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ABSTRACT. We review basics on least square problems. The material is mainly taken
from books [2, 1, 3].

We consider an overdetermined system Ax = b where Am×n is a tall matrix, i.e.,
m > n. We have more equations than unknowns and in general cannot solve it exactly.

x bA

FIGURE 1. An overdetermined system.

1. FUNDAMENTAL THEOREM OF LINEAR ALGEBRA

Let Am×n : Rn → Rm be a matrix. Then the fundamental theorem of linear algebra is:

N(A) = C(AT )⊥, N(AT ) = C(A)⊥.

In words, the null space is the orthogonal complement of the row space in Rn. The left
null space is the orthogonal complement of the column space in Rm. The column space
C(A) is also called the range of A. It is illustrated in the following figure.

Therefore Ax = b is solveable if and only if b is in the column space (the range of A).
Looked at indirectly. Ax = b requires b to be perpendicular to the left null space, i.e.,
(b, y) = 0 for all y ∈ Rm such that yTA = 0.

The real action of A : Rn → Rm is between the row space and column space. From
the row space to the column space, A is actually invertible. Every vector b in the column
space comes from exactly one vector xr in the row space.

2. LEAST SQUARES PROBLEMS

How about the case b /∈ C(A)? We consider the following equivalent facts:
(1) Minimize the error E = ‖b−Ax‖;
(2) Find the projection of b in C(A);
(3) b−Ax must be perpendicular to the space C(A).
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FIGURE 2. Fundamental theorem of linear algebra.

By the fundament theorem of linear algebra, b − Ax is in the left null space of A, i.e.,
(b−Ax)TA = 0 or equivalently AT (Ax− b) = 0. We then get the normal equation

ATAx = AT b.

The least square solution
x = A†b := (ATA)−1AT b,

and the projection of b to C(A) is given by Ax = A(ATA)−1AT b. The operator A† :=
(ATA)−1AT is called the Moore-Penrose pseudo-inverse of A.

The projection matrix to the column space of A is

P = A(ATA)−1AT : Rm → C(A).

Its orthogonal complement projection is given by

I − P = I −A(ATA)−1AT : Rm → N(AT ).

In general a projector or idempotent is a square matrix P that satisfies

P 2 = P.

When v ∈ C(P ), then applying the projector results in v itself, i.e. P restricted to the
range space of P is identity.

For a projector P , I − P is also a projector and is called the complementary projector
to P . We have the complementary result

C(I − P ) = N(P ), N(I − P ) = C(P ).

An orthogonal projector P is a projector P such that (v − Pv)⊥C(P ). Algebraically
an orthogonal projector is any projector that is symmetric, i.e., PT = P . Using the SVD
decomposition, we can write an orthogonal projector

P = Q̂Q̂T ,
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where the columns of Q̂ are orthonormal. The projection Px = Q̂(Q̂Tx) can be interpret
as: c = Q̂Tx is the coefficient vector and Q̂c is expanding x in terms of column vectors of
Q̂. An important special case is the rank-one orthogonal projector which can be written as

P = qqT , P⊥ = I − qqT .

for a unit vector q and for a general vector a

P =
aaT

aTa
, P⊥ = I − aaT

aTa
.

Example 2.1. Consider Stokes equation with B = −div. Here B is a long-thin matrix
and can be thought as AT . Then the projection to divergences free space, i.e., N(B) is
given by P = I −BT (BBT )−1B.

Example 2.2. Note that the default orthogonality is with respect to the l2 inner product.
For an SPD matrix A, the A-orthogonal projection PH : V → VH is

PH = IH(ITHAIH)−1ITHA,

which is symmetric in the (·, ·)A inner product.

3. QR DECOMPOSITION

3.1. Orthogonal Matrix. If Q has orthonormal columns, then QTQ = I , i.e., QT is the
left-inverse of Q. An orthogonal matrix is a square matrix with orthonormal columns. For
an orthogonal matrix, the transpose is its inverse, i.e., Q−1 = QT .

Example 3.1. A permutation matrix is an orthogonal matrix. In particular, a reflection
matrix is. Geometrically, an orthogonal matrixQ is the product of a rotation and reflection.

Since QT = Q−1, we also have QQT = I . The rows of a square matrix are orthonor-
mal whenever the columns are.

The least square problem Qx = b for a matrix with orthonormal columns is ver easy to
solve: x = QT b. The projection matrix becomes

P = QQT .

Notice that QTQ is the n× n identity matrix, whereas QQT is an m×m projection P . It
is the identity matrix on the columns of Q but QQT is the zero matrix on the orthogonal
complement (the nullspace of QT ).

3.2. Gram-Schmidt Algorithm. Given a tall matrix A, we can apply a procedure to turn
it to a matrix with orthogonal columns. The idea is very simple. Suppose we have orthog-
onal columns Qj−1 = (q1, q2, . . . , qj−1), take aj , the j-th column of A, we project aj to
the orthogonal complement of the column space of Qj−1. The formula is

PC⊥(Qj−1)aj = (I −Qj−1Q
T
j−1)aj = aj −

j−1∑
i=1

qi(q
T
i aj).

After that we normalize PC⊥(Qj−1)aj .
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3.3. QR decomposition. The G-S procedure leads to a factorization

A = QR,

whereQ is an orthogonal matrix andR is upper triangular. Think the matrix times a vector
as a combination of column vectors of the matrix using the coefficients given by the vector.
SoR is upper triangular since the G-S procedure uses the previous orthogonal vectors only.

It can be also thought of as the coefficient vector of the column vector of A in the
orthonormal basis given by Q. We emphasize that:

(1) QR factorization is as important as LU factorization.

LU is for solving Ax = b for square matrices A. QR simplifies the least square solution
of Ax = b. With QR factorization, we can get

Rx = QT b,

which can be solved efficiently since R is upper triangular.

4. METHODS FOR QR DECOMPOSITION

4.1. Modified Gram-Schmit Algorithm. The original G-S algorithm is not numerically
stable. The obtained matrix Q may not be orthogonal due to the round-off error especially
when column vectors are nearly dependent. Modified G-S is more numerically stable.

Consider the upper triangular matrixR = (rij), G-S algorithm is computing rij column-
wise while modified G-S is row-wise. Recall that in the j-th step of G-S algorithm, we
project the vector aj to the orthogonal complement of the spanned by (q1, q2, . . . , qj−1).
This projector can be written as the composition of

Pj = P⊥qj−1
· · ·P⊥q2P⊥q1 .

Once q1 is known, we can apply P⊥q1 to all column vectors from 2 : n and in general when
qi is computed, we can update P⊥qi vj for j = i+ 1 : n.

Operation count: there are n2/2 entries in R and each entry rij requires 4m operations.
So the total operation is 4mn2. Roughly speaking, we need to compute the n2 pairwise
inner product of n column vectors and each inner product requires m operation. So the
operation is O(mn2).

4.2. Householder Triangulation. We can summarize
• Gram-Schmit: triangular orthogonalization AR1R2...Rn = Q
• Householder: orthogonal triangularization Qn...Q1A = R

The orthogonality of Q matrix obtained in Householder method is enforced.
One step of Houserholder algorithm is the Householder reflection which changes a vec-

tor x to ce1. The operation should be orthogonal so the projection to e1 is not a choice.
Instead the reflection is since it is orthogonal.

It is a reflection so the norm should be preserved, i.e., the point on the e1 axis is either
‖x‖e1 or−‖x‖e1. For numerical stability, we should chose the point which is not too close
to x. So the reflection point is xT = −sign(x1)‖x‖e1.

With the reflection point, we can form the normal vector v = x−xT = x+sign(x1)‖x‖e1
and the projection to v is Pv = v(vT v)−1vT and the reflection is given by

I − 2Pv.

The reflection is applied to the lower part column vectors A(k : m, k : n) and in-place
implementation is possible.
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ized are nearly linearly dependent, so we cannot use it to compute the QR
decomposition stably.

Instead, we base our algorithms on certain easily computable orthogonal
matrices called Householder reflections and Givens rotations, which we can
choose to introduce zeros into vectors that they multiply. Later we will show
that any algorithm that uses these orthogonal matrices to introduce zeros
is automatically stable. This error analysis will apply to our algorithms for
the QR decomposition as well as many SVD and eigenvalue algorithms in
Chapters 4 and 5.

Despite the possibility of nonorthogonal Q, the MGS algorithm has im-
portant uses in numerical linear algebra. (There is little use for its less stable
version, CGS.) These uses include finding eigenvectors of symmetric tridiagonal
matrices using bisection and inverse iteration (section 5.3.4) and the Arnoldi
and Lanczos algorithms for reducing a matrix to certain "condensed" forms
(sections 6.6.1, 6.6.6, and 7.4). Arnoldi and Lanczos algorithms are used as
the basis of algorithms for solving sparse linear systems and finding eigenval-
ues of sparse matrices. MGS can also be modified to solve the least squares
problem stably, but Q may still be far from orthogonal [33].

3.4.1. Householder Transformations

A Householder transformation (or reflection) is a matrix of the form P —
I — 2uuT where |2 = 1. It is easy to see that P = PT and PPT = (I —
2uuT)(I — 2uuT) = I — 4uuT + 4uuTuuT = /, so P is a symmetric, orthogonal
matrix. It is called a reflection because Px is reflection of x in the plane
through 0 perpendicular to u.

Given a vector x, it is easy to find a Householder reflection P = I — 2uuT

to zero out all but the first entry of x: Px = [c, 0,. . . ,0]T = c • e1. We do
this as follows. Write Px = x — 2u(uTx] = c - e1 so that u = (x ~ ce1)'
i.e., u is a linear combination of x and e1. Since ||x;||2 = Px = u must
be parallel to the vector u = x ± , and so u = u 2. One can verify
that either choice of sign yields a u satisfying Px = ce1, as long as u 0. We
will use u = x + signal)e1, since this means that there is no cancellation in

FIGURE 3. Householder reflection

5. SVD

There exist orthonormal matrixUm×n and Vn×n and a diagonal matrix Σn×n = diag(σ1, σ2, · · · , σn)
such that

A = UΣV T ,

which is called the Singular Value Decomposition of A and the numbers σi are called
singular values.

If we treat A is a mapping from Rn → Rm, the geometrical interpretation of SVD is:
in the correct coordinate, the mapping is just the scaling of the axis vectors. Thus a circle
in Rn is embedded into Rm as an ellipse.

If we let U (i) and V (i) to denote the i-th column vectors of U and V , respectively. We
can rewrite the SVD decomposition as a decomposition of A into rank one matrices:

A =

n∑
i=1

σiU
(i)(V (i))T .

If we sort the singular values in decent order: σ1 ≥ σ2 · · · ≥ σn, for k ≤ n, the best rank
k approximation, denoted by Ak, is given by

Ak =

k∑
i=1

σiU
(i)(V (i))T .

And

‖A−Ak‖2 =

∥∥∥∥∥
n∑

i=k+1

σiU
(i)(V (i))T .

∥∥∥∥∥ = σk+1.

It can proved Ak is the best one in the sense that

‖A−Ak‖2 = min
X,rank(X)=k

‖A−X‖2.

When the rank of A is r, then σ 6= 0, σr + 1 = σr+2 = · · · = σn = 0 and we can
reduce U to a m × r matrix and Σ, V to r × r. On the other hand, we can find U⊥ with
size m× (m− n) and extend U to an orthonormal matrix Ūm×m. The extended Σ̄m×n is
filled with additional zero rows.

By direct computation, we know σ2
i is an eigenvalue of ATA and AAT .

6. METHODS FOR SOLVING LEAST SQUARE PROBLEMS

Given a tall matrix Am×n,m > n, the least square problem Ax = b can be solved by
the following methods

(1) Solve the normal equation ATAx = AT b

(2) Find QR factorization A = QR and solve Rx = QT b.
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(3) Find SVD factorization A = UΣV T and solve x = V Σ−1UT b.
Which method to use?
• Simple answer: QR approach is the ‘daily used’ method for least square problems.
• Detailed answer: In terms of speed, 1 is the fastest one. But the condition number

is squared and thus less stable. QR factorization is more stable but the cost is
almost doubled. The SVD approach is more appropriate when A is rank-deficient.
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