THE FAST FOURIER TRANSFORM

LONG CHEN

ABSTRACT. Fast Fourier transform (FFT) is a fast algorithm to compute the discrete
Fourier transform in O(N log N) operations for an array of size N = 27. It is based
on the nice property of the principal root of ¥ = 1. In addition to the recursive imple-
mentation, a non-recursive and in-place implementation, known as butterfly algorithm, is
also provided.

Fourier series can be written as
oo
(1) u(z) = chezk"’”, Yz € [0, 27].
=0

It transforms a periodic function () to an infinite vector (cg, c1, - .-, CN, - . .) composed
by Fourier coefficients. The independent variable is changed from x to k.

The significance of Fourier transform is that a function is decomposed into composition
of frequencies. Some properties are more transparent viewed in the frequency domain. It
opens a new way to study functions and becomes the core of the signal processing.

Another nice property of Fourier transform is that the basis e?*® is friendly to the dif-
ferential operators. Mathematically it is an eigen-function of the differential operator. The
differentiation/integration becomes an algebraic multiplication and thus differential equa-
tions are easy to solve in this basis. This is known as spectral methods.

Fourier transform, more precisely the discrete Fourier transform, becomes practical only
after faster Fourier transform (FFT) is invented which dramatically reduces the O(N 2)
naive implementation to much faster O(N log N) algorithms. FFT is one of the most
important algorithms of the 20th century. It is discovered by Cooley and Tukey [1] in 1965
but can be traced back to Gauss 160 years earlier.

1. DISCRETE FOURIER TRANSFORM

The function w is periodic with period 27 and thus the variable x can be viewed as the
horizontal axis-angle 6 of a unit vector; see Fig. 1. In the discrete case, the transform (1)
holds on discrete points. Given an integer N, let § = 27 /N, w = €' and let z;; = 16, for
l=0,...,N —1,be N equal-distributed points on the unit circle. We ask the identity (1)

holds at x;, for I = 0, ..., N — 1, which results in a matrix equation F'c = u
1 1 1... 1 o Ug
1 w w?... wh—1 c1 U1
1 w? Wt W(N-=1) o | =1 we
1 wN-1 20-1 - y(N-D? CN-1 UN-1

Date: October 8, 2015.

2 LONG CHEN

The matrix F is called Fourier matrix and the (I, k) item of matrix F is e?**t = %0 =
w'*. So we can simply write the matrix F = (w'*)ywn, for [,k = 0,1,..., N — 1. The
matrix F' is symmetric (only transpose no conjugate).

Given a function u(x), more precisely v sampled at certain points x;, represented by a
vector u, the Fourier coefficients vector ¢ is given by F~'u. So we first figure out F~1.

For a fixed N, all roos of 2V = 1 forms a finite cyclic group G. A generator is the
principle root w = €2>™/N and the operation is the multiplication of complex numbers
which can be visualized as a rotation of multiple of angle #. 1 = w9 is the unit element and
the inverse of an element w € G is its conjugate w since w w = |w| = 1 for a unit vector

w. Ifw = w* = e*? then w = e~ = =k,
w? =7
. w = e?™/8 = cos 2T + jsin Z&
3 8 8
w
T
wt=-1 - wd =1
. Real axis
wd w' =W
wS = 4

FIGURE 1. default

Lemma 1.1. The matrix F is orthogonal, i.e., the column vectors of F' are mutually or-
thogonal.

Proof. Let vy, be the column vectors of F'. We compute vy, - Uy, for k # [, as
2) L+ W+ W2+ + W

with W = wFw=!. A key observation is that W is still a root of unity as a power of the
generator, i.e., WY = wFNw=NV = 1#1=! = 1. And since k # I, W # 1. Then multiply
(2) by 1 — W, we obtain 1 — W¥ = 0 and conclude (2) is zero since W # 1. (I

As a consequence, we obtain the identity FF = NI and thus the inverse of F' is a
scaled I, i.e. I’ —1 = F/N. Here we skip the transpose since F" is symmetric. Notice that
F'looks just like F': simply change w to w.

2. FAST FOURIER TRANSFORM

FFT is a fast algorithm for computing Fc or Fu. It is a divide-and-conquer algorithm.
To unify the discussion, we consider the computation y = Fyz with Fiy = (wf\;) NxN>
ie,fork=0,...,N —1,

N-1)
() R
7=0

O 00 3 N AW =

THE FAST FOURIER TRANSFORM 3

Fourier transform corresponds to wy = @y and inverse Fourier transform to wy = wy.
Given an even integer N, we use Fy and Fy, with N. = N/2 to denote the transform in
different scales.

Algorithm (FFT)
(1) Divide z into Teyen and xoqq-

2) ComPUte Yeven = FNcl'cvcna Yodd = FNC‘Todd
(3) Merge Yeven and yoqq into u.

The merge step is not straight-forward. The formulae found by Cooley and Tukey [1] is
based on the following properties of the factor wy which can be verified easily. The key is
1U%‘::UHV¢

(1) Symmetry:
) = s, Y -
(2) Periodic:
wf\f _ w;cv(ﬂN) _ wg\l]H»N)j.

) kj _ mkj kj _ kj/m
Wy =WpN, WN = Wx/, -
Theorem 2.1. Fork =0,. — 1, we have
) y(k) = Yeven (k) + Wi Yoda (k)
®) y(k + Ne) = Yeven(k) — W Yoaa(k)

Proof. We split the sum in the formulae of y;, into even and odd parts:

N.—1
k25 k(2541)
Y = E wa] E Wy~ Taj + E Wy T2j41-
Jj=0

The first part is s1mply ycvcn since wlz\, = wy,. The weight in the second sum can be rewrit-
ten as w%” w’f\, = wﬁ“\? wk % and (4) follows. Note that in (4), the index k = 0,..., N, — 1

is in the index range of the coarse FT.
We thus need the second formulae (5) for the second half indices. We repeat the sum as

Ne—1 N.—1
k+Ne)j k+N.)2j k+No) (2541
k—|—N Z w(= Z wgv) Jﬂ:zj + Z w§\,)(2j)$2j+1.
=0 =0
The first weight is still wf\? as wa'*) = wh? = 1. The second weight is wﬁ,’ whwhe =
—wil wh as wi® = —1. Therefore (5) follows. O

A MATLAB code is presented below.

function y = fft (x)

N = length(x);

if N == % the coarsest level
y = X; return;

end

% divide

y_even = fft(x(l:2:end));

odd = fft(x(2:2:end));

% merge

w

10
11
12
13
14
15

4 LONG CHEN

w = exp (—1ix2xpi/N);

Nc = N/2;

k = 1:Nc;

tempy_odd = w." (k-1) .xy_odd;
y(k) = y_even + tempy_odd;

y (j+Nc) = y_even - tempy_odd;

The dominant operation in the merge step is the multiplication of complex numbers, i.e.
line 13. We thus skip the addition and count the number of multiplication only. We can
easily get the recurrence

T(N)=2T(N/2)+ N/2
from which we obtain T'(N) = 1/2 N log, N.

3. BUTTERFLY ALGORITHM

We discuss a non-recursive and in-place implementation of FFT. The top-to-bottom
phase is an even-odd reordering of the input array. An example of N = 8 is displayed in
the following table.

TABLE 1. Even-odd ordering of different levels

ol elele

I
—_— N W
(e NelNeNo)
A A=
NI ST 8]
AN N W
—_—— — N
N L W
W W WL &N
N9

This ordering can be generated by bit reversal permutation. For an index n, written in
binary with digits bbby is switched with the index with reversed digits byb1bs2; see the
figure for an illustration.

0 000 000 O
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

FIGURE 2. Bit reversal ordering for N = 8.

A MATLAB implementation is presented below.

for i = 0:N-1
ir = bin2dec(flip(dec2bin (i, J)));
if i<ir
% all index shifted by one since it starts with 1 not 0
t = x(i+1);
x(i+l) = x(ir+l);

00 NN R W=

[
W N = O O

THE FAST FOURIER TRANSFORM 5

x (ir+l) = t;
end
end

The bottom-to-top can be decomposed into pairs of the following butterfly diagram.
The weight w7 is called twiddle factor. This provides a in-place implementation of FFT.

L BU) Y(i+4)

L1 w;
'jeven (J) Yedd (J) -

FIGURE 3. Butterfly diagram

Namely we can use the same array to store the updated values. Suppose N = 2L, We use
subscript L, L = 1 : J, to denote a level index. The two input data of the butterfly diagram
is separated by the length d;, = 2L~!. The twiddle factor in level L is wy = wor =

w% " The updated formulae is

yr(k) = yr—1(k) + whyr—1(k +dz)
yr(k+dp) =yr1(k) —whyr_1(k +dg).

We can first copy values yr,—1(k), yr—1(k+dr) to two temporary location and then rewrite
with the values of y1,(k), yr(k + dr). So only one array of size N is needed. The N = 8
case is illustrated in the following figure. Note that the bottom (left) is in the bit-reverse
ordering and the top (right) is the natural ordering.

A MATLAB code is presented below.

for L = 1l:1level
d = 27(L-1);
for j = 0:d-1
p = j*2" (level - L);

wL = w'p;

for k = j+1:2°L:N
a = x(k);
b = wlLxx (k+d);
x(k) = a + b;

x (k+d) = a - b;
end
end
end

4. VARIANTS OF FFT

In the signal process, the input array z(t) is a signal sampled at certain time. The
output is in the frequency domain. The FFT presented in the previous section is called
decimation-in-time (DIT).

6 LONG CHEN

x(0) X(0)

X(1)

x(4)

x(2) X(2)

X(6) X(3)

x(1)

X(4)

x(5)

X(5)

x(3) X(6)

x(7) X(7)

FIGURE 4. Butterfly implementation of FFT

Now we discuss the decimation-in-frequency (DIF) version. The divide step is easier.
We simply split the input array (0 : N —1) into two x; = (0 : N.— 1) and zo = x(N, :
N —1). Then apply the ‘butterfly’ procedure to 1 and x5 to get £; and Zo. After that we
apply FFT to shorter arrays 21 and %, to obtain y; and y». To merge y; and ys, we need
even-odd splitting of ¥: Yeven = Y(0:2: N —2),yoaa = y(1:2: N —1).

Exercise 4.1. (1) Derive the formulae from 1, 3 t0 Yeven and Yodd-
(2) Write a pseudocode for DIF (recursive and non-recursive).

When the length N is not of power 2, we can simply add zeros to enlarge the length.
We now discuss another variation of FFT adapt to the general factorization N = N;N;
and usually N; is small and called the radix (say between 2 to 8). The FFT presented in
the previous section is known radix-2 DIT.

The idea is to reinterpret the 1-D array of length N1 /N5 to a two dimensional matrix
of size Ny x N and then apply the Fourier transform to N; arrays of shorter length Ns.
The single summation index j is changed to two subscripts (j1,72) and the relation is
j=7jgaN1+jiforj; =0,...,N1,j2 =0,..., Na. We can split the sum as
Ny—1 Na—1 o

> > w2 (1, 42)
Jj1=0 j2=0

Ni—1Na—1

> > wiin T, ()
Jj1=0 j2=0

Ni—1 Na—1

Sl Y wka, G

J1=0 j2=0

N-1
y(k) =D wila(j)
§=0

L, ().

I
[
g

THE FAST FOURIER TRANSFORM 7

Here y is a matrix of size N3 X Nz by applying FT to columns of the z interpreted as
N5 x Nj matrix and then taking transpose.

We further apply the same trick to the index & but in a transpose way, i.e., k = k1 No +
ko. We continue as

Ni—1
y(klka) = Z w(k17k2)]1g]1(k17k2)

Jj1=0

Ni—1
_ 2 : (k1N2+k2)j1~
- leNz (k17k2)
Jj1=0
Ni—1
k1j1,, ka2j1
E :’LU Wy le(k17k2)
71=0
N;—1

k
= > wil g, (ky, ko)

71=0

Here 7 is obtained from g by multiplying IV twiddle factors. The last sum is then a Fourier
transform of .
So far the sampling is uniform or equivalently the grid of the unit circle is of equi-

distance. We refer to [2] for FFT on nonuniform sampling. A comprehensive treatment of
FFTs can be found in [3].

Exercise 4.2. (1) Use Fourier matrix to find out eigenvectors and eigenvalues of the
N x N circulant matrix

Co CN—-1 . Co C1
C1 Co CN-1 C2
C = ..
CN—2 Co CN—1
CN—-1 CN-2 Co

(2) Design an O(N log N) algorithm to compute Cx or C 1.

REFERENCES

[1] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Computation of the Complex Fourier Series.
Mathematics of Computation, 19:297, 1965.

[2] L. Greengard and J.-Y. Lee. Accelerating the Nonuniform Fast Fourier Transform, 2004.
[3] C. Van Loan. Computational frameworks for the fast Fourier transform. SIAM, 1992.

	1. Discrete Fourier Transform
	2. Fast Fourier Transform
	3. Butterfly Algorithm
	4. Variants of FFT
	References

