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1. Introduction

Maxwell interface problems widely appear in a large variety of science and en-
gineering applications. In this article, we propose a virtual element method (VEM)
to solve a two-dimensional (2D) H (curl; Q)-elliptic interface problem that is origi-
nated from Maxwell equations. One distinct advantage of the proposed method is
its flexibility on the mesh generation to cater the interface. The mesh for compu-
tation is obtained from a background unfitted mesh by cutting interface elements
into triangles and quadrilaterals, and the optimal convergence order is guaranteed
independent of the mesh anisotropy.
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To describe the idea, we let Q C R? be a bounded domain and let ' C Q be a
smooth interface curve, as illustrated by the left plot in Figure 2.1. The interface
I' cuts Q into two subdomains QF occupied by media with different magnetic and
electric properties. We consider the following H (curl; Q)-elliptic interface problem
for the electric field u : Q — R?:

cul acurlu +Bu=f inQ=0Q UQ", (1.1a)
with f € L*(Q), subject to the Dirichlet boundary condition:
u-t=0 ondf, (1.1b)

where the operator curl is for vector functions v = (vy,v2)T such that curl u =
Oy, V2 — Oz, v1 while curl is for scalar functions v such that curl v = (9,,v, —9;,v)7
with “T” denoting the transpose herein. The coefficients & = a* and § = % in QF
are assumed to be positive piecewise constant functions of which the locations of
the discontinuity align with one another. Moreover, we consider the following jump
conditions at the interface I':

[u-tlp:=u"-t—u" -t=0, (1.1c)
[acurl u)p := a”curlu™ — ateurlu™ =0, (1.1d)

where ¢t denotes a tangential vector to I'. The condition (1.1c) is due to the tan-
gential continuity of H(curl) functions and (1.1d) is from the fact that H(curl) is
isomorphic to H' in 2D. The interface model (1.1) arises from each time step in a
stable time-marching scheme for the eddy current computation of Maxwell equa-
tions [2, 4]. In this model, o denotes the magnetic permeability and 8 ~ /At is
the scaling of the conductivity o by the time-marching step size At.

For Maxwell equations, H (curl)-conforming Nédélec finite element spaces are
widely used [17, 25, 37]. As for interface problems, the authors in [26] analyze the
standard finite element methods (FEMs) for H (curl)-elliptic equations. The semi-
discrete analysis for Maxwell interface problems with low regularity is provided
in [43]. In addition, due to the potentially low regularity, there are many works
focusing on developing a posteriori error estimators and adaptive FEM [8, 16, 22].

Numerical methods for solving interface problems based on unfitted meshes are
attractive since they circumvent the burden of generating high-quality interface-
fitted meshes which may be time-consuming for three dimensions (3D) or for moving
interface problems. There have been a lot of works in this field on solving H!-elliptic
interface problems, see [7, 23, 33] and the reference therein. However, there are
much fewer works on solving Maxwell interface problems. Typical examples include
matched interface and boundary (MIB) formulation [44], adaptive FEMs [15], and
non-matching mesh methods [10, 11, 14]. Recently, a penalty method is developed
in [35] requiring higher regularity.

A main difficulty for solving H (curl) problems comes from low regularity of the
exact solution, even for our assumption u € H"'(curl; Q) := {u € H'(Q),curlu €
H'(Q)}. The expected optimal convergence rate highly relies on the conformity
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of approximation spaces due to the O(h'/?) approximation order on boundary of
elements for functions in H'(curl; ), see specifically [38, Lemma 5.52]. For ex-
ample, when solving Maxwell equations by discontinuous Galerkin (DG) meth-
ods [27, 28, 29], penalties are in general needed on boundary of elements due to
the non-conformity of DG spaces, and the standard argument directly applying the
trace inequalities may only yield suboptimal convergence rates. Instead, the analy-
sis approaches in [27, 28, 29] employ a H (curl)-conforming subspace of the broken
DG space to overcome this issue.

This essential difficulty will make the development of optimal convergent un-
fitted mesh methods for Maxwell interface problems especially challenging since
almost all the unfitted mesh methods aforementioned use non-conforming spaces
for approximation, and it is unclear whether conforming subspaces with sufficient
approximation capabilities exist such that the approaches in [27, 28, 29] can be
applied. Indeed, Hiptmair et al. in [10, 11] show that using Nitsche’s penalties on
interface edges can only yield suboptimal convergence rates in both computation
and analysis. Recently, this issue was further explored numerically in [41]. An al-
ternative approach is to use immersed finite element methods in a Petrov-Galerkin
formulation [24], where the standard conforming Nédélec space is used as the test
function space to remove the non-conformity errors. However, the resulted matrix
may not be symmetric anymore, which could cause troubles for fast solvers espe-
cially for 3D Maxwell equations.

Motivated by the works [9, 13], we believe that the virtual element method
(VEM) provides a new direction to solve Maxwell interface problems that can
achieve optimal convergence on (background) unfitted meshes. The VEM was first
introduced in [5] to solve H!-elliptic equations where the H!-virtual space consists
of shape functions constructed by solving local problems on elements with gen-
eral polygonal shapes. The H (curl)-conforming virtual space was then introduced
in [19, 20] to solve magnetostatic problems. As one attractive feature, the underling
virtual space for approximation is always conforming on an almost arbitrary polyg-
onal mesh of the computation domain. It is our key motivation to use it for solving
Maxwell interface problems on meshes that are generated from a background unfit-
ted mesh. However, different from [19, 20] that use a special mixed formulation [31],
in this work we shall employ the standard H (curl)-elliptic equation (1.1a) as the
model problem. Very recently, a similar VEM for Maxwell equations with the lowest
order and shape-regular meshes is analyzed in [21]. Compared with [21], our results
focus more on the discretization’s robustness to the shape of elements, while the
analysis only relies on mature simplicial finite element tools.

In our analysis, the key to achieve the optimal error bound regardless of element
shapes is a novel virtual element space that shares exactly the same degrees of free-
dom of the one invented in [19, 20], and thus preserves all its information including
the same projection and curl values for computation. This space is constructed as
a subspace of the standard Nédélec space on a further (virtual) triangulation of
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the polygonal mesh that satisfies a maximum angle condition [1]. Locally on each
polygonal element, the new virtual functions can be also considered as discrete
harmonic extensions according to the boundary conditions (degrees of freedom),
while the usual virtual functions in [19, 20] may be considered as continuous ex-
tensions. As the key advantage of using this new space, we are able to establish
local Poincaré-type inequalities and optimal approximation capabilities for a large
class of polygonal-shape elements all independent of element anisotropy which are
the crucial intermediate results toward the final optimal error bound. A related
work is [16] that constructs sub-meshes on interface elements of a background un-
fitted mesh for computation. One essential difference between the proposed method
and [16] is that the virtual mesh and space are only used for analysis in our work,
while the computation procedure is the same as the usual VEM with the lowest
order. The convergence is guaranteed independent of the element shape provided
that the background mesh is shape-regular.

This article consists of 5 additional sections. In the next section, we introduce
the background unfitted mesh and the fitted mesh according to interface geometry.
In Section 3, we describe virtual spaces and projection operators. In Section 4,
we present the numerical scheme and derive the error equation. In Section 5, we
estimate the interpolation errors. In Section 6, we show that the convergence is of
optimal order. In the last section, some numerical examples are presented to verify
the theoretical estimates.

2. Preliminaries

In this section, we first describe an unfitted background triangular mesh and
then locally partition it into a fitted mesh used for computation. We then intro-
duce Sobolev spaces for H (curl)-interface problems. Although the triangular and
quadrilateral shape is the focus of this work, we highlight that most key results are
actually established and presented for more general polygonal element shapes.

Consider an interface-independent shape-regular triangular mesh of the domain
Q). Note that this mesh could be simply taken as a highly-structured mesh due to
the interface independence. We shall call it a background mesh, and denoted it
by EB . Another example of EB is a uniform Cartesian grid which is widely used
for unfitted mesh methods. The proposed analysis approach can be easily adapt to
this grid. If a triangular element in 7,7 intersects the interface, then it is called
an interface element. The collection of interface elements is denoted as T,%¢. The
remaining elements are called non-interface elements. For this background mesh,
we further make the following assumptions:

(A) Each interface element intersects with ' at most two distinct points on two
different edges.
(B) Each interface element does not intersect with the boundary of €.

By this assumption (A), on an interface element K € 7,7¢ we define I'’ as the line
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Fig. 2.1: Left: a background unfitted mesh. Right: interface elements in the unfitted
mesh are further partitioned into quadrilateral and triangular elements, shaded by
brown and yellow colors respectively.

connecting the two intersection points. Then all these connected small segments,
defined as T'y, form a piecewise linear approximation of the true interface I'. In
addition, by the assumption (A), each triangular interface element K is cut by I‘f
into a triangular and a quadrilateral subelement from which an interface fitted mesh
can be generated. We denote this fitted mesh by 7. The collections of quadrilateral
and triangular elements in 7, resulted by the interface-cutting are denoted by 7,/
and T, respectively. Those elements all have one edge aligning with the interface
approximately, and thus are also called interface elements in 7},. Clearly, there holds

UK e TTUT} = U{K € TP}

Note that T;, and T,P are only different on the interface elements. Furthermore, an
interface element K is assumed to be cut into K, and K }f by I‘ff , and the mismatch
portion, with K* := K N Q% cut from the original interface, is denoted by Ky,
indicated by the shaded region in the left plot of Figure 2.2.

In addition, for each interface edge F,If , we assume there is a shape regular
triangle Bff C Q with the base I‘hK and a height O(hk). Here B,If is not required
to align with the elements in the mesh. Further assume all the Bff have finite
overlapping. Note that for the considered background regular triangular mesh, for
each interface element K, this Bff certainly exists and can be further shown to be
contained in K.

Moreover we assume the interface is well-resolved by the mesh, and it can be
quantitatively described in terms of the following lemma [23].

Lemma 2.1. Suppose the mesh is sufficiently fine such that h < hg for some valve
value hg, on each interface element K € 7;lBi, there exist a constant C independent
of the interface location inside K and hg such that for every point x € I' N K with
its orthogonal projection x+ onto FhK,

dist(z,zt) < Ch%. (2.1)
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Fig. 2.2: Left: an interface element K € T, is cut to a triangular element K* and a
quadrilateral element K? of which both are in 7,. Right: the quadrilateral element
is further cut into two triangular elements K{ and K.

The explicit dependence of hy on the curvature of the interface can be found
n [23]. An adaptively-generated background mesh can be found in [42] capturing
large curvature of interface curve. Now following [26, 34], we introduce the J-strip:

Ss:={x € Q:dist(z,I') <6}, and Sf :={rcQ* dist(z,I) <5} (2.2
By the estimate (2.1), we have
U{Kin : K € TP} C S5, 6 <Crh? (2.3)

with the constant Cr only depending on the interface. Furthermore, from [26, 34]
we can control the L2-norm in the d-strip by the width of the strip and thus obtain
first order convergence when § = O(h?).

Lemma 2.2. [t holds for any z € H'(QF) that
12l L2 sy < CV0o |2 (o). (2.4)

We next introduce some major Sobolev spaces used throughout this article.
For each subdomain w C , we let H*(w) and H*(w), s > 0, be the standard

scalar and 2D vector Hilbert spaces on w where specifically H(w) = L?*(w) and
H(w) = L*(w). In addition, for s > 0, we let

H?(cwrl;w) ={v € H*(w) : curl v € H*(w)}. (2.5)

Similarly, we introduce H?®(div;w) as the counterpart of H?®(curl;w) with the di-
vergence operator. If w NI # (), then w® = wNQ*F, and H*(curl; w™ Uw™) denotes
the space of functions piecewisely defined in H®(curl;w®). For these spaces, we can
define their subspaces H{(w), H{(w), and H{(curl;w) with the zero trace on dw.
Also let (-, -)., be the standard L? inner product on w.

When the interface is smooth, the solution to the problem is expected to have an
H*(curl; QF) regularity ([18, 30]). The fundamental H ' (curl; Q)-extension operator
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established by Hiptmair, Li and Zou in [26] (Theorem 3.4 and Corollary 3.5) will
be used in analysis.

Theorem 2.1 (Theorem 3.4 and Corollary 3.5 in [26]). There exist two
bounded linear operators

E% | . H'(cwl; Q%) — H'(curl; Q) (2.6)

such that for each w € H" (curl; QF):

1. Efurlu =u a.e inQF.
2. |Eull e curs) < CEllwll pri (eunsar) with the constant Cg only depend-

ing on 2 and .

Using these two special extension operators, we can define ujé = E;—Lurlui which
are the keys in the analysis later. Finally, throughout this article, for simplicity we
shall use < to denote a --- < C'--- with a generic constant independent of mesh

size and interface location relative to the mesh.

3. Virtual Element Spaces

In this section, we shall introduce a virtual element space using the lowest order
Nédélec element on a virtual triangulation which is obtained by refinement of the
background mesh.

3.1. Virtual Edge Element Spaces

In the proposed method, triangular elements and quadrilateral elements in 7},
are treated differently. To avoid confusion, in this section we shall usually use K* and
K1 to denote triangular and quadrilateral elements in 7;' and 7,7, respectively, while
K denotes an interface element in the background mesh 7,2 or general elements in
Tr, if there is no need to distinguish their shape. In addition, for simplicity’s sake,
we always use hy as the diameter of elements K, K9 and K*.

For any element or edge w in 7p, we let Py(w) be the k-th degree polynomial
space defined on w. Given a triangle K, we shall consider the first family Nédélec
element of the lowest degree [39] as the underling approximation space:

NDL(K) ={a+b(zs,—21)T: a € R? beR}. (3.1)

Then (3.1) will be used on all the non-interface elements of 7,2 (or 7j,) as well as the

triangular interface elements K*. But for K¢ we need to employ a virtual element
space. Let us first discuss the definition on a general polygon P:

Vi(P) = {vj, € H(curl; P) N H(div; P) : vy, - t. € Py(e), Ye C OP,

div(vp) =0, curl(vy) € Po(P)}. (3.2)

This is exactly the one introduced in [20, 19] with the lowest degree and N'Dj,(P) C

V3, (P). Similar to the ones for (3.1) defined on triangles, the local degrees of freedom
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(d.o.f.) for (3.2) are
v, te, €COP. (3.3)

It has been shown in [20, 19] that the functions in (3.2) can be uniquely determined
by d.o.f. (3.3). For the present situation, V,,(K9) (P = K9) is the space used for
discretization on K1.

As the shape of elements K9 could be very anisotropic, a robust norm equiv-
alence and interpolation error estimate is hard to establish in Vj,(K?). To address
this issue, we shall introduce an auxiliary triangulation of Q (a virtual mesh), and
construct an auxiliary H (curl)-conforming space associated with this mesh. Given
an interface element K € EBi, with an quadrilateral subelement K7 € 7,7, then
the local auxiliary mesh is formed by a Delaunay triangulation of K?: connecting
the diagonal s.t. the sum of angles opposing to the diagonal is less than or equal
to m; see the right plot in Figure 2.2 for an illustration. Although it may contain
anisotropic triangles, each triangle from this new partition satisfies the maximum
angle condition (Lemma 3.1), which is key to robust interpolation error estimates
(see Section 3.2). A similar result is proven in [13] for Cartesian grids.

Lemma 3.1. Let K be a shape regular triangle, i.e., there exist 0 < Opin < Omax <
7w such that every angle 0 in K satisfies Omin < 0 < Onax, then every triangle in the
auzxiliary Delaunay triangulation on K described above satisfies the mazximum angle
condition, i.e, every 0 in the auziliary triangulation is bounded above by Omax <
max{T — Omin, Omax } -

Proof. Without loss of generality, we consider the triangle in the right plot of
Figure 2.2 for illustration where the left and right cutting points are D and F, re-
spectively. We shall bound angles of three triangles: K = ADE A3, K{ = AA; A3 D,
and K = ADAsE. If the angle is one of (or part of) the angles of AA; As A3, then
it is bounded by Oyax. If the triangle contains one of the angles of AA;A;A3, as
the sum of three angles is 7, we conclude other angles are bounded by 7 — Oy,i,. So
we only focus on angles of the triangle ADAsFE.

Now use the Delaunay property, ZDEAs; + /DA Ay < 7, we get ZDEA; <
™ — amin and ZEDAQ S 4A3DA2 S ™ — ZAlAdAQ S ™ — 9min~

We thus have verified 0., < max{mT — Omin, Omax - O

The discussion for the special case on a quadrilateral K9 is postponed to Section
5, and the results on a general polygon P are the focus in the rest of this section.
To be able to establish a robust analysis of the approximation capabilities of V},(P)
below and the stability of the discretization, P is assumed to admit a triangulation
Tr(P) with no additional interior vertices added, i.e., the collection of edges & (P)
in 75, (P) are solely formed by the vertices on 9P, and this triangulation satisfies

(P1) the maximum angle condition for each triangle in 7y (P);
(P2) no-short-interior-edge condition: hp < |e| for every interior edge e;
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(P3) star-convexity: there exists x := (Z1,Z2) € P such that Ty C P, Vy € JP.
We then define an auxiliary VEM space
Vi(P) ={v, € H(cwrl; P) : vp|x € NDip(K),VK € Tp(P),
curlvy, € Po(P)}.
Indeed we can show the VEM space defined by (3.4) shares the same d.o.f. of (3.3).

(3.4)

Lemma 3.2. Let P be a simple polygon, then the d.o.f. vi-t., e C OP are unisolvent
on the space Vj,(P).

Proof. Let us consider the following well-posed problem: for any given boundary
conditions vy, - t., e € P, find (v, Ap) satisfying
(curlvp, curlwy)p + (Wi, VAR)p =0,  Ywy, € NDp o(Th(P)),
(v, Vpr) =0,  Vpi € S o(Tw(P)).

where Sp, o(7n(P)) is the piecewise linear Lagrange finite element space. Since there
is no internal vertex, Sy o(7n(P)) is a trivial space, and (3.5) reduces to

(3.5)

(curlvy, curlwy)p =0,  Vwy, € N Dy o(Th(P)). (3.6)
The fact that curl v, is a piecewise constant on 7,(P) and integration by parts
show
Z [curl vy], /wh ‘teds =0, Vwp € NDp, o(Th(P)). (3.7
e€&y(P) €

Therefore, curl v, must be a single constant on all elements in 7y, (P). Namely, the
solution space of (3.5) is V3 (P), and the unisolvence follows from the homogeneous
boundary condition yielding the zero solution. O

Remark 3.1. The proof of Lemma 3.2 basically shows that v, € Vj,(P) satis-
fies divy, v, = 0 together with (3.6), where divy, is the element-wise div operator.
Namely, the functions in the VEM space (3.8) can be treated as a discrete har-
monic extension of the boundary conditions vy, - t on JP while the original vir-
tual space (3.2) is a continuous extension with a pointwise constraint divwy = 0.
Therefore functions in Vj,(P) may not be polynomials while V;,(P) has piecewise
polynomial vectors for which the error estimates is relatively easy to establish.

By Lemma 3.1, it is clearly that K¢ = K} U K induces such a triangulation
satisfying (P1)-(P3). Meanwhile, we would like to remark that the aforementioned
setting and the forthcoming analysis in this paper can be easily extended to the case
when 7,7 is a uniform Cartesian grid, on which the interface elements consist either
trapezoids, or triangle-pentagon satisfying (P1)—(P3). In the subsequent analysis
involving K9, the space Vj,(K?) (P = K1) is replacing V;,(K9)

Vi (K1) = {v, € H(cwl; K) : wp|ga € NDy(KJ), i = 1,2,

(3.8)
curl(vy) € Po(KY)}.
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All these triangles on interface elements form a triangulation resolving the interface,
and the global H (curl)-conforming space is defined as
Vi = {vi, € Ho(curl; Q) : vy € NDy(K) on K ¢ T,7,

(3.9)
and vy, € Vh(K) on K € 7;3}

As we assume the background mesh 7;13 is shape regular, the maximum angle con-
dition holds uniformly for the auxiliary mesh 7T

3.2. Projection and Interpolation Operators
For a general polygon P and V},(P), the constant curl vy, in P can be computed
by d.o.f. as
1

1
curlvy, = — [ curl vy de = — vy, - tds. (3.10)
\P|/P |P| Jop

With curl vy, and vy, -t known, its L2-projection can be computed following [20, 19].
On any elements or edges w C Q we define the local L? projection 1, : L?(w) —
[Po(w)]? such that

(wvh, P)w = (Vn,P)ws P € [Po(w)]? (3.11)

which is indeed computable according to the d.o.f. of (3.2) [19, Remark 3|. For
readers’ sake, we recall the procedure here: for each p = (p1,p2)T € [Po(P)]?, there
exists ¢, = —pa(x1 — T1) + p1(x2 — T2) € P1(P), such that curl ¢, = p, where

(Z1,Z2) is the point in the star-convexity assumption (P3), Therefore
(Ugevp,p)p = (vi,P)p = (vi,curl¢p) p (3.12)
= (curlvp, ¢n)p — (Vi - t, ¢n)op- .

As vy, - t is given as d.o.f., and curl vy, is constant, we get
pvy = [P ((vn - t, 22 — 22)ap, —(vn - £, 21 — 21)0p) T, (3.13)

in which the integration on 9P is with respect to ds(z1,x2).
Due to the d.o.f. imposed on edges, we can define the interpolation

Ip : H*(curl; P) — Vj,(P), /Ipu-tds = /u-tds, Ve C OP. (3.14)

We note that if P is a triangle, Ip reduces exactly to the usual edge interpolation
operator, and the special one is for other general polygons such as quadrilateral
elements K9 where shape functions are from the virtual space Vj,(P) in (3.8). Using
integration by parts, we get

/curllpudx:/ curl u dzx.
P P

Namely curl Ipu is the L2-projection of curlw to the space of constants.
Moreover the interpolation Ip : Vj,(P) — V3 (P) serves as a bijective mapping
which also preserves curl values and the L2 projection onto [Po(P)]? as both V,(P)
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and V3, (P) share the same d.o.f. . For the considered mesh 7y, taking P = K € Ty,
we have Vj, and V}, lead to the same numerical scheme but the analysis based on
V}, can exploit more existing tools built for simplicial finite elements.

Finally, a global interpolant u; is formed by gluing these local interpolations
together, for which certain modification must be introduced on the interface edges
forming T'j, (see Section 5.2).

In the rest of this section, we present some estimates which show the convenience
in analysis of opting for the space V},(P). For a triangle with vertices a;, let 8; be
the angle at vertex a; and e; be the edge opposite to a;, for i = 1,2, 3.

Lemma 3.3. The following identity holds for any linear ¢ on a triangle T':

3
||v¢h||%2(T) = Rr ZCOS 0:[|Vr, - ti”%z(ei)? (3.15)
i=1

where Ry is the circumradius of T and t; is a unit tangential vector of e;.

Proof. Denote by ¢; := ¢p(a;) for ¢ = 1,2, 3. The cotangent formula [12] reads
13
IVonll7zcr) = B > ot i(hio1 — pip1)”
i=1
Then the law of sines and |V¢y, - £;|> = (¢i—1 — ¢i11)?/|es|* finish the proof. |
We now prove the following Poincaré-type inequality which is the key for the
analysis on anisotropic meshes.

Lemma 3.4. Let P be a simple polygon satisfying (P1)-(P3), then

||vhHL2(P)gh},””vh.t”wap)+hp||cur1vh\|L2(P), vy € Vi (P). (3.16)

Proof. Define an auxiliary function

curl vy, |:(.’,E2 - 52)}

Whp = —— - )

2 xr1, — I

where (Z1,Z2) is the point in the star-convexity condition in (P3). It is clearly that
H'wh||L2(p) Sthcurl ’Uh”LQ(p). (317)

In addition, for every edge e € P, (—(x2 — T2),21 — T1)T - t|. yields the height I,
of e in the triangle formed by e and (%1, Z2), thus we have |wy, - t|. = l| curl vy|/2.
Together with the star-convexity condition, we have

[wh, - |20y S hY/ 2| curl wi| S Byf?(| curl vy | L2 (p). (3.18)

Note that curl(wy, —vy) = 0, then by a standard argument of the conforming exact
sequence, there exists a continuous piecewise linear finite element function ¢ s.t.
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vy, —wjp, = Voy. Applying Lemma 3.3, together with the maximum angle condition
in (P1), we get the estimate

lon —willZapy She D l(on —wn) - tellZ. (3.19)
EES;,,(P)

We then control the norm contribution from an interior edge e. Since P is simply
connected, any interior edge e divides P into two parts. Choose the part with less
boundary edges and denote it by P.. Note that [, oP, Vo - tds = 0, consequently
by Véy, -t being a constant on each edge on 0P,, we have an identity decomposing
0P, = (0P.NOP)Ue,

‘6|V¢h -te + Z ‘€i|v¢h “te, =0,

e; COPNOP,

and thus

1/2
.
IVon toe < 3 (") 196n - tello(en.

e; COPNOP,

Then from (3.19) and the condition (P2) we can get

lon —wnl2agmy S he 30 (Ion - telBac + lwn -t ) -
eCOP
with constant depending on the number of vertices of P but not the shape regularity
of P. Finally, the desired estimate (3.16) follows from the triangle inequality and
estimates (3.17)-(3.18). O

4. A VEM Scheme and An Error Bound

In this section, we describe the proposed virtual element formulation and derive
an error bound. We start with the standard weak formulation: find u € H(curl, §2)
such that

a(u,v) := (a curlu,curlv)g + (Bu,v)o = (f,v)a, Vv e Hg(curl,Q). (4.1)

4.1. A Galerkin method

We emphasize that the local “virtual” element space (3.8) and the global
one (3.9) is right away a computable space, readily used for the discretization,
unlike (3.2). The d.o.f. on the diagonal edge can be determined by solving (3.6)
explicitly, and a set of modified harmonic bases on boundary edges can be obtained
and used in computation. As a result, the standard Galerkin formulation is com-
putable without referring to the VEM framework of a projection-stabilization split:
find w;, € V3, such that

(ap curl up, curl vy + (Brun,vn)o = (fyvn)a, vn € Vi, (4.2)
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where oy, and (3, are the modification of a and 3 according to the linearly approxi-
mated interface I',. No projection operator is required since all the shape functions
are computable.

However, this approach will introduce an extra partition which becomes ineffi-
cient especially in 3D. Instead, we shall treat henceforth the interface part of 7, as
a virtual mesh only appearing in analysis not computation, whereas this associates
the meaning of “virtual” in V}. Its approximation capabilities will be discussed in
Section 5.1 based on the maximum angle condition.

4.2. A VEM scheme

Using the L2-projection (3.11), we define a bilinear form

ap(u,v) = (o, curlu, curlv)q + (By Hpu, pv)o + Z Sk (u,v) (4.3)
KeTP

where the operator IIj, is taken as Ilgq if K = K7 € T;?, and the identity operator
otherwise. The stabilization Sk (uy, vp,) is defined element-wisely only on K7 € T,
i.e., the quadrilateral subelements of the interface elements K € EBi:

Sk (u,v) = yxhi (Bn(u —Hgew) -, (v —Hgav) - ) 55q (4.4)

with a parameter v independent of the mesh size and specified later. Note that
the motivation of this stabilization term comes from the approximation of (S (up, —
Myup), vn — pvp) ke and thus suggests the scaling hy in (4.4).

At last, the proposed VEM discretization is to find w;, € V}, such that

ah(uh,vh) = (f",l_[h’vh)g7 Yoy, € V. (4.5)

4.3. An Error Bound

As mentioned in Section 3, some elements could be extremely anisotropic, and
the commonly used norm equivalence in the VEM framework may not be applicable.
Following the approach in [9], we shall work on an induced norm on V} by the
bilinear form in (4.3) (Lemma 4.1) which is weaker than the original graph norm:

2 1/2 1/2
lonlly = = o curl vn|32(0 + 118y *Thonl132 )
+ 3 il wn — Travn) - 32 om0- (4.6)
KT
Lemma 4.1. |||, defines a norm on Vj,.

Proof. Suppose ||vs]|, = 0, then clearly v, = 0 on all triangular elements in 7.
So we only need to consider K7 € 7,'. Indeed, IIxsv = 0 on K7 and (v, —Hgavp)-t
vanishing on 0K 9 implies vy, -t = 0 on 9K 9. Due to the unisolvence, we have v, = 0
on K7 which finishes the proof. O
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In the following main theorem, we derive an error equation to (4.5) to demon-
strate how the VEM framework can in a novel manner overcome the difficulties of
the non-conformity issue aforementioned in the introduction for other DG-based
approaches. To reinstate the optimal rate of convergence, we need to further as-
sume that the source term f bears certain extra local regularity. First, the error is
decomposed and the error equation is for n;,:

u—up =&, +mn, where § =u—wu;, and n, =u;—up, (4.7)
where u; € V}, is an arbitrary function in VEM space.

Theorem 4.1. Assume that f € L?*() is locally in H' around the interface,
namely f € H'(K9) on each K € T, assume u € H'(curl; Q= U Q) is the
solution to (4.1) and let uy € Vi, be an arbitrary function in VEM space, then for
N, = Up —UT € Vi:

1/2
(1725, 5( E hi|fla (ay + E hK/ (v —pur) - |29
KaeT,! KaeT,? (4.8)

+ [Jacurlu — aj curlug || 2 (o+) + || Bu — ﬁhHhulﬂLz(Q)).
Proof. We have

an(un,my,) —an(ur,ny) = (F,Uwny, —np)a + (F,m)0 —an(ur,ny,) . (4.9)
8} (I1)

For (I), on all the triangular elements in 7, II; reduce to identity operators, so
I,m, —n, simply vanishes. On a quadrilateral element K9 € 7,2, by the definition

h>

under (4.3), I1;,m,, = Hgan;,, which is the L?-projection of 1, on K. Therefore

(f,HKqT]h - nh)Kq = (f - HK‘l.f7HK‘1nh - nh)K‘l

(4.10)
S bl fla (goHrany, — nyll2(xa)-
For the term (II) in (4.9), using a curl curlu + fu = f, we have
(II) = (acurl curlu,n;,)a — (ap curl uy, curlmy,)o
(Ia)
+ (Bu,np)o — (Br Upur, pny)a — Z Sk (ur,my). (4.11)

(11b) KeTP!

(ILc)

For (Ila), since 1, is in the conforming auxiliary space V}, in (3.9), using the integra-
tion by parts, the continuity condition of the original PDE, and the curl condition
in (3.8) we immediately have

(Ila) = (e curl w, curl n;,)q — (ap curlug, curln,)q (4.12)
<l curl w — v, curl wr|| 2oyl curlmy, || 2 ) .
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For (IIb), on a triangular element K, we note that

(Br My, 1pny) ke = (Buwr, my,) k- (4.13)

On a quadrilateral element K9, by (3.11) we have

(,Bh,HKqU[,HKqTIh)Kq = (ﬂhHKqul,nh)Kq. (4.14)

Combining (4.13) and (4.14), we have

(I1b) = (Bu — Brllpur, my)a < [|Bu — Bullur|[L2o)lIm4 |2 (@)- (4.15)

In addition, for the stabilization term (Ilc), by (1, — Hkan;,) - te € Po(e) on each
e C 0K and the definition of the interpolant in (3.14), we have

Sk(ur,my,) = hK/ (ur — Hgaur) -t (n, — k) -t ds
OK4

:hK/ (u —Tgaus) -t (n;, — Hgany,) -t ds (4.16)
oK

< hill(u —gaur) -t 2 ora) | (M, — Trany,) - tlr2o5kq)-

Finally, putting the estimates in (4.10)-(4.16) to (4.9) yields the following bound

2 1/2
Il (2 bl e+ 32 Bl = Thwr) - #lzacoxc
Ka€T,! KaeT,!

+|a curl w — oy, curl ug||p2 o) + ||Bu — ﬂhHhuIHLz(Q)) (4.17)

> IMcamy, = malzaaen) + lleurd myllza) + Imallzeo) ).
KaeT)!
To bound ||IIxen;, — 14|22 (k) on quadrilateral elements, using Lemma 3.4 yields
the following estimate

Tcamy, — Moz ieay S PRl Il (Mcamy, — 1) - 8l 22 (eny + hic || curl my | L2 (o) -

Putting the estimate above into (4.17) and canceling one |||n;, || on both sides yield
the desired result. |

5. Interpolation Error Estimates

In this section, we estimate the interpolation errors and projection errors of
virtual element spaces. Given any triangle T', the interpolation in (3.14) exactly
becomes the canonical edge interpolation [38]. If T is further assumed to be shape
regular, then the following standard optimal approximation capability holds:

v — Itu|| g ewrr) S hrllvllg ey, © € H'(curl; 7). (5.1)
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5.1. Estimates based on the Maximum Angle Condition

Due to the assumption of the interface being smooth, we note that certain
elements in 7;' may inevitably have high aspect ratio in the process of mesh re-
fining, which results that the commonly assumed shape regularity does not hold
anymore. Consequently, the standard results about the approximation results of
the edge interpolation (5.1) cannot be directly applied. However, since maximum
angles of triangles in the auxiliary triangulation around the interface are uniformly
bounded if the background mesh is shape regular, the interpolation error estimates
can nevertheless be established based on the maximum angle condition. The inter-
polation estimates based on the maximum angle condition have been long studied
for Lagrange elements [3, 32], Raviart-Thomas elements [1, 6, 36], and 3D Nédélec
elements [6].

Lemma 5.1 (the same argument as in [1]). Given any triangle T, let 01 be
the maximum angle of T, then

hk
||’LL - ITuHH(curli,T) 5 m”unHl(curl;Tﬁ u € Hl(CU.I‘]; T) (52)

sin
The results above can be directly applied to estimate the interpolation errors of
the virtual space V;(K?) on K7 € T,. Again we present in a more general setting.

Lemma 5.2. Let P be a simple polygon satisfying (P1)-(P2) and let Ipu be the
edge interpolation to Vi, (P) defined in (3.14). Then

lu = Ipu|E(curt:p) S P16l H (curliconv(p))s U E H*(curl; Conv(P)). (5.3)
Proof. The estimate for the semi-curl norm is standard since curl Ipu is the L2
projection of curlw on P. Then

| curlw — curl Ipu||p2(py = || curlw — IIp curlu| 12 (p)

< || curlu — HConV(P) curlu||Lz(p)

IN

|| curle — Meony(p) curlwl| 22 (conv(p))

hp
7 ||u’||H1 (curl;Conv(P))»

IN

where the last step is the Poincaré inequality over convex domains [40].

Let I}, be the edge interpolation to Vi (7n(P)), i.e., the standard edge finite
element space on mesh 7, (P). By the maximum angle condition in (P1) and Lemma
5.1, we have |lu — Iyullz2(py S hpllwll g cun;py- Then it suffices to estimate the
difference ||Ipu — Inu||L2(x) on each triangle K € Ty, (P). We apply Lemma 3.4 on
each K to get

||Ipu—Ihu||L2(K) < Z h}(/2||(lpu—lhu) 'tHL2(e) —‘rhKH Curl(lpu—lhu)HLz(K).
eCOK

As (Ipu — Ipu) -t = 0 for e C 0P, we only consider an interior edge e. Since P
is simple, any interior edge e divides P into two parts. Choose the part with less



March 2, 2021 20:25 WSPC/INSTRUCTION FILE VEM Hcurl

Instructions for Typing Manuscripts (Paper’s Title) 17

boundary edges and denoted by P., then we have the relation

le|(Ipu — Ihu) - te = / curl(Ipu — Iu) dz,

e

which can be used to get
eV 2I[(Tpw — Tnu) - | 12y < || cwrl(Tpw — Tyw)|| 2(p,y | Pel /2.

Using the triangle inequality, together with the estimates for curl(w — Ipu) and
curl(u — I'nu) , we conclude for any K € T,(P)

[Ipu — Inul|r2() S Byl curlul| g1 (onv(p))- (5.4)

The desired result (5.3) then follows from the triangle inequality. |

5.2. An Interface-aware Interpolation

In the interpolation error estimate, locally a norm || curl w|| g1 (&) will be used.
When K is an interface element, in general curlu ¢ H!(K) but in HY (KT UK ™).
Instead we will use the fact curluy, € H'(K) and define the interpolation by the
tangential components of either uE or uy, where which extension to use depends
on the measure of K~ and K. Note that, in the present situation, since both
the triangular elements in 7,' and the quadrilateral elements in 7,’ may have high
aspect ratio, the modification in [26] may not be suitable on anisotropic meshes
with interface being present. Therefore, we shall employ a different interface-aware
interpolation.

In the following discussion, we only present the results for the elements in the
mesh 7; due to the technical treatment for the interface. But we emphasize that
most of the results can be generalized based on the estimate of the interpolation
errors on general polygons above. We shall use K to denote an interface element in
ThB that is cut into K, and K; by the edge I‘ff , and without loss of generality,
we assume K, € 7;f and K h+ € '7;?. Recall that K, is the portion sandwiched
between I' and FhK , and we further define Kit =K hi N Kins which is equivalent to
K ,:—L N KT, namely the mismatching subregions of K ,:—L as shown in Figure 5.1. Let
Ek be the collection of edges of K, and K ,f but excluding the edge I'l. We define
a modified interpolation operator I on K € EBi such that

/I:Ku-tds:/u-tds, Ve € &k, (5.5a)
/ ujf-tds, if |K;T| < |K; |,
/ Igu-tds = o (5.5b)
oy / up - tds, if |K; | < |K}|.
ry

By such a definition, we can always keep the interpolation as the standard one
on the subelement with smaller size. So when estimation on the mismatch portion
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is needed, such as (5.15), the element size appearing on the denominator will be
always larger than |K|/2 such that the overall estimate can be controlled. This
consideration serves as our key motivation to make this modification. For simplicity,
we denote u; by the global interpolant such that

ur=Igu if K¢ TP and w;=Igu if K e TP

In addition, we use I K uﬁ to denote the canonical interpolation on K ,f for Sobolev

extensions u%. We emphasize that the modified Ik serves the purpose for the error
analysis and is not needed in actual computation.

The following two lemmas are presented for general polygons. So we temporarily
let K be an interface polygon, and the notation I'K, FhK and Kj, are all defined
in the same manner as their counterparts for triangular interface elements. For the
subelement with larger size, inevitably there is a mismatch on I‘hK , so these results
are essential. In the following discussion, with slightly abuse of the notations, we
denote hg = |T'K| which might be much smaller than hy (see Fig. 5.1 (left)), and
||u§||Lz(K) = |lugpllre(r) + |whll 2 (k) with trivial generalization to other Sobolev
norms.

K,

int ,

Ay

Fig. 5.1: Left: the triangular interface is the smaller one. Right: the quadrilateral
element is the smaller one.

The edge I'F is assumed to be part in QT and part in 7. As a result, the line
integral frff u-t ds has part of the integrand being ug -t while the other being uy,-t.
Their difference appears one of the key terms to bound the error of the modified
interpolant (5.5), as one adheres to one extension in defining the interpolation.

Lemma 5.3. Let u € Hl(curl;Q* U Q). Given an interface polygon K, there
holds
(5.6)

71/2
5 hK/ hKH curl ’U‘E”LQ(KN)'

/ (uf, —up)-tds
K

h
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Proof. Applying integration by parts on Kj,; and using the jump condition in
(1.1¢), we obtain

/ (uf, —uy) - tds
N

which yields (5.6) since |Kin| < hxh% by (2.1). |

= ’/ curl(ug —ug)ds| S |Kint|1/2|| curl UEHL?(KM)
King

The result above can be used to derive the following trace inequality. Recall that
there exists a shape regular triangle B C Q with the base T and a height O(hx)
by Assumption (B) for all interface elements.

Lemma 5.4. Let u € Hl(curl; Q= U Q). Given an interface polygon K with TK,
there holds

_ 1/2
Ik = ug) ey S R gl pr) + bl cwl ullpo g,y (5.7)

Proof. Apply the L2-projection on I' to obtain
[(ug — “E) ‘ﬂ‘L?(F,{f) < |(up — “;5) t— Hrff((ué - “E) 't)||L2(r§)
@
+ |Mpx ((up = ug) - Bl L2 (rxy -
(ID)
Since t is a constant vector and FhK with Bf satisfies the height condition, by the

trace inequality [9, Lemma 6.3] and Poincaré inequality with average zero on a
boundary edge [9, Lemma 6.11], we have

0 S (up —up) -t = e ((up —up) - 1) z2sx)

+ (2 17 )| (g — uh) - sy (5.9)

(5.8)

2 —
S il l(ug = wh) s
For (II), by Lemma 5.3, we have
71/2 -
(1) = b2 | (up — ) - 8)
/(U;; —uj) - tds

Putting (5.9) and (5.10) back into (5.8) finishes the proof. |

(5.10)

7—1/2
ZhK/ ShK||curlu§|\Lz(Kint).

5.3. Estimate on Interface Elements

Now we proceed to estimate the interpolation errors u—w; on interface elements
for the modified interpolation.

Lemma 5.5. Let u € H'(curl; Q~ UQ1). Given each interface element K € 7,5
there holds

+ +
lw = wrll g earr) Shrllwpl B e rosr) + [4E L HEw: K- (5.11)
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Proof. Recall that K = K, U K;f. Without loss of generality, we focus the proof
on K, as the estimate on the other part follows the result on K, using a similar
argument as the one in Lemma 5.2. By the triangle inequality, we have

Hu_uIHH(curl;K}:) S||/u’_/U’EHH(Curl;Kh_) (I)
+ ||UE - K;uE”H(curl;K;) (II)
+ ||IK;,U’E' - uIHH(curl;K}:)' (III)

The first term (I) can be bounded by

— — +
H’LL - uEHH(curl;K;) = ||U‘E - uEHH(curl;Kft) S ||uE||H(CUT1§Kint)’ (512)

and the second term (II) directly follows from Lemma 5.1 since the triangular
element K, satisfies the maximum angle condition. The third term (III) simply
vanishes if |K, | < |K;"|, therefore the estimate for this term is only needed when
|K, | > |K; | and consequently |K, | > Ch%. For simplicity, we let w), = Ty-up —
ur, and note that wy, - ¢ vanishes on the edges of K, except I'Y. Using integration
by parts and Lemma 5.3, we have

1
— /2 _ )
||Cur1wh||L2(K;) = |K, |/ *|curlwy| = K72 | e wy, - tds (5.13)
1
< 7 / (up — ug) ~tds| < h}</2|| cur1u§||L2(Kim). (5.14)
K |JTK

To estimate the L2-norm, we use inequality (3.16) in Lemma 3.4 to conclude
1/2
||wh||L2(K;) S hK/ [[wp - t||L2(FhK) + hi | curl wh”Lz(th)- (5.15)
Lastly, using Lemma 5.4 and the bound of chrl'whHLz(K;) finishes the proof. DO
The estimates on non-interface elements in the background mesh 7,2 are stan-

dard. These estimates together with the Sobolev inequality in Lemma 2.2 and The-
orem 2.1 on the extension yield the global interpolation estimate.

Theorem 5.1. Let uw € H'(curl; Q~ UQ1), then there holds
v —wrl|geuto) S Mlullg euse-uet)- (5.16)

Proof. For non-interface elements, the estimate is standard as well. For interface
element K, we then use Lemma 5.5:

2 2y, .2 42
Z ||u - ul”H(curl;K) S.z Z hKHuEHHl(curl;KuBi() + ||uE||H(Cur1;K;nt)7
KeTp KeT:
201,12 +2
Sh ||uE||H1(cur1;Q—uQ+) + ||uE||H(Cur1;UK€7.hBiK;m)7
in which the second step we use the fact I'y, is uniform Lipschitz so that the over-

lapping portions of triangles B,If for every interface element K are bounded. The
desired estimate follows from Theorem 2.1 and estimate (2.4). D
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5.4. Estimate on the stabilization

In this subsection, we move back to the mesh 7} consisting of triangular and
quadrilateral elements cut from the background triangular mesh. On the quadrilat-
eral K ;f , a stabilization term is present. In this section such terms appearing in the
error bound are estimated, including

[(w—wr) - tlr20k), [HMxe(w—wr) tlr2oK), [[(w—Ikour) - Elr2@kK)-

The main difficulty is on the second term above. Note that the common and natural
approach to estimate the edge terms is to apply the trace inequality, which indeed
works for the edges A1 D and A2E due to the corresponding O(hg) height within
the triangle. However, the major difficulty arises for edges like A; As and FhK = DF,
due to a possibly degenerating height. The core idea of our approach is to employ a
constructive proof, without relying on the trace inequality, to control the edge terms
by using e (u — uy) - t being a constant for lifting and applying the definition of
projection (3.12). In the coming proofs, &, := uw — uy for simplicity.

Lemma 5.6. Let u € H'(curl; Q= UQ™T). Given each interface element K € T,
there holds

1/2
I = wr) - ¢ pogoresy S Ml o) + hucll curl whl| .- (5.17)

Proof. First, we have on each edge e # ' C QK,T, fe &, ds =0, and thus
2
1€ - ey S bl tgi/e() < Chy2|lubll s, (5.18)

where we have used the fact that e is one part of an edge of the regular element K
such that the trace inequality can be applied on this edge and K. On FhK , by the
triangle inequality, we have

1€ - tll 2 qrey <[[(w— uf) 2y

(5.19)
+[(ug — IK;U’E) L2y + ||(IK;“E —ug) )2 rxy-
For the first term in (5.19), note that
l(w = up) - tlr2wr) < l(ug —uf) - tlperx) (5.20)

of which the estimate follows from Lemma 5.4. The second term in (5.19) follows
from the argument similar to (5.18). The third term in (5.19) simply vanishes when
|K}| < |K, |. If |K;| > |K; |, then the estimate follows from Lemma 5.3. |

Lemma 5.7. Let u € Hl(curl; Q= UQT). Given each interface element K € T,P?,
there holds

1/2 + —=1/2, +
||HKh+ (’LL - ’LL]) : t||L2(8Kh+) 5 hK/ |uE||H1(Curl;K) + hK / ||,U‘E||H(Cur1;Kint)- (521)

Proof. For simplicity, we assume A; is at the origin, K is contained in the first
quadrant, and the edge A;A, aligns with the z-axis having a tangential vector
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(1,0)T. Let e be an edge of K, with the unit tangential vector ¢.. If e = A, D or
Ao E, since the height within K ;f with respect to these two edges cannot degenerate,
a simple scaling directly leads to

I & - ey S b I s €nll oy < b2 1€nl L2 iy
and then the estimate follows from Lemma 5.5. For ¢ = A;A; or DE, if both
|A1D] > v|A1A3| and |AsE| > 7| A2As|, with a constant v € (0,1) bounded away
from 0, the trace inequality-based argument above can be still applied.

The major difficulty is how to deal with edges e = A1 As or DE when K ,‘f
becomes degenerate. Without loss of generality, we assume |A;D| < |A;A3|/2 or
|A2E| < |A3As3|/2 (see Figure 5.1 (right) for an illustration). In such a case, |DE| 2,
hx independent of the interface location thanks to the law of sines as either |A3D| >
|A1A3|/2 or |A3E| 2 |A3A2|/2 Now let D = (7’1,7‘2) and F = (51,82), we have

chg max{rs, s2} < |K,‘f| < Chg max{ry, s2}. (5.22)

Next, p§ € P1(K; ) is sought such that curlp§ = t.. Since HKh+£h is a constant,
and by (3.12), we have

hl/? .
Mg & - tellL2e) = @’(Hq%%ﬂph)@

(5.23)

p1/2 B2
;H ‘(cmrl"fh,pi)K;r + @‘(ﬁh ‘@Pi)]ﬂ(aK:) :

<
=K

¢y (Im)
If e = AjAy, then t. = (1,0)7T, and p§ = y which implies HpiHLm(K;) <
max{re, so}. If e = DE, then

(r1 —s1)x2 — (rg — s2)1
|DE|

(7‘1 — 51,72 — 82)
|DE]| ’

te = and pj§, =

Note that |(r1 — s1)z2| < hg max{rs, so} and |(ry — s2)z1| S hx max{rq, s2}, as a
result, the following estimate always holds

1]l oo () S max{ra, s2}. (5.24)

Now we proceed to estimate (I) and (II) individually. For (I), by (5.22) and (5.24)
there holds

||pz|\L2(K:) < max{r2,52}|K2-|1/2 < |K}j‘3/2hl—{1.
Therefore,
—1/2 1/2
(0 S0 P eunl &l ey S PPl eurl €yl o sy (5:25)

of which the estimate follows from Lemma 5.5. For (II), on each ¢/ C 0K, using
(5.22) and (5.24) again, we have

1/2 —1/2
19511 2 (ery S max{ra, so}hl/ < |K; |hig/ .
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Lastly, we arrive at
pL/2
e
() < rlén - Hliaong ilison) S Ve toeonyy  (526)
h

of which the estimate follows from Lemma 5.6. Putting (5.25) and (5.26) into (5.23)
finishes the proof. O

Lemma 5.8. Let u € H'(curl; Q= UQ"). Given each interface element K € TP,
there holds

1/2 —1/2
I(w = T rur) -t Lo oty Shi I p euntiiey + b P lleurl w2,y (5.27)

Proof. Let us decompose the error into

[(w = T rwr) - tll Lo oty (5.25)
<IHw = Tperug)  tll 2oy + 1 (Mgrugy = Mprwr) -t o opcy-

Here the estimate of the second term is similar to the one in Lemma 5.7. Therefore,
we only need to estimate the first term in (5.28) which is further decomposed into

[(w — HK;UE) 2o

<l(uw—up) - tll 2oy + [(ugp — HK;“E) L2 oxcr) - (5.29)

@ ¢89)
Note that (I) is only non-zero on 'Y of which the estimate follows form Lemma
5.4. For (II), if e C 0K is A1D or A5E, i.e., it has an O(hk) height within K.
Then we apply the trace inequality [9, Lemma 6.3] and the approximation result of
the L? projection to obtain

—1/2 1/2
(1) < hiPllud = Wbl agery S Wbl e

Ife COK ;f is A1 As or DE where the corresponding height may become degenerate,
we first apply the trace inequality on the whole shape-regular element K, and then
apply the Poincaré inequality [9, Lemma 5.3], to obtain

—1/2 1/2
(1) < Ry P llud = W wh ey S PPl i ).

Combining the estimates above finishes the proof. O

6. Convergence Analysis

In this section, based on the previous results, we estimate the convergence order
of the solution errors. In particular, we need to estimate each term in the error
bound (6.2). Our main task is to estimate those terms on quadrilateral elements.
In the following discussion, we still keep our notation that K ,'f e 7,1 will be the
quadrilateral subelement associated with each interface element K € 7;LBi.

Theorem 6.1 (An a priori convergence result for VEM). Under the same
assumption of Theorem 4.1, let w € H* (curl; Q= UQT) and let the background mesh
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T.B satisfy the assumptions (A) and (B), then the solution wy, to the VEM scheme
(4.5) admits the error estimates

||u - uhHH(Curl;Q) 5 h”uHHl(curl;Q*UQ*) +h Z |f|H1(K‘1) (61)
KTy

Proof. First of all, by the triangle inequality, we have

Hu - uh”H(Curl;Q) < ||u - ul”H(Curl;Q) + ||’U,] - uh||H(cur1;Q)~
Recall n;, = ur — up. We use Lemma 3.4 to obtain
D lmalli < D IMamyll% + I~ T)my |l
KeTh KeTh

SO Mm% + hxclI(T = T)my, - 3k + Bil| curlmy, |5
KeTn

S Ml

Recall that in Theorem 4.1, we have obtained

1/2
Imalln (D2 bl lmaen + 2 Bl = Thwr) - #lz2orco
K1eT;! K1eT;! (6.2)

2
[h

+ ||Ot curlu — ay, Curl’u,]”sz(Q:t) + ||6’U/ - ﬂhHhu1||L2(Q)).

Then the estimate follows from Lemma 5.8 and Theorem 5.1, and applying a simple
triangle inequality to the last term. O

7. Numerical Examples

In this section, we present a group of numerical experiments to validate the
previous estimates. Let the computation domain be Q = (=1,1) x (—1,1), and
background mesh be generated by triangulating an N x N Cartesian mesh by cutting
each square into two triangles along its diagonal. We highlight that the proposed
method can be used on any other regular background triangular meshes. A circular
interface {I" : 2% + y? = r?} cuts Q into the inside subdomain Q= and the outside
subdomain Q1. We consider the example in [24, 34] that the exact solution is

(u‘ (=k1(rf —2® = y?)y) ) -

D IRV ENE B |

<M+ (=ka(r3 — 2% —y?)(r} — 2% — y?)y) > O+
it (ka(r = a® = y?) (1} — 2 — y?)z) ’
where the boundary conditions and the right hand side f are calculated accordingly.
We employ the parameters ko = 20, ky = ko(r3 —7?) with 71 = 7/5 and ro = 1, and
fix o= = 8~ = 1 with varying o™ = 10 or 100 and 8% = 10 or 100. For simplicity,
we define the errors

(7.1)

eo = ||[u —unl|r2() and e; = [ curl(u — up)| r2()- (7.2)
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The numerical results are presented in Tables 1-4 which clearly show the first order
convergence for both errors.

h eo rate e1 rate h e rate e1 rate
1/10 | 0.6257 | NA | 1.3893 | NA 1/10 | 0.6206 | NA | 1.3912 | NA
1/20 | 0.3258 | 0.94 | 0.6998 | 0.99 1/20 | 0.3257 | 0.93 | 0.7000 | 0.99
1/40 | 0.1661 | 0.97 | 0.3534 | 0.99 1/40 | 0.1661 | 0.97 | 0.3534 | 0.99
1/80 | 0.0843 | 0.98 | 0.1784 | 0.99 1/80 | 0.0843 | 0.98 | 0.1784 | 0.99
1/160 | 0.0424 | 0.99 | 0.0894 | 1.00 1/160 | 0.0424 | 0.99 | 0.0894 | 1.00
1/320 | 0.0213 | 1.00 | 0.0447 | 1.00 1/320 | 0.0213 | 1.00 | 0.0447 | 1.00
1/640 | 0.0107 | 0.99 | 0.0224 | 1.00 1/640 | 0.0107 | 1.00 | 0.0224 | 1.00

Table 1: Solution errors for at = 10 and  Table 2: Solution errors for o™ = 10 and
Bt =10. B+ = 100.

h €o rate el rate h ) rate el rate
1/10 | 0.3266 | NA | 1.0795 | NA 1/10 | 0.1938 | NA | 0.8877 | NA
1/20 | 0.1761 | 0.89 | 0.5449 | 0.99 1/20 | 0.1425 | 0.44 | 0.4358 | 1.03
1/40 | 0.0926 | 0.93 | 0.2768 | 0.98 1/40 | 0.0698 | 1.03 | 0.1976 | 1.14
1/80 | 0.0482 | 0.94 | 0.1406 | 0.98 1/80 | 0.0368 | 0.92 | 0.1027 | 0.95
1/160 | 0.0246 | 0.97 | 0.0705 | 1.00 1/160 | 0.0189 | 0.96 | 0.0503 | 1.03
1/320 | 0.0124 | 0.99 | 0.0353 | 1.00 1/320 | 0.0101 | 0.90 | 0.0264 | 0.93
1/640 | 0.0062 | 0.99 | 0.0177 | 1.00 1/640 | 0.0054 | 0.91 | 0.0140 | 0.92

Table 3: Solution errors for at = 100 Table 4: Solution errors for a™ = 100
and 81 = 10. and A1 = 100.
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