PSC is Richardson method;
• for Ri = A−1

i , PSC is Jacobi method;
• for Ri = A−1

i , SSC is the Gauss-Seidal method.

Later we shall also view PSC as a Jacobi method and SSC as a Gauss-Seidel method
for a big system formed in a product space formed by subspaces.
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2. AUXILIARY SPACE METHODS

In this section, we present a variation of the fictitious space method of Nepomnyaschikh [4]
and the auxiliary space method of Xu [6]. We follow the presentation in [1].

Let Ṽ and V be two Hilbert spaces and let Π : Ṽ→ V be a surjective map. Denoted by
Πᵀ : V→ Ṽ the adajoint of Π in the default inner products

(Πᵀu, ṽ) = (u,Πṽ) for all u ∈ V, ṽ ∈ Ṽ.

Here, to save notation, we use (·, ·) for inner products in both V and Ṽ. Since Π is surjec-
tive, its transpose Πᵀ is injective.

Given an SPD operator A : V → V, let Ã = ΠᵀAΠ : Ṽ → Ṽ be the lift of A. To
construct a good approximation of A−1, we can project one for Ã. Let B̃ : Ṽ → Ṽ be
SPD, we can define B := ΠB̃Πᵀ : V → V and will show it is also SPD. The relation is
summarized in the following diagram

Ṽ Ṽ

V V

Ã

Π
B̃

A

B

Πᵀ

Theorem 2.1. Let Ṽ and V be two Hilbert spaces and let Π : Ṽ→ V be a surjective map.
Let B̃ : Ṽ→ Ṽ be a symmetric and positive definite operator. ThenB := ΠB̃Πᵀ : V→ V
is also symmetric and positive definite. Furthermore

(5) (B−1v, v) = inf
Πṽ=v

(B̃−1ṽ, ṽ).

Proof. We shall adapt the proof given by Xu and Zikatanov [9] (Lemma 2.4).
It is obvious that B is symmetric and positive semi-definite. Since B̃ is SPD and Πᵀ

is injective, (Bv, v) = (B̃Πᵀv,Πᵀv) = 0 implies Πᵀv = 0 and v = 0. Therefore B is
positive definite.

Let ṽ∗ = B̃ΠᵀB−1v. Then Πṽ∗ = v. For any w̃ ∈ Ṽ

(B̃−1ṽ∗, w̃) = (ΠᵀB−1v, w̃) = (B−1v,Πw̃).

In particular
(B̃−1ṽ∗, ṽ∗) = (B−1v,Πṽ∗) = (B−1v, v).

For any ṽ ∈ Ṽ, denoted by v = Πṽ, we write ṽ = ṽ∗ + w̃ with Πw̃ = 0. Then

inf
Πṽ=v

(B̃−1ṽ, ṽ) = inf
Πw̃=0

(B̃−1(ṽ∗ + w̃), ṽ∗ + w̃)

= (B−1v, v) + inf
Πw̃=0

(
2(B̃−1ṽ∗, w̃) + (B̃−1w̃, w̃)

)
= (B−1v, v) + inf

Πw̃=0
(B̃−1w̃, w̃)

= (B−1v, v).

�

The symmetric positive definite operator B can be used as a preconditioner for solving
Au = f using PCG. To estimate the condition number κ(BA), we only need to compare
B−1 and A.

Lemma 2.2. For two SPD operators A and B, if c0(Av, v) ≤ (B−1v, v) ≤ c1(Av, v) for
all v ∈ V, then κ(BA) ≤ c1/c0.



SUBSPACE CORRECTION METHOD AND AUXILIARY SPACE METHOD 5

Proof. Note that BA is symmetric with respect to A. Therefore

λ−1
min(BA) = λmax((BA)−1) = sup

u∈V\{0}

((BA)−1u, u)A
(u, u)A

= sup
u∈V\{0}

(B−1u, u)

(Au, u)
.

Therefore (B−1v, v) ≤ c1(Av, v) implies λmin(BA) ≥ c−1
1 . Similarly (B−1v, v) ≥

c0(Av, v) implies λmax(BA) ≤ c−1
0 . The estimate of κ(BA) then follows. �

Theorem 2.3. Let Ṽ and V be two Hilbert spaces and let Π : Ṽ→ V be a surjective map.
Let B̃ : Ṽ→ Ṽ be a symmetric and positive definite operator and B = ΠB̃Πᵀ. If

(6) c0(Av, v) ≤ inf
Πṽ=v

(B̃−1ṽ, ṽ) ≤ c1(Av, v) for all v ∈ V,

then
κ(BA) ≤ c1/c0.

Remark 2.4. In literature, e.g. the fictitious space lemma of [4], the condition (6) is usually
decomposed to the following two conditions:

(1) For any v ∈ V, there exists a ṽ ∈ Ṽ , such that Πṽ = v and ‖ṽ‖2
B̃−1 ≤ c1‖v‖2A.

(2) For any ṽ ∈ Ṽ, ‖Πṽ‖2A ≤ c−1
0 ‖ṽ‖2B̃−1 .

3. AN AUXILIARY SPACE OF PRODUCT TYPE

Given a space decomposition V =
∑J

i=1 Vi, we construct an auxiliary space of prod-
uct type Ṽ = V0 × V1 × ... × VJ , with the standard inner product for product spaces
(ũ, ṽ) :=

∑J
i=1(ui, vi). We define Π : Ṽ → V as Πũ =

∑J
i=1 ui. In operator form Π =

(I1, I2, · · · , IJ) if we treat ũ = (u0, · · · , uJ)ᵀ as a column vector. Since V =
∑J

i=1 Vi,
the operator Π is surjective.

Let Ã = ΠᵀAΠ and f̃ = Πᵀf . If ũ is a solution of Ãũ = f̃ , by multiplying Πᵀ both
sides, it is straightforward to verify that then u = ΠRũ is the solution of Au = f .

We shall derive PSC and SSC by classical iterative methods of solving Ãũ = f̃ . To
this purpose, let Ri : Vi → Vi be nonsingular operators, often known as smoothers,
approximating A−1

i . Define a diagonal matrix of operators R̃ = diag(R0, R1, · · · , RJ) :

Ṽ→ Ṽ which is also non-singular.
By direct computation, the entry ãij = QiAIj = AiPiIj . In particular ãii = Ai. The

symmetric operator Ã may be singular with nontrivial kernel ker(Π), but the diagonal of
Ã is always non-singular. Write Ã = D̃ + L̃ + Ũ where D̃ = diag(A0, A1, · · · , Aj), L̃
and Ũ are lower and upper triangular matrix of operators, and L̃ᵀ = Ũ .

Considering the iteration

(7) ũk+1 = ũk + R̃(f̃ − Ãũk).

Let uk = Πũk. Applying Π to (7) and noting that

f̃ = Πᵀf, and Ãũk = ΠᵀAuk,

we obtain the PSC method

uk+1 = uk +

J∑
i=1

RiQi(f −Auk),

The multiplicative method is more subtle. Following [3], we shall view the SSC for
solving Au = f as a Gauss-Seidel type method for Ãũ = f̃ .
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Lemma 3.1. Let Ã = D̃ + L̃ + Ũ and B̃ = (R̃−1 + L̃)−1. Then SSC for Au = f with
local solvers Ri is equivalent to the Gauss-Seidel type method for solving Ãũ = f̃ :

(8) ũk+1 = ũk + B̃(f̃ − Ãũk).

Proof. By multiplying R̃−1 + L̃ to (8) and rearranging the terms, we have

R̃−1ũk+1 = R̃−1ũk + f̃ − L̃ũk+1 − (D̃ + Ũ)ũk.

Multiplying R̃, we obtain

ũk+1 = ũk + R̃
(
f̃ − L̃ũk+1 − (D̃ + Ũ)ũk

)
,

and its component-wise formula, for i = 1, · · · , J

uik+1 = uik +Ri

(
fi −

i−1∑
j=1

ãiju
j
k+1 −

J∑
j=i

ãiju
j
k

)

= uik +RiQi

(
f −A

i−1∑
j=1

ujk+1 −A
J∑

j=i

ujk

)
.

Let the dynamic update

vi = Π (u1
k+1, . . . , u

i
k+1, u

i+1
k , . . . , uJk )ᵀ =

i∑
j=1

ujk+1 +

J∑
j=i+1

ujk.

Noting that vi − vi−1 = uik+1 − uik, we then get, for i = 1, · · · , J + 1

vi = vi−1 +RiQi(f −Avi−1),

which is exactly the correction in the subspace Vi; see (4). �

Recall that for SSC, for each subspace problem, we have the operator form vi+1 =
vi +Ri(f −Avi), but it is not easy to write out the iterator for the space V. Let us define
Bm to be the error operator so that

I −BmA = (I −RJQJA)(I −RJ−1QJ−1A)...(I −R0Q0A).

We can then derive a formulation of Bm from the auxiliary space method. Let B̃m =
(R̃−1 + L̃)−1 and its symmetrization as

(9) B̃m = B̃ᵀ
m + B̃m − B̃ᵀ

mÃB̃m = B̃ᵀ
m(B̃−ᵀm + B̃−1

m − Ã)B̃m.

Lemma 3.2. For SSC, we have

Bm = ΠB̃mΠᵀ and Bm = ΠB̃mΠᵀ.

Proof. Let uk = Πũk. Applying Π to (8) and noting that

f̃ = Πᵀf, and Ãũk = ΠᵀAuk,

we then get

uk+1 = uk + ΠB̃mΠᵀ(f −Auk).

The formulae for Bm follows from a similarly computation. �
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4. IDENTITIES FOR ADDITIVE AND MULTIPLICATIVE METHODS

The operator for the additive method is

(10) Ba = ΠR̃Πᵀ =

J∑
i=1

IiRiI
ᵀ
i .

Applying Theorem 2.1, we obtain the following identity for preconditioner Ba.

Theorem 4.1. If Ri is SPD on Vi for i = 1, . . . , J , then Ba defined by (10) is SPD on V.
Furthermore

(11) (B−1
a v, v) = inf∑J

i=1 vi=v

J∑
i=1

(R−1
i vi, vi) = inf∑J

i=1 vi=v

J∑
i=1

(T−1
i vi, vi)A.

To compute B̃m, we define the diagonal matrix of operators R̃ = diag(R1, R2, · · · , RJ),
where, for each Ri, i = 1, · · · , J , its symmetrization is

Ri = Rᵀ
i (R−ᵀi +R−1

i −Ai)Ri.

Substituting B̃−1
m = R̃−1 + L̃, and Ã = D̃ + L̃+ Ũ into (9), we have

B̃m = (R̃−ᵀ + L̃ᵀ)−1(R̃−ᵀ + R̃−1 − D̃)(R̃−1 + L̃)−1(12)

= (R̃−ᵀ + L̃ᵀ)−1R̃−ᵀR̃R̃−1(R̃−1 + L̃)−1.(13)

It is obvious that B̃m is symmetric. To be positive definite, from (13), it suffices to
assume R̃, i.e. each Ri, is symmetric and positive definite which is equivalent to the
operator I −RiAi is a contraction and so is I −RiAi.

(C) ‖I −RiAi‖Ai
< 1 for each i = 1, · · · , J .

Theorem 4.2. Suppose (C) holds. Then Bm = ΠB̃mΠᵀ is SPD, and

(B
−1

m v, v) = inf∑J
i=1 vi=v

J∑
i=1

‖vi +Rᵀ
i AiPi

J∑
j>i

vj‖2R−1
i

.(14)

(B
−1

m v, v) = ‖v‖2A + inf∑J
i=1 vi=v

J∑
i=1

‖Rᵀ
i (AiPi

J∑
j=i

vj −R−1
i vi)‖2R−1

i

.(15)

In particular, for Ri = A−1
i , we have

(16) (B
−1

m v, v) = ‖v‖2A + inf∑J
i=1 vi=v

J∑
i=1

‖Pi

J∑
j=i+1

vj‖2A.

Proof. From (13), we have

B̃
−1

m = (Ĩ + R̃ᵀŨ)ᵀR̃
−1

(Ĩ + R̃ᵀŨ).

Using component-wise formula of

(Ũ ṽ)i =

J∑
j=i+1

ãijvj =

J∑
j=i+1

AiPivj ,

and Theorem 2.1, we get (14).
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Before we prove the identity (15), we first prove the special case (16) to present the
main idea. Obviously (C) holds for the exact local solver Ri = A−1

i . When Ri = A−1
i ,

B̃m = (D̃ + L̃)−1 and, by direct computation,

(17) B̃
−1

m = Ã+ L̃D̃−1Ũ .

Therefore

(B
−1

m v, v) = inf
Πṽ=v

(B̃
−1

m ṽ, ṽ) = (Ãṽ, ṽ) + inf
Πṽ=v

(D̃−1Ũ ṽ, Ũ ṽ).

For any ṽ ∈ Ṽ, denoted by v = Πṽ, we have

(Ãṽ, ṽ) = (ΠᵀAΠṽ, ṽ) = (AΠṽ,Πṽ) = ‖v‖2A,
and

(D̃−1Ũ ṽ, Ũ ṽ) =

J∑
i=1

(A−1
i

J∑
j=i+1

AiPivj ,

J∑
j=i+1

AiPivj) =

J∑
i=1

‖Pi

J∑
j=i+1

vj‖2A.

The identity (16) then follows.
In general let

M = R̃−ᵀ + R̃−1 − D̃ = R̃−ᵀR̃R̃−1, U = D̃ + Ũ − R̃−1, L = U ᵀ.

then R̃−1 + L̃ = M + L and Ã = M + L + U . We then compute, from (12), that

B̃
−1

m = (R̃−1 + L̃)(R̃−ᵀ + R̃−1 − D̃)−1(R̃−ᵀ + L̃ᵀ)

= (M + L )M−1(M + U ),

= Ã+ L M−1U

= Ã+
[
R̃ᵀ(D̃ + Ũ − R̃−1)

]ᵀ
R̃
−1[

R̃ᵀ(D̃ + Ũ − R̃−1)
]
.

The identity (15) then follows from the component-wise formula. �

If we use the operator Ti = RiAiPi : V → Vi, then T ∗i = Rᵀ
i AiPi, T i := Ti + T ∗i −

T ∗i Ti = RiAiPi, and (R
−1

i ui, ui) = (T
−1

i ui, ui)A. Here T
−1

i := (T i|Vi
)−1 : Vi → Vi

is well defined due to the assumption (C). The identity (15) can be written as the original
formulation in [9]

(B
−1

m v, v) = ‖v‖2A + inf∑J
i=1 vi=v

J∑
i=1

(T
−1

i T ∗i wi, T
∗
i wi)A,

with wi =
∑J

j=i vj − T−1
i vi. The identity (14) becomes the formula in [2]

(B
−1

m v, v) = inf∑J
i=1 vi=v

J∑
i=1

(T
−1

i (vi + T ∗i

J∑
k=i+1

vk), vi + T ∗i

J∑
k=i+1

vk)A.

Combining Lemma 3.2 and Theorem 4.2, we obtain the X-Z identity for multiplicative
methods.

Theorem 4.3 (X-Z identity). Suppose assumption (C) holds. Then

(18) ‖I −BmA‖2A = ‖I −BmA‖A = 1− 1

K
,
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where

K = sup
‖v‖A=1

inf∑J
i=1 vi=v

J∑
i=1

‖vi +Rᵀ
i AiPi

J∑
j>i

vj‖2R−1
i

.

Or

(19) ‖I −BmA‖2A = ‖I −BmA‖A = 1− 1

1 + c0
,

where

c0 = sup
‖v‖A=1

inf∑J
i=1 vi=v

J∑
i=1

‖Rᵀ
i (AiPi

J∑
j=i

vj −R−1
i vi)‖2R−1

i

.

In particular, for Ri = A−1
i ,

(20) ‖(I − PJ)(I − PJ−1) · · · (I − P0)‖2A = 1− 1

1 + c0
,

where

c0 = sup
‖v‖A=1

inf∑J
i=1 vi=v

J∑
i=1

‖Pi

J∑
j=i+1

vj‖2A.

APPENDIX: SUM AND PRODUCT OF TWO LINEAR SPACES

Given two linear spaces V1, V2 and assume they are subspaces of a larger linear space
V . We have the following operations of these two spaces

• V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2};
• V1 ⊕ V2 = V1 + V2 and V1 ∩ V2 = {0};
• V1 × V2 = {(v1, v2) : v1 ∈ V1, v2 ∈ V2};
• V1 ⊗ V2 = {v1 ⊗ v2 : v1 ∈ V1, v2 ∈ V2}.

The tensor product v1 ⊗ v2 is a bilinear mapping on the dual space V ′1 × V ′2 . A natural
product topology can be defined for V1 × V2 component-wise.

The relation of dimensions are
• dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2) ≤ dim(V1) + dim(V2);
• dim(V1 ⊕ V2) = dim(V1) + dim(V2);
• dim(V1 × V2) = dim(V1) + dim(V2);
• dim(V1 ⊗ V2) = dim(V1)× dim(V2).

We emphasize the sum V1 +V2 may not enlarge the space. For example, when V1 ⊂ V2

(a line on a plane), V1 + V2 = V2.

REFERENCES

[1] L. Chen. Deriving the X-Z Identity from Auxiliary Space Method. In Y. Huang, R. Kornhuber, O. Wid-
lund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering XIX, pages 309–316.
Springer Berlin Heidelberg, 2010. 4

[2] D. Cho, J. Xu, and L. Zikatanov. New estimates for the rate of convergence of the method of subspace
corrections. Numer. Math. Theor. Meth. Appl., 1:44–56, 2008. 8

[3] M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative Schwarz methods. Numer.
Math., 70:163–180, 1995. 5

[4] S. V. Nepomnyaschikh. Decomposition and fictitious domains methods for elliptic boundary value prob-
lems. In Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equa-
tions (Norfolk, VA, 1991), pages 62–72. SIAM, Philadelphia, PA, 1992. 4, 5

[5] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev., 34:581–613, 1992. 1



10 LONG CHEN

[6] J. Xu. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured meshes.
Computing, 56:215–235, 1996. 4

[7] J. Xu. An introduction to multilevel methods. 1997. published by Oxford University Press, New York. 1
[8] J. Xu. Multilevel Finite Element Methods. Lecutre Notes, 2004. 1
[9] J. Xu and L. Zikatanov. The method of alternating projections and the method of subspace corrections in

Hilbert space. J. Amer. Math. Soc., 15:573–597, 2002. 4, 8


	1. Space decomposition and subspace correction methods
	Parallel Subspace Correction (PSC)
	Successive Subspace Correction (SSC)

	2. Auxiliary Space Methods
	3. An Auxiliary Space of Product Type
	4. Identities for additive and multiplicative methods
	Appendix: Sum and Product of Two Linear Spaces
	References

