
THE FAST FOURIER TRANSFORM

LONG CHEN

ABSTRACT. Fast Fourier transform (FFT) is a fast algorithm to compute the discrete
Fourier transform in O(N logN) operations for an array of size N = 2J . It is based
on the nice property of the principal root of xN = 1. In addition to the recursive imple-
mentation, a non-recursive and in-place implementation, known as butterfly algorithm, is
also provided.

Fourier series can be written as

(1) u(x) =

∞∑
j=0

cke
ikx, ∀x ∈ [0, 2π].

It transforms a periodic function u(x) to an infinite vector (c0, c1, . . . , cN , . . .) composed
by Fourier coefficients. The independent variable is changed from x to k.

The significance of Fourier transform is that a function is decomposed into composition
of frequencies. Some properties are more transparent viewed in the frequency domain. It
opens a new way to study functions and becomes the core of the signal processing.

Another nice property of Fourier transform is that the basis eikx is friendly to the dif-
ferential operators. Mathematically it is an eigen-function of the differential operator. The
differentiation/integration becomes an algebraic multiplication and thus differential equa-
tions are easy to solve in this basis. This is known as spectral methods.

Fourier transform, more precisely the discrete Fourier transform, becomes practical only
after faster Fourier transform (FFT) is invented which dramatically reduces the O(N2)
naive implementation to much faster O(N logN) algorithms. FFT is one of the most
important algorithms of the 20th century. It is discovered by Cooley and Tukey [1] in 1965
but can be traced back to Gauss 160 years earlier.

1. DISCRETE FOURIER TRANSFORM

The function u is periodic with period 2π and thus the variable x can be viewed as the
horizontal axis-angle θ of a unit vector; see Fig. 1. In the discrete case, the transform (1)
holds on discrete points. Given an integer N , let θ = 2π/N, ω = eiθ and let xl = lθ, for
l = 0, . . . , N − 1, be N equal-distributed points on the unit circle. We ask the identity (1)
holds at xl, for l = 0, . . . , N − 1, which results in a matrix equation Fc = u

1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

· · · · · · · · · · · ·
1 ωN−1 ω2(N−1) . . . ω(N−1)2




c0
c1
c2
· · ·
cN−1

 =


u0
u1
u2
· · ·
uN−1

 .

Date: October 8, 2015.
1

2 LONG CHEN

The matrix F is called Fourier matrix and the (l, k) item of matrix F is eikxl = eiklθ =
ωlk. So we can simply write the matrix F = (ωlk)N×N , for l, k = 0, 1, . . . , N − 1. The
matrix F is symmetric (only transpose no conjugate).

Given a function u(x), more precisely u sampled at certain points xi, represented by a
vector u, the Fourier coefficients vector c is given by F−1u. So we first figure out F−1.

For a fixed N , all roos of xN = 1 forms a finite cyclic group G. A generator is the
principle root ω = e2πi/N and the operation is the multiplication of complex numbers
which can be visualized as a rotation of multiple of angle θ. 1 = ω0 is the unit element and
the inverse of an element w ∈ G is its conjugate w̄ since w w̄ = |w| = 1 for a unit vector
w. If w = ωk = eikθ, then w̄ = e−ikθ = ω−k.

3.5 The Fast Fourier Transform 213

It makes an angle q with the horizontal. The whole plane enters in Chapter 5, where
complex numbers will appear as eigenvalues (even of real matrices). Here we need only
special points w, all of them on the unit circle, in order to solve wn = 1.

w8 = 1

w2 = i

w = e2π/8 = cos 2π
8 + i sin 2π

8w3

w4 = −1

w5

w6 = −i

w7 = w

Real axis

2π

8

Figure 3.11: The eight solutions to z8 = 1 are 1,w,w2, . . . ,w7 with w = (1+ i)/
p

2.

The square of w can be found directly (it just doubles the angle):

w2 = (cosq + isinq)2 = cos2 q ° sin2 q +2isinq cosq .

The real part cos2 q ° sin2 q is cos2q , and the imaginary part 2 sinq cosq is sin2q .
(Note that i is not included; the imaginary part is a real number.) Thus w2 = cos2q +

isin2q . The square of w is still on the unit circle, but at the double angle 2q . That
makes us suspect that wn lies at the angle nq , and we are right.

There is a better way to take powers of w. The combination of cosine and sine is a
complex exponential, with amplitude one and phase angle q :

cosq + isinq = eiq . (2)

The rules for multiplying, like (e2)(e3) = e5, continue to hold when the exponents iq are
imaginary. The powers of w = eiq stay on the unit circle:

Powers of w w2 = ei2q , wn = einq ,
1
w

= e°iq . (3)

The nth power is at the angle nq . When n = °1, the reciprocal 1/w has angle °q . If
we multiply cosq + isinq by cos(°q)+ isin(°q), we get the answer 1:

eiq e°iq = (cosq + isinq)(cosq ° isinq) = cos2 q + sin2 q = 1.

Note. I remember the day when a letter came to MIT from a prisoner in New York,
asking if Euler’s formula (2) was true. It is really astonishing that three of the key

FIGURE 1. default

Lemma 1.1. The matrix F is orthogonal, i.e., the column vectors of F are mutually or-
thogonal.

Proof. Let vk be the column vectors of F . We compute vk · v̄l, for k 6= l, as

(2) 1 +W +W 2 + · · ·+WN−1

with W = ωkω−l. A key observation is that W is still a root of unity as a power of the
generator, i.e., WN = ωkNω−lN = 1k1−l = 1. And since k 6= l, W 6= 1. Then multiply
(2) by 1−W , we obtain 1−WN = 0 and conclude (2) is zero since W 6= 1. �

As a consequence, we obtain the identity F̄F = NI and thus the inverse of F is a
scaled F̄ , i.e. F−1 = F̄ /N . Here we skip the transpose since F is symmetric. Notice that
F̄ looks just like F : simply change ω to ω̄.

2. FAST FOURIER TRANSFORM

FFT is a fast algorithm for computing Fc or F̄ u. It is a divide-and-conquer algorithm.
To unify the discussion, we consider the computation y = FNx with FN = (wkjN)N×N ,
i.e., for k = 0, . . . , N − 1,

(3) yk =

N−1∑
j=0

wkjN xj .

THE FAST FOURIER TRANSFORM 3

Fourier transform corresponds to wN = ω̄N and inverse Fourier transform to wN = ωN .
Given an even integer N , we use FN and FNc with Nc = N/2 to denote the transform in
different scales.

Algorithm (FFT)
(1) Divide x into xeven and xodd.
(2) Compute yeven = FNc

xeven, yodd = FNc
xodd

(3) Merge yeven and yodd into u.

The merge step is not straight-forward. The formulae found by Cooley and Tukey [1] is
based on the following properties of the factor wN which can be verified easily. The key is
w2
N = wNc

.
(1) Symmetry:

(wkjN)∗ = w−kjN , w
k(j+N/2)
N = −wkjN .

(2) Periodic:
wkjN = w

k(j+N)
N = w

(k+N)j
N .

(3)
wkjN = wmkjmN , wkjN = w

kj/m
N/m .

Theorem 2.1. For k = 0, . . . , Nc − 1, we have

y(k) = yeven(k) + wkNyodd(k)(4)

y(k +Nc) = yeven(k)− wkNyodd(k)(5)

Proof. We split the sum in the formulae of yk into even and odd parts:

yk =

N−1∑
j=0

wkjN xj =

Nc−1∑
j=0

wk2jN x2j +

Nc−1∑
j=0

w
k(2j+1)
N x2j+1.

The first part is simply yeven sincew2
N = wNc . The weight in the second sum can be rewrit-

ten as w2kj
N wkN = wkjNc

wkN and (4) follows. Note that in (4), the index k = 0, . . . , Nc − 1
is in the index range of the coarse FT.

We thus need the second formulae (5) for the second half indices. We repeat the sum as

y(k +Nc) =

N−1∑
j=0

w
(k+Nc)j
N xj =

Nc−1∑
j=0

w
(k+Nc)2j
N x2j +

Nc−1∑
j=0

w
(k+Nc)(2j+1)
N x2j+1.

The first weight is still wkjNc
as w2Ncj

N = wNjN = 1. The second weight is wkjNc
wkNw

Nc

N =

−ωkjNc
wkN as wNc

N = −1. Therefore (5) follows. �

A MATLAB code is presented below.

1 function y = fft(x)

2 N = length(x);

3 if N == 1 % the coarsest level

4 y = x; return;

5 end

6 % divide

7 y_even = fft(x(1:2:end));

8 y_odd = fft(x(2:2:end));

9 % merge

4 LONG CHEN

10 w = exp(-i*2*pi/N);

11 Nc = N/2;

12 k = 1:Nc;

13 tempy_odd = w.ˆ(k-1).*y_odd;

14 y(k) = y_even + tempy_odd;

15 y(j+Nc) = y_even - tempy_odd;

The dominant operation in the merge step is the multiplication of complex numbers, i.e.
line 13. We thus skip the addition and count the number of multiplication only. We can
easily get the recurrence

T (N) = 2T (N/2) +N/2

from which we obtain T (N) = 1/2N log2N .

3. BUTTERFLY ALGORITHM

We discuss a non-recursive and in-place implementation of FFT. The top-to-bottom
phase is an even-odd reordering of the input array. An example of N = 8 is displayed in
the following table.

TABLE 1. Even-odd ordering of different levels

L = 4
L = 3
L = 2
L = 1

0 1 2 3 4 5 6 7
0 2 4 6 1 3 5 7
0 4 2 6 1 5 3 7
0 4 2 6 1 5 3 7

This ordering can be generated by bit reversal permutation. For an index n, written in
binary with digits b2b1b0 is switched with the index with reversed digits b0b1b2; see the
figure for an illustration.

FIGURE 2. Bit reversal ordering for N = 8.

A MATLAB implementation is presented below.

1 for i = 0:N-1

2 ir = bin2dec(flip(dec2bin(i,J)));

3 if i<ir

4 % all index shifted by one since it starts with 1 not 0

5 t = x(i+1);

6 x(i+1) = x(ir+1);

THE FAST FOURIER TRANSFORM 5

7 x(ir+1) = t;

8 end

9 end

The bottom-to-top can be decomposed into pairs of the following butterfly diagram.
The weight wjL is called twiddle factor. This provides a in-place implementation of FFT.

FIGURE 3. Butterfly diagram

Namely we can use the same array to store the updated values. Suppose N = 2L. We use
subscript L,L = 1 : J, to denote a level index. The two input data of the butterfly diagram
is separated by the length dL = 2L−1. The twiddle factor in level L is wL = w2L =

w2J−L

N . The updated formulae is

yL(k) = yL−1(k) + wkLyL−1(k + dL)

yL(k + dL) = yL−1(k)− wkLyL−1(k + dL).

We can first copy values yL−1(k), yL−1(k+dL) to two temporary location and then rewrite
with the values of yL(k), yL(k + dL). So only one array of size N is needed. The N = 8
case is illustrated in the following figure. Note that the bottom (left) is in the bit-reverse
ordering and the top (right) is the natural ordering.

A MATLAB code is presented below.

1 for L = 1:level

2 d = 2ˆ(L-1);

3 for j = 0:d-1

4 p = j*2ˆ(level - L);

5 wL = wˆp;

6 for k = j+1:2ˆL:N

7 a = x(k);

8 b = wL*x(k+d);

9 x(k) = a + b;

10 x(k+d) = a - b;

11 end

12 end

13 end

4. VARIANTS OF FFT

In the signal process, the input array x(t) is a signal sampled at certain time. The
output is in the frequency domain. The FFT presented in the previous section is called
decimation-in-time (DIT).

6 LONG CHEN

FIGURE 4. Butterfly implementation of FFT

Now we discuss the decimation-in-frequency (DIF) version. The divide step is easier.
We simply split the input array x(0 : N−1) into two x1 = x(0 : Nc−1) and x2 = x(Nc :
N − 1). Then apply the ‘butterfly’ procedure to x1 and x2 to get x̃1 and x̃2. After that we
apply FFT to shorter arrays x̃1 and x̃2 to obtain y1 and y2. To merge y1 and y2, we need
even-odd splitting of y: yeven = y(0 : 2 : N − 2), yodd = y(1 : 2 : N − 1).

Exercise 4.1. (1) Derive the formulae from x1, x2 to yeven and yodd.
(2) Write a pseudocode for DIF (recursive and non-recursive).

When the length N is not of power 2, we can simply add zeros to enlarge the length.
We now discuss another variation of FFT adapt to the general factorization N = N1N2

and usually N1 is small and called the radix (say between 2 to 8). The FFT presented in
the previous section is known radix-2 DIT.

The idea is to reinterpret the 1-D array of length N1N2 to a two dimensional matrix
of size N2 × N1 and then apply the Fourier transform to N1 arrays of shorter length N2.
The single summation index j is changed to two subscripts (j1, j2) and the relation is
j = j2N1 + j1 for j1 = 0, . . . , N1, j2 = 0, . . . , N2. We can split the sum as

y(k) =

N−1∑
j=0

wkjN x(j) =

N1−1∑
j1=0

N2−1∑
j2=0

w
k(j1,j2)
N x(j1, j2)

=

N1−1∑
j1=0

N2−1∑
j2=0

wkj2N1+kj1
N1N2

xj1(j2)

=

N1−1∑
j1=0

wkj1N

N2−1∑
j2=0

wkj2N2
xj1(j2)

=

N1−1∑
j1=0

wkj1N ỹj1(k).

THE FAST FOURIER TRANSFORM 7

Here ỹ is a matrix of size N1 × N2 by applying FT to columns of the x interpreted as
N2 ×N1 matrix and then taking transpose.

We further apply the same trick to the index k but in a transpose way, i.e., k = k1N2 +
k2. We continue as

y(k1, k2) =

N1−1∑
j1=0

w
(k1,k2)j1
N ỹj1(k1, k2)

=

N1−1∑
j1=0

w
(k1N2+k2)j1
N1N2

ỹj1(k1, k2)

=

N1−1∑
j1=0

wk1j1N1
wk2j1N ỹj1(k1, k2)

=

N1−1∑
j1=0

wk1j1N1

˜̃yj1(k1, k2)

Here ˜̃y is obtained from ỹ by multiplying N twiddle factors. The last sum is then a Fourier
transform of ˜̃y.

So far the sampling is uniform or equivalently the grid of the unit circle is of equi-
distance. We refer to [2] for FFT on nonuniform sampling. A comprehensive treatment of
FFTs can be found in [3].

Exercise 4.2. (1) Use Fourier matrix to find out eigenvectors and eigenvalues of the
N ×N circulant matrix

C =


c0 cN−1 . . . c2 c1
c1 c0 cN−1 . . . c2
· · · · · · · · ·
cN−2 c0 cN−1
cN−1 cN−2 c0

 .

(2) Design an O(N logN) algorithm to compute Cx or C−1x.

REFERENCES

[1] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Computation of the Complex Fourier Series.
Mathematics of Computation, 19:297, 1965.

[2] L. Greengard and J.-Y. Lee. Accelerating the Nonuniform Fast Fourier Transform, 2004.
[3] C. Van Loan. Computational frameworks for the fast Fourier transform. SIAM, 1992.

	1. Discrete Fourier Transform
	2. Fast Fourier Transform
	3. Butterfly Algorithm
	4. Variants of FFT
	References

