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1. TAIL BOUND OF ONE RANDOM VARIABLE

We collect several inequalities on the tail bound of random variables.
Taking expectation of the inequality

χ({X ≥ a}) ≤ X/a,

we obtain the Markov’s inequality.
Markov’s inequality. Let X be a non-negative random variable, i.e., X ≥ 0. Then, for
any value a > 0,

Pr{X ≥ a} ≤ E[X]

a
.

Apply Markov’s inequality to the non-negative RV: (X−E[X])2 to get the Chebyshev’s
inequality.
Chebyshev’s inequality. If X is a random variable with finite mean and variance, then,
for any value a > 0,

Pr{|X − E[X]| ≥ a} ≤ Var(X)

a2
.

If we know more moment of X , we can obtain more effective bounds. For example, if
E[Xr] is finite for a positive integer r, then for any a > 0

(1) Pr{X ≥ a} = Pr{Xr ≥ ar} ≤ E[Xr]

ar
,

a bound that falls off as 1/ar. The larger the r, the greater the rate is, given a bound on
E[Xr] is available. If we write the probability F̄ (a) := Pr{X > a} = 1−Pr{X ≤ a} =
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1− F (a), then the bound (1) tells how fast the function F̄ decays. The moments E[Xr] is
finite implies the PDF f decays faster than 1/xr+1 and F̄ decays like 1/xr.

We can improve the bound to be strictly less than one.

Chebyshev-Cantell inequality. If E[X] = µ and Var(X) = σ2, then, for any a > 0,

Pr{X ≥ µ+ a} ≤ σ2

σ2 + a2
,

Pr{X ≤ µ− a} ≤ σ2

σ2 + a2
.

Proof. Let b > 0 and note that X ≥ a is equivalent to X + b ≥ a+ b. Hence

Pr{X ≥ a} = Pr{X + b ≥ a+ b} ≤ Pr{(X + b)2 ≥ (a+ b)2}.

Upon applying Markov’s inequality, the preceding yields that

Pr{X ≥ a} ≤ E[(X + b)2]

(a+ b)2
=
σ2 + b2

(a+ b)2
.

Letting b = σ2/a, which minimizes the upper bound, gives the desired result. �

When the moment generating function MX(t) = E[etX ] is available (all moments are
finite), we have the Chernoff bound which usually implies exponential decay of the tail.

Chernoff bounds.

Pr{X ≥ a} ≤ inf
t>0

e−taMX(t),(2)

Pr{X ≤ a} ≤ inf
t<0

e−taMX(t).(3)

A proof of the first inequality is as follows: for all t > 0

Pr{X ≥ a} = Pr
{
etX ≥ eta

}
≤ e−taMX(t).

Taking the inf over all t > 0, we get the Chernoff bounds. Note that the moment generating
function MX(t) might be exist only for a bounded interval t ∈ I . Then in the inf of (2),
the t ∈ I+.

Example 1.1 (Chernoff bounds for the standard normal distribution). Let X ∼ N(0, 1) be
the standard normal distribution. Then M(t) = et

2/2. So the Chernoff bound is given by

Pr {X ≥ a} ≤ e−taet
2/2 for all t > 0.

The minimum is achieved at t = a which gives the exponential decay tail bound

(4) Pr {X ≥ a} ≤ e−a
2/2 for all a > 0.

In general, if MX(t) ≤ eCt
2/2, which is called sub-Gaussian, for some constant C and

for all t > 0, then X has a sub-Gaussian upper tail Pr {X ≥ a} ≤ e−a
2/(2C) with the

same constant C. If the M-bound only holds for t ∈ (0, t0), then the T-bound holds for
a ∈ (0, Ct0).

Example 1.2. Let X be the random variable taking values ±1 with probability 1/2. Then

E
[
etX
]

=
1

2
(et + e−t) ≤ et

2/2.

In general for a bounded random variable, we have the Hoeffding’s inequality.
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Proposition 1.3 (Hoeffding’s inequality). LetX be a random variable with E[X] = 0 and
a ≤ X ≤ b. Then for t > 0,

E[etX ] ≤ et
2(b−a)2/8.

Proof. We use the convexity of the exponential function to get the inequality

etx ≤ w1(x)eta + w2(x)etb

with w1(x) = (x− a)/(b− a) and w2 = (b− x)/(b− a). Apply the expectation operator
and notice that E[X] = 0 to get

E[etX ] ≤ w2(0)etb − w1(0)eta = (1− p+ pet(b−a))e−pt(b−a) = eΦ(u),

where p = −a/(b − a), u = t(b − a), and Φ(u) = −pu + log(1 − p + peu). Now it is a
calculus problem to show Φ(u) ≤ t2(b− a)2/8, e.g. by Taylor series. �

2. TAIL BOUND OF SUM OF RANDOM VARIABLES

Consider n-independent random variables. We want to pass properties of individual
random variable to the sum. A sequence of random variables X1, X2, . . . , Xn have a
uniform sub-Gaussian tail if all of them have sub-Gaussian tails with the same constant.

The target is a tail bound for the sum of Xi. But when passing the properties of each
random variable to the summation, working on the M -bound is much easier. So we first
apply “T-bound to M-bound” procedure to each Xi and then “M-bound to T-bound”; see
the diagram below

T-bound −−−−→ M-bound
∑y ∑y

T-bound −−−−→ M-bound

Lemma 2.1. Let X1, . . . , Xn be independent random variables satisfying E[Xi] = 0,
Var(Xi) = 1, and having a uniform sub-Gaussian M-bound. Let α1, . . . , αn be real coef-
ficients satisfying

∑n
i=1 α

2
i = 1. Then the sum Y =

∑n
i=1 αiXi has E[Y ] = 0,Var(Y ) =

1, and a sub-Guassian tail.

Proof. By the linearity of expectation, we get E[Y ] = 0. For independent random vari-
ables, the variance is additive and thus Var(Y ) =

∑n
i=1 α

2
i Var(Xi) =

∑n
i=1 α

2
i = 1.

With assumption, MXi
(t) ≤ eCt2/2 for all t > 0 and all i = 1, . . . , n, we have

MY (t) = E
[
etY
]

= E

[
n∏
i=1

etαiXi

]
=

n∏
i=1

E
[
etαiXi

]
≤ e 1

2Ct
2 ∑n

i=1 α
2
i = eCt

2/2.

Then the M-bound of Y implies the desired tail bound. �

Example 2.2 (The 2-stability of Gaussian distribution). Let X1, . . . , Xn be i.i.d N(0, 1).
Let α1, . . . , αn be real coefficients satisfying

∑n
i=1 α

2
i = 1. Then Y =

∑n
i=1 αiXi is still

the standard normal distribution, i.e., Y ∼ N(0, 1) since the moment generation function
uniquely determines the random variable.

Example 2.3 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables
with zero mean E[Xi] = 0 and the bound ai ≤ Xi ≤ bi for i = 1, . . . , n. Let Y =∑n
i=1Xi. Then by the Hoeffding’s inequality for one random variables, we have, for any

ε > 0,

Pr {Y ≥ ε} ≤ exp(−2ε2/

n∑
i=1

(bi − ai)2).
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If the variance is finite, we could improve to the Bernstein’s inequality. We refer to [3]
for a proof.

Theorem 2.4 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables
with zero mean E[Xi] = 0 and uniform bound |Xi| ≤ M for i = 1, . . . , n. Let σ2 =
1
n

∑n
i=1 Var(Xi). Then for any ε > 0,

Pr

{
1

n

n∑
i=1

Xi ≥ ε

}
≤ exp

(
− nε2

2σ2 + 2Mε/3

)
.

When Xi ∼ N(0, σi), the power in the bound is −nε2/(2σ2). For general independent
random variables, by the central limit theorem, the bound holds with power −nε2/(2σ2),
if n is large enough. The Bernstein’s inequality is qualitatively right up to a term 2cε/3
which is small if ε � 1. On the other hand, if ε > σ2, then the bound behaves like e−nε

which is an improvement of e−nε
2

. It is an improvement since now to get the probability
less than δ ∈ (0, 1), we can chose smaller n = Cε−1 ln(1/δ) instead of n = Cε−2 ln(1/δ).

We also point out this improvement is only for bounded random variables which rules
out the most popular Gaussian.

The independence of Xi can relaxed. Consider a martingale.
xxx definition of martingale xxx

Theorem 2.5 (Azuma-Hoeffding’s inequality). Suppose Sn, n = 0, 1, 2 . . . is a martingale
and |Sn − Sn−1| < cn almost surely. Then for all positive integers N and all t > 0

Pr{XN −X0 ≥ t} ≤ exp

(
−t2

2
∑N
i=1 c

2
k

)
.

3. TRACE AND TRACE INEQUALITY

Let A be a n× n matrix. The trace of A is:

tr(A) =

n∑
i=1

aii =

n∑
i=1

λi(A).

We follow Carlen [2] to provide some background on the trace inequalities involving func-
tions of matrices.

3.1. Trace. If A is an m× n matrix and B is an n×m matrix, then

tr(AB) = tr(BA).

which can be easily verified by direct computation.
The trace tr(A) is the sum of all eigenvalues of A and thus is invariant with respect to a

change of basis:
tr(P−1AP ) = tr(APP−1) = tr(A).

In particular,

Lemma 3.1. For any orthonormal basis {u1, u2, . . . un}

(5) tr(A) =

n∑
i=1

(uj , Auj).

Proof. Let U = (u1, u2, . . . un) be the orthonormal matrix. Then tr(A) = tr(U∗AU) =∑n
i=1(uj , Auj). �
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The trace of a projection matrix is the dimension of the target space. That is if P =
A(ATA)−1AT , then

tr(P ) = rank(A).

The trace of a product can be rewritten as the sum of entry-wise products of elements:

tr(XTY ) = X : Y =
∑
ij

XijYij =
∑
ij

(X. ∗ Y )ij = vec(X)Tvec(Y ).

This means that the trace of a product of matrices functions similarly to a dot product
of vectors. For this reason, generalizations of vector operations to matrices often involve
a trace of matrix products. The norm induced by the above inner product is called the
Frobenius norm.

Unlike the determinant, the trace of the product is not the product of traces. It is true,
however, when apply to the tensor product:

tr(X ⊗ Y ) = tr(X) tr(Y ).

3.2. Function of matrices. Motivation: generalize properties of functions of single vari-
able to functions of matrices. The matrix should be restricted to Hermitian space and most
generalization works for trace of matrix functions.

Denoted by
• Mn the space of n× n matrices;
• Hn the space of Hermitian n× n matrices;
• H+

n the set of positive semi-definite Hermitian matrices;
• H++

n the set of positive definite Hermitian matrices;
• Sn the set of density matrices i.e. tr(ρ) = 1 for ρ ∈Mn.

We can introduce a partial ordering of Hn: for A,M ∈ Hn,

A ≤M ⇐⇒ xTAx ≤ xTMx, ∀x ∈ Rn.
Definition of function of matrices. Consider a scalar function f : R → R. For a

diagonal matrix D = diag(d1, · · · , dn), f(D) := diag(f(d1), · · · , f(dn)). For A ∈ Hn,
let A = QΛQ∗ be the eigen-decomposition of A. We define

f(A) := Qf(Λ)Q∗.

If we write

QΛQ∗ =

n∑
i=1

λiQ(:,i)Q
∗
(:,i) :=

n∑
i=1

λiPi

with the rank-1 projection Pi = Q(:,i)Q
∗
(:,i), an equivalent definition of matrix function is

(6) f(A) =

n∑
i=1

f(λi)Pi.

Taking trace and using tr(Pi) = 1, we obtain

(7) tr f(A) =

n∑
i=1

f(λi).

Two important matrix functions are exponential and logarithm functions of matrices.
We have the power series expansion:

exp(A) = I +

∞∑
k=1

Ak

k!
.
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Inequalities of scalar functions can be generalized to matrix version by the following
transfer rule:

Lemma 3.2. If f(x) ≤ g(x) for x ∈ I , then for all A ∈ Hn and σ(A) ⊆ I , f(A) ≤ g(A).

As a consequence, some inequalities of exponential functions can be generalized to
exponential of matrices.

Exercise 3.3. Prove Lemma 3.2 and consequently, for A ∈ Hn, prove that

(1) eA ≥ 0.
(2) I +A ≤ eA.
(3) cosh(A) ≤ exp(A2/2).

�

The von Neuman entropy of ρ ∈ Sn,S(ρ) is defined by

S(ρ) = − tr(ρ log ρ).

Exercise 3.4. Prove that, for ρ ∈ Sn,

0 ≤ S(ρ) ≤ log n.

And given conditions when the equality holds

A related function is
A→ log tr(eA).

It is shown that the function log tr(eA) is the Legendre transforms of S(A) if we extend
the definition of S(A) = −∞ for A 6∈ Sn.

We want to extend some properties of scalar functions to matrix functions. In the follow-
ing we restrict matrices in Hn with spectrum restricted to the domain of f . The properties
we concern are:

Operator monotone. A function f is operator monotone if the following holds

A ≥ B =⇒ f(A) ≥ f(B).

Obviously if f is operator monotone, then f(x) is monotone. But not all monotone func-
tions are operator monotone due to the non-commutative algebra structure of Mn.

Operator convex. A function f : I → R is operator convex if for all A,B ∈ Hn and
σ(A), σ(B) ⊂ I and for θ ∈ (0, 1), the following holds

f(θA+ (1− θ)B) ≤ θf(A) + (1− θ)f(B).

A function f is operator concave if −f is operator convex.

Example 3.5 (A2 is not operator monotone). The function f(x) = x2 is monotone but for
A,B ∈ H+

n ,

(A+B)2 = A2 + (AB +BA) +B2.

Due to the non-coummutative property of matrix product, the term AB + BA could have
negative eigenvalue and thus (A + tB)2 ≥ A2 could fail for sufficiently small t. An
example is A = [1 1; 1 1], B = [1 0; 0 0].
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Example 3.6 (A2 is operator convex). With the parallelogram law(
A+B

2

)2

+

(
A−B

2

)2

=
1

2
A2 +

1

2
B2,

we get the convexity for θ = 1/2, which is known as midpoint convexity. From that, we
can prove the convexity for all θ ∈ (0, 1).

Example 3.7 (A1/2 is operator monotone). We can prove that ifA,B ∈ H+
n andA2 ≤ B2,

then A ≤ B.

Example 3.8 (−A−1 is operator monotone and concave). The monotonicity can be proved
by the following identity: for A,B ∈ H+

n

A−1 − (A+B)−1 = A−1/2
[
I − (I + C)−1

]
A−1/2,

with C = A−1/2BA−1/2 ∈ H+
n .

The midpoint convexity can be proved by the identity:

1

2
A−1 +

1

2
B−1 −

(
A+B

2

)−1

= A−1/2

[
1

2
I +

1

2
C−1 −

(
I + C

2

)−1
]
A−1/2,

and then the convexity of the function f(x) = 1/x.

Theorem 3.9 (Löwner-Heinz). On the function f(x) = xp, we have
• For −1 ≤ p ≤ 0, the function f(A) = −Ap is operator concave and operator

monotone.
• For 0 ≤ p ≤ 1, the function f(A) = Ap is operator concave and operator

monotone.
• For 1 < p ≤ 2, the function f(A) = Ap is operator convex but not operator

monotone when p is near 2.

In short for the power p ∈ [−1, 1], the monotonicity and convexity/concavity is pre-
served for function xp. When p ∈ [1, 2], the convexity is still preserved. When p > 2, even
the convexity could be missing.

An elementary proof given by Carlen [2] is based on the integral form of Ap. For
example, for p ∈ (−1, 0),

(8) Ap =
π

sin((p+ 1)π)

∫ ∞
0

tp(tI +A)−1 dt.

The integral is a weighted sum of monotone and convex function A → (tI + A)−1 and
thus preserves the monotonicity and convexity. The case for 1 < p < 2 is different since
it is related to the sum of two operator convex functions but the difference of two operator
monotone functions.

Exercise 3.10. (1) Prove (8) using a contour integral for scalar, i.e., A = a .
(2) Write out integral form for Ap when p ∈ (0, 1) and p ∈ (1, 2).

Corollary 3.11. (1) log(A) is operator concave and operator monotone
(2) A log(A) is operator convex but not monotone.

Proof. We have the limit

log(A) = lim
p→0

Ap − I
p

and Ap is nice for p near 0. Thus the properties pass to the limit.
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The other limit is

A log(A) = lim
p→1

Ap −A
p− 1

�

We emphasize that the function exp(A) andAp for p > 2 are neither operator monotone
nor operator convex.

3.3. Trace inequalities. Monotone and convex operators are very rare. Taking trace of
matrix functions, however, we can preserve the convexity and monotonicity property.

Theorem 3.12. The trace of a matrix function will preserve the convexity and monotonicity
property. Namely

• if f is monotone increasing, so is tr f(A) on Hn.
• if f is convex (or concave), so is tr f(A) on Hn.

Proof. LetA,B ∈ Hn and C = A−B > 0. We first consider the differentiable monotone
function f with f ′ > 0. Then

tr(f(A))− tr(f(B)) =

∫ 1

0

d

dt
tr(f(B + t(A−B))) dt

=

∫ 1

0

tr(C1/2f ′(B + tC)C1/2) dt ≥ 0.

Using the continuity argument, the differentiability can be relaxed to monotone only.
To prove the convexity, we need the following Peierls inequality: for any orthonormal

basis {u1, . . . , un} and for a convex function f

(9)
n∑
i=1

f((ui, Aui)) ≤ tr(f(A)).

And the equality holds when each ui is an eigenvector of A. Note that we can write the
right hand side tr(f(A)) =

∑n
i=1 f(λi) =

∑n
i=1 f((vi, Avi)) with (λi, vi) being the

eigen-pair of A. This verifies the equality.
To prove inequality (9), we write A =

∑n
k=1 λkPk and thus

(ui, Aui) =

n∑
k=1

λk(ui, Pkui) =

n∑
k=1

λk‖Pkui‖2.

As the nonnegative weight wk = ‖Pkui‖2 satisfies
∑
k wk = ‖ui‖2 = 1, we use the

convexity of f and the definition of f(A) to conclude that

f

(
n∑
k=1

wkλk

)
≤

n∑
k=1

‖Pkui‖2f(λk) =

n∑
k=1

(ui, f(λk)Pkui) = (ui, f(A)ui).

Sum over index i and use the identity for tr(A), c.f. Lemma 3.1, we finish the proof. �

Example 3.13 (Golden-Thompson inequality). For any A,B ∈ Hn,

tr(eA+B) ≤ tr(eAeB).

Theorem 3.14 (Lieb). For a fixed Hermitian matrix L ∈ Hn, the function f(A) =
tr(exp(L+ logA)) is concave on H++

n .
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3.4. Functions of random matrices. Let X be a random matrix in Hn. We define the
moment generating function (mgf) and the cumulant-generating function (cgf):

MX(t) := E
[
etX
]
, and Ξ(t) := logE

[
etX
]
,

for t in an open interval containing zero. They admit a formal power series expansions:

MX(t) = I +

∞∑
k=1

tk

k!
E[Xk],

ΞX(t) =

∞∑
k=1

tk

k!
Ψk.

The coefficients E[Xk] are called matrix moment and Ψk as a matrix cumulant. In partic-
ular, Ψ1 = E[X] is the mean and Ψ2 = E[X2]− E2[X] is the variance.

The expectation operator E is exchangeable to a linear operator especially

E[tr(X)] = trE[X].

For an operator convex function f , as the expectation is a weighted average, we have the
Jensen’s inequality

f(E[X]) ≤ E[f(X)].

In particular, as f(x) = x2 is operator convex,

E2[X] ≤ E[X2].

And the expectation preserves the partial ordering in Hn, i.e.

E[A] ≤ E[B] if A ≤ B.

4. TAIL BOUND OF ONE RANDOM MATRIX

We provide matrix version of various tail bounds.

Lemma 4.1 (Matrix Markov inequality). Let X be a random matrix in H+
n . Then for all

deterministic matrix A ∈ H++
n , we have

Pr{X 6≤ A} ≤ tr(A−1E[X]).

Proof. We consider the matrix A−1X which is Hermitian w.r.t the (·, ·)A inner product.
X 6≤ A is equivalent to A−1X 6≤A I which implies that ‖A−1X‖ = λmax(A−1X) > 1.
Then we obtain the inequality

χ{X 6≤A} ≤ λmax(A−1X) ≤ tr(A−1X).

Taking the expectation and using the fact E is linear, we obtain the desired inequality. �

Exercise 4.2. Use the fact f(x) = x1/2 is operator monotone to derive a matrix version
Chebyschev inequality.

We now present a matrix Chernoff bound established by Oliverira [4].

Theorem 4.3 (Matrix Chernoff bound). Let X be a random matrix in Hn. For all a ∈ R,

Pr{λmax(X) ≥ a} ≤ inf
t>0

e−taE
[
tr etX

]
.
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Proof. By the scalar Chernoff bound, we obtain

Pr{λmax(X) ≥ a} ≤ inf
t>0

e−taE
[
etλmax(X)

]
.

Use
etλmax(X) = λmax(etX) ≤ tr(etX)

to get the desired inequality. �

5. TAIL BOUND OF SUM OF RANDOM MATRICES

We shall follow Tropp [5] to present tail bounds of sums of random matrices.
In the scalar case, we use the fact

(10) E
[
et

∑
iXi

]
=
∏
i

E
[
etXi

]
to get the additivity of independent sub-Gaussians. For matrices, first of all,

eA+B 6= eAeB

again due to the non-commutative algebra structure. Taking trace, we could get a desired
inequality (using Golden-Thompson inequality) for two independent random matrices

(11) E tr
[
eX1+X2

]
≤ E tr

(
eX1eX2

)
= tr

(
E
[
eX1
]
E
[
eX1
])
.

Unfortunately, the above inequality cannot be generalized to three or more matrices.
The route Ahlswede and Winter [1] take is to recrusively apply inequality (11) and the

inequality tr(AB) ≤ tr(A)λmax(B) for A,B ∈ H+
n and end up with

(12) E tr
[
e
∑

kXk

]
≤ d exp

(∑
k

λmax(logE[eXk ])

)
We shall follow Tropp to present a shaper result with upper bound involving a smaller

quantity λmax(
∑
k logE[eXk ]). To do so, we use a random matrix version of Lieb’s con-

cave result, c.f. Theorem 3.14.

Lemma 5.1. Let L ∈ Hn be a fixed Hermitian matrix and let X be a random matrix in
Hn. Then

E[tr exp(L+X)] ≤ tr exp(L+ logE[eX ]).

Proof. LetA = eX . By Lieb’s concave theorem,A→ tr exp(L+logA) is concave. Then
apply Jensen’s inequality to the expectation to get the desired result. �

Lemma 5.2 (Subadditivity of Matrix cgf’s). Let {Xk} be a sequence of independent ran-
dom matrices in Hd. Then

E

[
tr exp

(∑
k

Xk

)]
≤ tr exp

(∑
k

logE
[
eXk

])
.

Proof. Tropp’s Lemma 3.4. �

Theorem 5.3 (Master Tail Bound). Let {Xk} be a sequence of independent random ma-
trices in Hd. For all a ∈ R,

Pr{λmax(X) ≥ a} ≤ inf
t>0

e−ta tr exp

(
n∑
k=1

logE
[
etXk

])
.
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Proof. It is a combination of matrix Chernoff bound, c.f. Theorem 4.3 and the sub-
additivity of matrix cgf. �

Then we combine bounds of mgf/cgf to a Chernoff bound.

Corollary 5.4. Let {Xk} be a sequence of independent random matrices in Hd. Assume

E
[
etXk

]
≤ eg(t)Ak

with a function g : R+ → R+ and deterministic matrices Ak ∈ Hd for k = 1, 2, . . . , n.
Then, for all a ∈ R,

(13) Pr

{
λmax

(∑
k

Xk

)
≥ a

}
≤ d inf

t>0
e−ta+g(t)ρA ,

with parameter ρA = λmax (
∑
k Ak).

Proof. Use the inequality tr(M) ≤ dλmax(M) for M ∈ Hd. �

Lemma 5.5. Let X be a random matrix in Hd. Assume

0 ≤ λmin(X) ≤ λmax(X) ≤ 1.

Then for all t ∈ R
(14) E

[
etX
]
≤ I + (et − 1)E[X] ≤ exp

(
(et − 1)E[X]

)
.

Theorem 5.6 (Matrix Chernoff I). Let {Xk} be a sequence of independent random matri-
ces in Hd. Assume

0 ≤ λmin(Xk) ≤ λmax(Xk) ≤ R.
Let

µmin = λmin

(∑
k

E[Xk]

)
and µmax = λmax

(∑
k

E[Xk]

)
.

Then

(15) Pr

{
λmin

(∑
k

Xk

)
≤ (1− δ)µmin

}
≤ d

[
e−δ

(1− δ)1−δ

]µmin/R

for δ ∈ [0, 1],

and

(16) Pr

{
λmax

(∑
k

Xk

)
≥ (1 + δ)µmax

}
≤ d

[
e−δ

(1 + δ)1+δ

]µmax/R

for δ ≥ 0.

To obtain Bernstein type inequality, we need to refine the bound of mgf.

Lemma 5.7. Let X be a random matrix in Hn and

E[X] = 0 and λmax(X) ≤ 1.

Then for all t > 0
E
[
etX
]
≤ exp

(
(et − t− 1)E[X2]

)
.

Proof. We can prove the scalar inequality

(17) etx ≤ 1 + tx+ (et − t− 1)x2, ∀x ≤ 1,

by power series of exponential functions, and then transfer to the matrix inequality by
Lemma 3.2

etX ≤ I + tX + (et − t− 1)X2.

Taking expectation and using the inequality I +A ≤ eA to get the desired inequality. �
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Theorem 5.8 (Matrix Bennett and Bernstein). Let {Xk} be a sequence of independent
random matrices in Hd. Assume

E[Xk] = 0 and λmax(Xk) ≤ R.

Let

σ2 =
1

n

∥∥∥∥∥
n∑
k=1

Var(Xk)

∥∥∥∥∥ =
1

n

∥∥∥∥∥
n∑
k=1

E(X2
k)

∥∥∥∥∥ .
Then for all ε ≥ 0
(18)

Pr

{
λmax

(
1

n

n∑
k=1

Xk

)
≥ ε

}
≤ d exp

(
−nσ

2

R2
h(
Rε

σ2
)

)
≤ d exp

(
− nε2

2σ2 + 2Rε/3

)
,

where the function h(u) = (1 + u) log(1 + u)− u for u ≥ 0.

Proof. The first one is Bennett and the second is Bernstein. From Bennett to Bernstein is
from the bound

h(u) ≥ u2

2 + 2u/3
.

�

Remark 5.9. If replace the boundedness of λmax(Xk) to the boundedness of

‖Xk‖ ≤ R,

by applying the Bernstein estimate to Xk and −Xk, we could obtain the tail bound for the
spectral norm

(19) Pr

{∥∥∥∥∥ 1

n

n∑
k=1

Xk

∥∥∥∥∥ ≥ ε
}
≤ 2d exp

(
− nε2

2σ2 + 2Rε/3

)
.

We present a concentration result for sum of rank-1 matrices which is quite useful in
the randomized numerical linear algebra.

Corollary 5.10. Let y1, y2, . . . , yn be i.i.d. random column vectors in Cd with

‖yi‖ ≤M and ‖E [y1y
∗
1 ]‖ ≤ 1.

Then for all 0 ≤ ε ≤ 1

Pr

{∥∥∥∥∥ 1

n

n∑
k=1

yky
∗
k − E [y1y

∗
1 ]

∥∥∥∥∥ ≥ ε
}
≤ 2d exp

(
− 3nε2

8(M2 + 1)

)
.

In [4], the bound is: for all ε ≥ 0

Pr

{∥∥∥∥∥ 1

n

n∑
k=1

yky
∗
k − E [y1y

∗
1 ]

∥∥∥∥∥ ≥ ε
}
≤ (2 min(d, n))

2
exp

(
− n

16M2
min(ε2, 4ε− 4)

)
,

which leads to meaningful results even the ambient dimension d is arbitrarily large.
To control the spectral norm of rectangular matrices, we can use the dilation to form a

larger matrix, i.e., for Bd1×d2 , we let

F (B) :=

(
0 B
B∗ 0

)
.
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Then F (B) ∈ Hd1+d2 and

F (B)2 :=

(
BB∗ 0

0 B∗B

)
.

Consequently
λmax(F (B)) = ‖F (B))‖ = ‖B‖.

Corollary 5.11 (Rectangular Matrix Bernstein). Let {Zk} be a sequence of independent
random matrices of size d1 × d2. Assume

E[Zk] = 0 and λmax(Zk) ≤ R.
Let

σ2 = max

{∥∥∥∥∥ 1

n

n∑
k=1

E(ZkZ
∗
k)

∥∥∥∥∥ ,
∥∥∥∥∥ 1

n

n∑
k=1

E(Z∗kZk)

∥∥∥∥∥
}
.

Then for all ε ≥ 0

(20) Pr

{∥∥∥∥∥ 1

n

n∑
k=1

Zk

∥∥∥∥∥ ≥ ε
}
≤ d exp

(
− nε2

2σ2 + 2Rε/3

)
,

where the function h(u) = (1 + u) log(1 + u)− u for u ≥ 0 and d = d1 + d2.
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