
INTRODUCTION TO FAST MULTIPOLE METHODS

LONG CHEN

ABSTRACT. This is a simple introduction to fast multipole methods for the N -body sum-
mation problems. Low rank approximation plus hierarchical decomposition leads to fast
O(N) or O(N logN) algorithms for the summation problem or equivalently the compu-
tation of a matrix-vector product.

We consider a summation problem in the form:

(1) ui =

N∑
j=1

φijqj , i = 1, · · · , N.

In the matrix form, if we denote

u = (ui) ∈ RN , q = (qj) ∈ RN , Φ = (φij) ∈ RN×N ,

the sums in (1) are equivalent to the multiplication of matrix Φ with vector q

(2) u = Φq.

A direct evaluation obviously requires O(N2) operations. It is unavoidable for general
dense matrices. But if the matrix has certain structure, we may calculate the sums in
linearithmic, i.e., O(N logN) operation or even linear, i.e., O(N) operations.

To see the huge saving of an O(N) algorithm comparing with an O(N2) one when N
is large, let us do the following calculation. Suppose N = 106 and a standard PC can do
the summation of 106 numbers in 1 minute. Then an O(N) algorithm will finish the sums
(1) in few minutes while an O(N2) algorithm will take nearly two years (106 minutes ≈
694 days).

1. SEPARABLE AND LOW RANK MATRICES

Consider the following simple example of (1) with

φij = (xj − yi)2 = y2i − 2xjyi + x2j ,

where x = (xj) ∈ RN ,y = (yi) ∈ RN are two given vectors. Then, for i = 1, · · · , N

(3) ui =

 N∑
j=1

qj

 y2i − 2

 N∑
j=1

qjxj

 yi +

 N∑
j=1

qjx
2
j

 = αy2i − 2βyi + γ.

The coefficients α, β, and γ do not depend on i and can be computed in O(N) oper-
ations for one pass. Then another loop can compute the summation in O(N) operations.
We list the O(N2) naive summation algorithm in summation1 and an O(N) algorithm
in summation2. In summation2, the nested for loops are separated. This is a simple
example of separable matrices.

1

2 LONG CHEN

1 u = summation1(phi, q)

2 u = zeros(N,1);

3 for i = 1:N

4 for j = 1:N

5 u(i) = u(i) + phi(i,j)*q(j);

6 end

7 end

1 u = summation2(phi, q)

2 u = zeros(N,1);

3 % phi(i,j) = (x(i)-y(j))ˆ2;

4 for j = 1:N

5 alpha = alpha + q(j);

6 beta = beta + q(j)*x(j);

7 gamma = gamma + q(j)*x(j)ˆ2;

8 end

9 for i = 1:N

10 u(i) = alpha*y(i)ˆ2 -2*beta*y(i) + gamma;

11 end

We then introduce the matrix formulation of the summation and consider the general-
ization of this simple example. Let x2 = (x21, x

2
2, . . . , x

2
N)T , y2 = (y21 , y

2
2 , . . . , y

2
N)T , and

e = (1, 1, . . . , 1)T . We can write the summation (3) in the matrix form

(4) Φ = y2eT + e(x2)T − 2yxT .

Here for two column vectors a, b of the same length, aT b is the standard inner product
while abT , called outer product, is a rank-1 matrix. The matrix-vector product can be
computed as

Φq = y2(eTq)− 2y(xTq) + e((x2)Tq).

In general, if the matrix can be written as

(5) Φ =

p∑
k=1

akb
T
k = AN×pBp×N ,

we say Φ is separable of order p. Every matrix can be written in the form
∑
φijeie

T
j , i.e.,

separable with order p = N2. We are interested in the case p � N and in the order O(1)
or O(logN). In this case Φ is also called a low-rank matrix since the rank of Φ is at most
p.

FIGURE 1. Low rank approximation of a matrix can reduce the O(N2)
matrix-vector multiplication to O(pN) operations.

For separable matrices with order p, the matrix-vector product can be computed in
O(pN) operations as Φq = AN×p(Bp×NqN×1). The storage of a separable matrix is

INTRODUCTION TO FAST MULTIPOLE METHODS 3

also reduced from O(N2) to O(pN); see Fig. 1 for an illustration. We even do not have
to store the matrix Φ when computing Φq; in contrast only several vectors are stored, see
summation2 for example.

For a structured matrix depending on only O(N) parameters ((xi), (yj) in this exam-
ple), it may not be always separable. But it might be well approximated by a separable and
low rank matrix by exploring the structure of the matrix.

2. MULTIPOLE EXPANSION AND MULTILEVEL AGGREGATION

We now chose the following entries in example (1)

(6) φij = G(xj − yi) =
1

‖xj − yi‖2
,

where (xj)
N
j=1, (yi)

N
i=1 are two given set of points and G(·) is called a kernel function.

The sum (1) with kernel (6) may find application in many physical problems. For ex-
ample, the gravitational potential of N -body or electrostatics of N -point charges. Each
xj , yi could be points in Rn for n = 1, 2, 3 in practical applications. The points xj will be
called source particles and yi target points (or evaluation point). The quantity qj can be
thought as the charge of particle xi in the application of electrostatics or mass of object xi
in gravitation. The kernel G(xj − yi) is from the Coulomb’s law of the force. The sum
ui =

∑
j φijqj is the potential at the target point yi.

In general, G(s) is a scalar or vector field. For a fixed target point y, depending the
location of source points, the field G(x − y) for x near y is called near field and for x far
away from y, it is called far field. The ‘near’ and ‘far’ will be characterized more rigorously
later on. The summation is the combination of near field and far field contribution.

The key idea of fast multipole methods is that the far-field interaction can be well ap-
proximated by separable low rank matrices. The approximation error depends on the dis-
tance of sources and targets. Thus a multilevel decomposition and multiple centers are
needed.

2.1. Multipole Expansion and Separable Far-Filed Effect. If the source points {xj , j ∈
T} is far away from y, we may compute the aggregate effect of the charges, not every
interaction.

FIGURE 2. The far-field effect from several point charges can be ap-
proximated as a single function of the center.

Let x∗ be a point near {xj , j ∈ T} serving as a center of the source in T and y is far
away from {xj , j ∈ T}. As Fig 2 shows, the distance ‖xj − x∗‖ ≤ δ‖y− x∗‖ with δ < 1.
We want to approximate the aggregate effect of

∑
j∈T qjG(xj−y) by a function of x∗−y.

4 LONG CHEN

The basic tool is Taylor series:

G(xj − y) = G(xj − x∗ + x∗ − y) = G((x∗ − y)(1 +
xj − x∗
x∗ − y))

= G(x∗ − y)G(1 +
xj − x∗
x∗ − y)

= G(x∗ − y)

p∑
m=0

G(m)(1)

m!

(xj − x∗)m
(x∗ − y)m

+O(δp+1)

=

p∑
m=0

am(xj − x∗)Sm(x∗ − y) +O(δp+1),

where

am(xj − x∗) =
G(m)(1)

m!
(xj − x∗)m, Sm(x∗ − y) =

G(x∗ − y)

(x∗ − y)m
.

Therefore the points xj , j ∈ T and y are separated approximately by the center x∗.

explain the name ‘multipole’ and momentum am.

Remark 2.1. In the above Taylor expansion, we assume G(s) is smooth in the neighbor-
hood of s = 1 and use the fact G(st) = G(s)G(t). For different fields, e.g. G(s) = log s,
we can replace by G(st) = G(s) +G(t) and obtain a similar expansion.

The potential ui can be approximated by

ui =

N∑
j=1

G(xj − yi)qj ≈
p∑

m=0

 N∑
j=1

qjam(xj − x∗)

Sm(x∗ − yi).

As in summation2, once x∗ is given, the m-th momentum
∑

j qjam(xj − x∗) can be
computed in one pass for j = 1 : N and m = 1 : p in O(pN) operations. The integer p is
chosen such that δp+1 ≤ ε for a given accuracy ε. Mathematically, to get δp ≤ ε, we need
p ≥ log ε/ log δ ≈ 1/(1− δ). Therefore for i = 1 : N , the sum can be finished in O(pN)
operations.

2.2. Multilevel Aggregation. The accuracy of the low rank approximation depends on
the choice of the center x∗ through the parameter δ which is the ratio of the distance
‖xj − x∗‖/‖y − x∗‖. When δ is tiny, we can even chose m = 0, i.e.,

∑
j G(xj − y) ≈

G(x∗− y). For example, when we calculate the gravitation of a galaxy from the Earth, we
can simply treat the galaxy as one single point although the galaxy may contain hundreds
of millions of stars.

In our application, the target may not be well separated from the source. Indeed they
could be mixed together. We should aggregate the source according to the distance to the
target.

To fix the idea, let us assume that all source and target points are in the unit interval
[0, 1]. We partition [0, 1] into a uniform grid of size h such that each small interval contains
only constant number (say, 1 to 5) of source points. Such partition is possible if the source
is uniformly distributed in [0, 1]. If the distribution is non-uniform, an adaptive grids to
equidistributing the number of source in each cell can be used.

Let us further assume the target yi is in the first cell, i.e., yi ∈ [0, h]. Obviously
for source in the first and second cells, no need of the separation or in other words the
low rank approximation is not accurate for near field. Instead we can compute the sum

INTRODUCTION TO FAST MULTIPOLE METHODS 5∑
xj∈[0,2h]G(xj − yi)qj directly which can be done in O(1) operations since each cell

contains constant number of source points.
How about aggregate all other source points into one? That is: define T = [2h, 1]

and chose x∗ = 1/2 + h as the center of T . Recall that yi ∈ [0, h]. Therefore the ratio
δ = (0.5−h)/0.5 = 1−2h is very close to 1 and a larger p ≈ 1/h ≈ N should be chosen
and thus no saving on the complexity. We shall show multilevel centers resulting a near
optimal algorithm.

Take J = dlog2Ne and set h = 1/2J . We choose T0 = (0, h], T1 = (h, 2h], . . . , Tk =
(2k−1h, 2kh], . . . TJ = (1/2, 1] and translate the sum of N terms to J = O(logN) terms:

ui =

N∑
j=1

qjG(xj − yi) =

J∑
k=0

∑
j∈Tk

qjG(xj − yi) =

J∑
k=0

RTk
.

For each Tk, k = 0, . . . , J , we chose x∗k as its center; see Fig 3 for an illustration.

FIGURE 3. According to the distance to the target, the aggregated cell
size can growth geometrically.

For nearby sources, the near-field effect can be only computed by summation of every
interaction, i.e., for k = 0, 1

RTk
=
∑

xj∈Tk

qjG(xj − yi).

The far-field function will be approximated by low rank approximation: for k ≥ 2

RTk
=
∑

xj∈Tk

qjG(xj − yi) =

p∑
m=0

 ∑
xj∈Tk

qjam(xj − x∗k)

Sm(x∗k − yi) +O(δp+1
k).

A simple calculation shows

δk ≤
1

3− (1/2)k−2
≤ 1

2
for k ≥ 2.

The integer p is chosen such that p = C| log ε| for a given tolerance ε and thus the tail
O(δp+1) can be safely skipped in the computation.

We need to compute the coefficients for each group Tk and the cost is O(N) since
every source xj is visited once. We also need to compute Sm(x∗k − yi) for m = 1 : p and
k = 1 : J . Thus the total cost to compute one ui is O(pN) = O(pN).

For a different target yi in a different cell, a different sequence of Tk should be chosen.
The length of Tk is geometrically increasing away from yi such that at most J centers are
used in the summation. We can fix several centers and use different far-field approximation
for target in different regions. For the p-th order approximation, the sum will take O(pJ)
operations provided the coefficients can be reused. We need an algorithm to compute the
coefficients in one pass like the first loop in summation2.

6 LONG CHEN

Low rank approximation plus hierarchical decomposition leads to fastO(N) orO(N logN)
algorithms for the summation problem or equivalently the computation of matrix-vector
product.

3. TREECODE: NEARLY OPTIMAL COMPLEXITY

In this section we present the tree algorithm developed by Barnes and Hut [1]. The com-
plexity is linearithimic, i.e., of orderO(N logN) which is nearly optimal for a problem of
size N .

3.1. A Tree Algorithm. We construct a binary tree of the unit interval as shown in Fig 4.
Denoted the cells in level l as Tl,k for index k = 1 : 2l. We chose x∗l,k as the center of the
cell Tl,k.

8 Rick Beatson and Leslie Greengard

s(x) ≈ s[0, 1
8)(x) + s[18 , 1

4)(x)

+ r[14 , 3
8)(x) + r[38 , 1

2)(x)

+ r[12 , 3
4)(x) + r[34 ,1](x).

Note in particular the use of the two level 2 approximations r[12 , 3
4) and

r[34 ,1], rather than the four level 3 approximations r[12 , 5
8),. . .,r[78 ,1]. The use

of these larger/higher level panels enables us to approximate the influence
of the sources in the interval [12 , 1] with two rather than four series evalu-
ations: that is, it halves the flop count for this part of the evaluation task.
Focusing on the use of r[12 , 3

4)(x) this is allowable since the panel [12 , 3
4) is

well separated from the panel [0, 1
4), the parent of [0, 1

8). Furthermore, the
use of r[34 ,1](x) is allowable since [34 , 1] is well separated from [0, 1

4).

Level 1 [0, 1/2)

[0, 1]

[1/2, 1]

Level 0

[0, 1/4)Level 2 [1/4, 1/2) [1/2, 3/4) [3/4, 1]

[0, 1/8)Level 3 [1/8, 1/4) [1/4, 3/8) [3/8, 1/2) [1/2, 5/8) [5/8, 3/4) [3/4, 7/8) [7/8, 1]

Fig. 2. Binary tree structure induced by a uniform subdivision of the unit
interval.

Similarly, to approximately evaluate s(x) in the panel [12 , 5
8) we would

use

s(x) ≈ s[38 , 1
2)(x) + s[12 , 5

8)(x) + s[58 , 3
4)(x)

+ r[14 , 3
8)(x) + r[34 , 7

8)(x) + r[78 ,1](x)

+ r[0, 1
4)(x).

In view of the error bound (2.6) the overall error in such a procedure
will be bounded by ε if the error in approximating φ(x − t) at every level
is bounded by ε/||d||1.

This motivates a simple tree code for evaluating a univariate multi-
quadric.

A hierarchical code for evaluating a univariate mutiquadric
radial basis function: setup part.

Input: the desired accuracy ε, 0 < ε< 1
2 , the source locations and weights

{xj , dj}N
j=1.

Step 1: Choose p ≈ | log2.12(ε/||d||1)|.

FIGURE 4. Binary tree structure induced by a uniform subdivision of the
unit interval. From A short course on fast multipole methods by Beatson
and Greengard [2].

For each cell Tl,k in the tree, compute and store the weight

wl,k,m =
∑

xj∈Tl,k

qjam(xj − x∗l,k).

Each source xj will be used once in every level and thus the computation of the weight
wl,k,m isO(N logN). This is like the first loop in summation2 on computing coefficients.

With the weight computed, for each i, the summation

ui =

N∑
j=1

G(xj − yi)qj ≈
J∑

l=1

p∑
m=0

wl,k(l,i),mSm(x∗l,k(l,i) − yi)

can be finished inO(Jp) operations. Here k = k(l, i) indicates cells used in the summation
depends on the target location yi and the level. In other words, for a given yi ∈ TJ,i, we
need to figure out an index path in the tree such that the selected elements along the path
will consists of a multilevel partition of [0, 1] centered at TJ,i. For example, for yi ∈
[0, 1/8], the summation is over T3,2 = [1/8, 1/4], T2,2 = [1/4, 1/2], and T1,2 = [1/2, 1].
For yi ∈ [3/8, 1/2], the summation list is T3,3 = [1/4, 3/8], T3,5 = [1/2, 5/8], T3,6 =
[5/8, 3/4], T2,1 = [0, 1/4], T2,4 = [3/4, 1]. We now discuss a way to find such a path.

3.2. Interaction List. For a cell Tl,k in level l, its (at most two) neighbors are near-field
cells. Other cells in the same level are far-field cells. For each target point in Tl,k, we need
to compute the far-field interaction. But we do not sum over all these far-field cells in the
same level. Depending on the distance to Tl,k, some far-field cells should be computed
in the coarser level. (Recall that the cell away from the target can be large.) To this end
we define the interaction list as the far-field cells in this level only. Mathematically the

INTRODUCTION TO FAST MULTIPOLE METHODS 7

interaction list of a cell Tl,k contains the far-field cells in the same level which are not
contained in the far-field of the parent of Tl,k; or in other words, they are far-field cell of
Tl,k and near-field of the parent cell of Tl,k. The summation is only restricted to cells in
the interaction list which is at most 4-cells in 1-D; see Fig ??. In one level, for a given cell,
the far field consists of well separated cells in this level (collected in the interaction list)
and those in coarser levels. The well separated cells in the interaction list can be computed
in O(1) operation and contribution from further cells have been considered in the coarser
levels; see Fig. 5.

FIGURE 5. Interaction list in a coarse and fine grid. The orange one is
the near field cells and the green cells are in interaction list. The yellow
cells are far field cells whose parent is also the far-field of the target in
the coarse grid.

We list code to find the interaction list for a given index i and explain briefly.

1 ic = ceil(i/2); % index in the coarse level

2 nearfieldc = max(ic-1,1):min(ic+1,2ˆ(L-1));

3 activeidx = (2*nearfieldc(1)-1):2*nearfieldc(end);

4 interactionidx = activeidx(activeidx<i-1 | activeidx>i+1);

The index map between coarse cells and fine cells is: the ic-th coarse cell will be divided
into two cells with the index 2ic − 1, 2ic in the fine grid. Vice verse, the parent of the i-th
cell in the fine grid is ic = di/2e. Line 1 computes ic from a fine index i. The near field
of ic-cell will be {ic− 1, ic + 1} with truncation of the boundary. This is line 2. Refine the
near field cells in the coarse grid to get cells in the fine grid, which is called activdidx in
line 3. In line 4, the near field of i is excluded from the activeidx which gives the index
of interaction cells of i.

3.3. Tree Code. We present a pseudo code of the tree algorithm developed by Barnes
and Hut [1] below. The implementation details will be left as a project. A vectorized
implementation in MATLAB is available upon request.

1 function fmmtree

2 J = floor(log2(N));

3 %% Compute the weight (bottom to top)

4 for L = J:-1:1

5 for k = 1:2ˆL

6 for m = 0:p

7 compute w(L,k,m);

8 end

8 LONG CHEN

9 end

10 end

11 %% Evaluation (top to bottom)

12 for L = 1:J

13 for k = 1:2ˆL

14 for each y(i) in T(L,k)

15 for m = 0:p % far-field

16 for s in the interaction list of T(L,k)

17 u(i) = u(i) + w(L,k,m)*Sm(xstar(L,s) - y(i));

18 end

19 end

20 if L == J % finest level: add near-field

21 u(i) = u(i) + near-field(y(i),T(J,:));

22 end

23 end

24 end

25 end

The tree algorithms requiresO(N logN) operations since every xj , yi is visited once in
each level and there areO(logN) levels. When evaluate the summation, instead of looping
over yi, i = 1 : N , we scan each cell in the tree and accumlate the contribution to each
target in this cell. The map from the point index to cell index can be simply calculated by
ci = ceil(x(i)/h) where h is the length of the cell in the current level. Although we
write loops, the computation of weight and the evaluation in each cell does not depending
on the ordering and can be implemented in parallel.

4. FAST MULTIPOLE METHOD: OPTIMAL COMPLEXITY

In theO(N logN) algorithm, we need J = log2N in two places: computing the weight
in the multipole expansion and evaluating J far-field terms in the summation. We now
discuss an algorithm developed by Greengard and Rokhlin [3] to remove the multiplicity
of J and thus obtain an optimal complexity O(N) algorithm.

The computation of weight is easy to optimize since positive power (xj − x∗)m is
involved. The far-field evaluation is not easy due to the negative power (yi − x∗)−m. One
key idea is to translate the far-field multiple expansion to local Taylor expansion which
change the negative powers to the positive powers. Then the local expansion can be easily
translated through the tree. The evaluation is delayed to the finest level and restrict to local
cells only.

4.1. Translation of Multipole Expansions. In the formulation of am(xj − x∗), only the
positive power of (xj − x∗)m is used which can be easily translated between levels.

Let us take Tl−1,1 and its two children cells Tl,1 and Tl,2. Denote hl the length of cells
in level l. For j ∈ Tl,1,

(xj − x∗l−1,1)m = (xj − x∗l,1 + x∗l,1 − x∗l−1,1)m

=

m∑
s=0

(
m

s

)
(x∗l,1 − x∗l−1,1)m−s(xj − x∗l,1)s

=

m∑
s=0

(
m

s

)
(−hl/2)m−s(xj − x∗l,1)s.

INTRODUCTION TO FAST MULTIPOLE METHODS 9

A similar expansion for j ∈ Tl,2 can be also obtained. So if we store the momentum
al,i,m =

∑
j∈Tl,i

qj(xj − x∗l,i)m for i = 1 : 2l,m = 0 : p, we can compute the power in
level l − 1 as

al−1,1,m =
∑

j∈Tl−1,1

qj(xj − x∗l−1,1)m

=
∑

j∈Tl,1

qj(xj − x∗l−1,1)m +
∑

j∈Tl,2

qj(xj − x∗l−1,1)m

=

m∑
s=0

(
m

s

)
(hl/2)m−s

[
(−1)m−sal,1,s + al,2,s

]
.

That is we can merge the weight of two children to their parent. For readers familiar with
multigrid methods, it is like a restriction operator mapping a longer vector (al,k,m) of
length pNl to a shorter vector (al−1,k,m) of length pNl−1.

Now the N points source xj is only visited in the finest level and in each level the com-
putation cost is O(Nl = 2l). Since the sequence Nl is geometrically decay as l decreases,
the computation of am in all levels will take O(p

∑1
l=J Nl) = O(pN) operations. The

O(N) bottom-to-top algorithm for computing the coefficients al,k,m is illustrated in the
following figure.

FIGURE 6. An O(N) bottom-to-top algorithm for computing the coef-
ficients al,k,m

As an explanatory example, we look at the monopole expansion, i.e., only al,k,0 =∑
j∈Tl,k

qj is used. Then obviously

al−1,1,0 = al,1,0 + al,2,0.

The translation can be implemented by the restriction operator of the piecewise constant
function al−1 = Ral in the terminology of multigrid methods. In general the transla-
tion for the multipole expansion is like the restriction operator of high order (p-th order)
discontinuous elements. For example for p = 2, the local restriction operator R is

R =

 1 0 0 | 1 0 0
−h 1 0 | h 1 0
h2 −2h 1 | h2 2h 1

 .

4.2. Multipole Expansions to Local Expansions. The O(N logN) tree algorithm is
achieved by a multilevel partition of all source points. To get an O(N) algorithm, such
technique should be applied to the target points. Again for simplicity, we assume {yi}
is also uniform distributed in [0, 1] and the same binary tree can be used to partition the
targets into multilevel cells.

One logN complexity is from the evaluation the far-field approximation Sm(yi − x∗l,k)
for each yi at every level. To remove this logN term, we will defer the evaluation to the

10 LONG CHEN

finest level only. For a given cell Tl,k and a cell Tl,s in its interaction list, the evaluation
will be replaced by the translation of the multipole expansion at Tl,s to a local expansion
at the center y∗l,k. For one cell, the algorithm will not loop over all yi in the cell, instead
only work with one center; see Fig. 7.

FIGURE 7. Multipole expansion to local expansion

For a cell Tl,k, we define the multipole potential

(7) Φl,k(y;x∗l,k,al,k) =

p∑
m=0

al,k,mSm(x∗l,k − y),

and the local expansion

(8) Ψl,k(y; y∗l,k, bl,k) =

p∑
m=0

bl,k,m(y − y∗l,k)m.

Note that these two functions of y are uniquely determined by the coefficients al,k,m, bl,k,m.
To translate Φl,s to Ψl,k is to compute the coefficients bl,k using al,s. The computational
cost will be thus proportional to the length of al,k and in each level will be O(Nl) and the
overall cost is O(N). Once we know ΨJ,k for k = 1 : 2J in the finest level, the evaluation
will be simply

ui ≈ near filed +

J∑
l=1

∑
(l,k)∈I(l,i)

Φl,k(yi;x
∗
l,k,al,k) ≈ near filed +ΨJ,k(i)(yi; y

∗
J,k(i), bJ,k),

which can be finished inO(N) operations. Here k(i) is the index of the cell containing ui.
We now discuss how to translate the multipole potential Φ to the local expansion Ψ.

Again the tool is Taylor expansion. Given two well separated cells Tl,k and Tl,s in the
same level, we expand Sm(x∗l,s − y) as a function of y − y∗l,k:

Sm(x∗l,s − y) = Sm(x∗l,s − y∗l,k + y∗l,k − y) = Sm((x∗l,s − y∗l,k)(1 +
y∗l,k − y
x∗l,s − y∗l,k

))

= Sm(x∗l,s − y∗l,k)Sm(1−
y − y∗l,k
x∗l,s − y∗l,k

)

=

p∑
n=0

S
(n)
m (1)

n!

Sm(x∗l,s − y∗l,k)

(x∗l,s − y∗l,k)n
(y − y∗l,k)n +O(δp+1).

INTRODUCTION TO FAST MULTIPOLE METHODS 11

Note that in this step an additional approximation error is introduced, i.e.,

Φl,s ≈ Ψl,k +O(δp+1).

From the above formula, we can easily see the relation of al,s and bl,k

bl,k,m =

p∑
t=m

al,s,t
S
(m)
t (1)

m!

St(x
∗
l,s − y∗l,k)

(x∗l,s − y∗l,k)m
.

4.3. Translation of Local Expansions. Unlike the tree code, now the far-field interaction
is not accumulated to u(i). Instead the far-field in the interaction list will be translated
to the local expansion. To bring the local expansion from the coarse to the fine level, we
need a translation of the local expansion. Or equivalently find relation between children’s
coefficients bl+1,1, bl+1,2 from the coefficient bl,1 of their parent.

Mathematically we want to express the local expansion

Ψl,1(y; y∗l,1, bl,1) = Ψl+1,i(y; y∗l+1,i, bl+1,i)

for y ∈ Tl+1,i. The formula is an easy consequence by expanding

(y − y∗l,1)m = (y − y∗l+1,1 + y∗l+1,1 − y∗l,1)m =

m∑
s=0

(
m

s

)
(−hl/2)m−s(y − y∗l+1,1)s

to get

bl+1,1,s =

p∑
m=s

bl,1,mC
s
m(−hl/2)m−s, bl+1,2,s =

p∑
m=s

bl,1,mC
s
m(hl/2)m−s

This step is the prolongation of function Ψl,k from a coarse level l to a fine level l + 1
in terms of functions Ψl+1,k. The prolongation operator can be written as bl+1 = RT bl
where R is the restriction operator; see Section 3.1.

As an explanatory example, we look at the monopole expansion, i.e., only bl,k is used
in a piecewise constant expansion. Then the translation is simply

bl+1,1 = bl,1, bl+1,2 = bl,1,

i.e., the prolongation of piecewise constant functions. For p = 2, the prolongation operator
RT is

RT =



1 −h h2

0 1 −2h
0 0 1
− − −
1 h h2

0 1 2h
0 0 1


.

Note that the update of coefficients bl,k includes both the translation of bl−1 in the coarse
level and the multipole expansion to the local expansion in the same level (for cells in the
interaction list); see Fig. 8.

12 LONG CHEN

FIGURE 8. An O(N) bottom-to-top algorithm for computing the coef-
ficients bl,k,m

4.4. Algorithm of Optimal Complexity. We present the following O(N) algorithm.

1 function fmm

2 J = floor(log2(N));

3 %% Compute the weight (bottom to top)

4 for k = 1:2ˆJ % finest level

5 for each x(j) in T(L,k)

6 compute a(l,k,m);

7 end

8 end

9 for L = J-1:-1:1

10 for k = 1:2ˆL % multipole to multipole translation (restriction)

11 a(L,k) = M2M(a(L+1,kc(1)),a(L+1,kc(2)));

12 end

13 end

14 %% Evaluation (top to bottom)

15 for L = 2:J-1

16 for k = 1:2ˆL

17 for s in the interaction list of T(L,k)

18 b(L,k) = b(L,k) + M2L(a(L,s)); % multipole to local translation

19 end

20 b(L+1,kc(1:2)) = L2L(b(L,k)); % local to local translation (prolongation)

21 end

22 end

23 for k=1:2ˆJ % evaluation in the finest level

24 for each y(i) in T(J,k)

25 u(i) = evaluate(y(i),b(J,k)) + near field;

26 end

27 end

In each level, the computational cost isO(pNl). So the total complexity isO(p
∑1

l=J Nl) =
O(pN). Now the ordering of levels does matter but for a given level, the computation of
cells is independent of each other.

REFERENCES

[1] J. Barnes and P. Hut. A hierarchical O(NlogN) force-calculation algorithm. Nature, 324:446–449, 1986.
[2] R. Beatson and L. Greengard. A short course on fast multipole methods.
[3] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulations. J. Comput. Phys., 73(2):325–348,

1987.

	1. Separable and low rank matrices
	2. Multipole Expansion and Multilevel Aggregation
	2.1. Multipole Expansion and Separable Far-Filed Effect
	2.2. Multilevel Aggregation

	3. TreeCode: Nearly Optimal Complexity
	3.1. A Tree Algorithm
	3.2. Interaction List
	3.3. Tree Code

	4. Fast Multipole Method: Optimal Complexity
	4.1. Translation of Multipole Expansions
	4.2. Multipole Expansions to Local Expansions
	4.3. Translation of local expansions
	4.4. Algorithm of optimal complexity

	References

