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ABSTRACT

We present several mesh smoothing schemes based on the concept of optimal Delaunay triangulations. We define the
Delaunay triangulation (ODT) as the triangulation that minimizes the interpolation error among all triangulations with the
number of vertices. ODTs aim to equidistribute the edge length under a new metric related to the Hessian matrix of the appro
function. Therefore we define the interpolation error as the mesh quality and move each node to a new location, in its loca
that reduces the interpolation error. With several formulas for the interpolation error, we derive a suitable set of mesh sm
among which Laplacian smoothing is a special case. The computational cost of proposed new mesh smoothing schem
isotropic case is as low as Laplacian smoothing while the error-based mesh quality is provably improved. Our mesh sm

schemes also work well in the anisotropic case.
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1. INTRODUCTION

In this paper, we will derive several, old and new, mesh
smoothing schemes based on optimal Delaunay triangula-
tions. The optimal Delaunay triangulation (ODT) introduced
in [1] is the triangulation that minimizes the interpolation er-
ror among all triangulations with the same number of ver-
tices. By moving a node to a new position, in its local patch,
such that the interpolation error is reduced, we obtain a suit-
able set of mesh smoothers for both isotropic and anisotropic
mesh adaptations.

Many mesh generation methods aim to generate a mesh as
good as possible according to some mesh qualities. In the
context of finite element methods, it is shown that the an-
gles of triangles should remain bounded away fi®@and

if one wants to control the interpolation error fi* norm

[2]. Hence certain geometric qualities are defined to exclude
the large and small angles in the triangulation. On the other
hand in order to approximate an anisotropic function, (with
sharp boundary layers or internal layers) long thin elements
can be good for linear approximation if we measure the error

*This work was supported in part by NSF DMS-0074299, NSF
DMS-0209497,NSF DMS-0215392 and the Center for Computa-
tional Mathematics and Application at Penn State.

in LP norm rather than it * norm [3, 4]. Itis shown that the
shape of elements should be stretched according to a me
which is assigned by (a modification of) the Hessian matri
of the object function [5, 6, 7, 8, 4], and thus when the metri
is highly anisotropic, the desirable mesh may contain lar
or small angles. In the meantime, the density of the nod
should be distributed according to some norm of the dete
minant of the Hessian matrix. In other words, the volume c
each element under the new metric is almost equidistribute
see [7, 8, 4] for details.

Inspired by the optimaL? error estimates in [4], we think
the mesh quality is a function dependent concept. Ther
fore, we define the overall quality for a triangulation by
|f — frllzr(o), wheref is the function of interest ang;

is the linear interpolant based on the triangulation. We min
mize this error-based quality by several local mesh improv
ments.

There are mainly three types of mesh improvement met
ods: (1) refinement or coarsening, (2) edge swapping, a
(3) mesh smoothing. According to our understanding c
the mesh quality, the refinement and the coarsening mair
try to optimize the mesh density, while edge swapping ar
mesh smoothing mainly aim to optimize the shape regulz



ity. In [9], we have developed the edge-based refinement
and coarsening. Our edge-based refinement will automati-
cally result in a conform triangulation and thus save a lot of
work of programing. In [1], we show that the empty circle
criteria is equivalent to the interpolation error criteria when
f(x) = ||x||*. The termination of the edge swapping is
trivial since after each iteration the interpolation error is de-
creased. By choosinfjof interest, the edge swapping is gen-
eralized to the anisotropic case. We will consider the mesh
smoothing based on ODTs in this paper.

There are mainly two types of smoothing methods, namely
Laplacian smoothing and optimization-based smoothing.
Laplacian smoothing [10], in its simplest form, is to move
each vertex to the arithmetic average of the neighboring
points. It is easy to implement and require a very low
computational cost, but it operates heuristically and does
not guarantee an improvement in the geometric mesh qual-
ities. Thus people proposed an optimization-based smooth-
ing: the vertex is moved so as to optimize some mesh quality
[11, 12, 13]. The price for the guaranteed quality improve-
ment is that the computational time involved is much higher
than that of Laplacian smoothing.

Our mesh smoothing schemes essentially belong to the
optimization-based smoothing. Instead of geometric mesh
qualities, we try to minimize the interpolation error in the
local patch. With several formulas of the interpolation er-
ror, in isotropic case, we could solve the optimization prob-
lem exactly and thus the computational cost is as low as that
of Laplacian smoothing, while the error-based mesh quality
is guaranteed to be improved. If we chanfiex) = ||x|°

to a general function or a metric, we get anisotropic mesh
smoothing schemes which are useful in the mesh adaptation
for solving partial differential equations [14, 4]. Of course,
the computational cost in the anisotropic case is a little bit
higher.

The rest of this paper is organized as follows: in Section
2, we define the error-based and metric-based mesh quali-
ties, introduce the concept of optimal Delaunay triangula-
tions and derive formulas for the error-based mesh quality.
In Section 3, we introduce centroid Voronoi tessellations as
the dual of ODTs. In Section 4 we present several mesh
smoothing schemes by considering the optimization of the
interpolation error. We finally report some numerical exper-
iments in two dimensions in Section 5 to show the efficiency
of our mesh smoothing schemes.

2. OPTIMAL DELAUNAY
TRIANGULATIONS

The Delaunay triangulation (DT) of a finite set of poirits
one of the most commonly used unstructured triangulations,
can be defined by the empty sphere property: no vertic€s in
are inside the circumsphere of any simplex in the triangula-
tion. There are many optimality characterizations for Delau-
nay triangulation [15], among which the most well known is

that in two dimensions it maximizes the minimum angle o
triangles in the triangulation [16]. In [1], we characterizec
the Delaunay triangulation from a function approximatior
point of view.

Let us denoteQ(7, f,p) = ||f — fi1,7llLr(a), where
f1,7(x) is the linear interpolation of based on a triangula-
tion 7 of a domainQ2 C R™. Let{2 be the convex hull of
andPs be the set of all triangulations 61 whose vertices
are points inS. We have shown in [1] that

Q(DT, || p) = Join Q(T, %1%, p), @

for 1 < p < oo, which is a generalization of previous
work [6, 3, 17] to higher dimensions. Delaunay triangula
tion is therefore characterized as the optimal triangulatic
for piecewise linear interpolation to isotropic functifr||?
for a given point set in the sense of minimizing the interpc
lation error inL?(1 < p < oo0) norm. For a more gen-
eral function, a function-dependent Delaunay triangulatio
is then defined to be an optimal triangulation that minimize
the interpolation error for this function and its constructiot
can be obtained by a simple lifting and projection procedur

The optimal Delaunay triangulation (ODT) introduced in [1]
minimizes the interpolation error among all triangulation
with the same number of vertices. LBty stand for the set
of all triangulations with at mos¥ vertices.7* € Py is an
optimal Delaunay triangulation if

QT f,p) = inf Q(T.f.p), @

for somel < p < oco. Such a function-dependent optimal
Delaunay triangulation is proved to exist for any given con
vex continuous function [1].

Furthermore, we have the following asymptotic lower boun
for strictly convex functions [4]:

lim inf N?"Q(Tn, f,p)

n 2 n
> LOnp| V/Aet(VER o o
whereLC,, , is a constant only depending enandp. The
equality holds if and only if all edges are asymptotic equz
under the metric

H, = (det V2f) " 55w V2 f. 3)

When f(x) = ||x||?>, H, is the Euclidean metric and the
equality holds if all edge lengths of the triangulation ar
equal. INR?, the optimal one consists of equilateral triangle
which is the ideal case for many mesh adaptation schem
By choosingf of interest, we can obtain anisotropic meshe
by minimizing the interpolation error. We, thus, conside
mesh adaptation techniques as optimization methods to m
imize the interpolation error and define the interpolation e
ror as our mesh quality. It is worthy noting that Berzins [18
gave a solution dependent mesh quality and Bank and Sm
[11] also derived the distortion quality from error point of



view. More recently, Shewchuk [19] also looked at the mesh
quality from the interpolation point of view.

Definition. Suppos&? is a domain inR™ with triangulation
7, f € C*(Q), fr the piecewise linear and global continuous
interpolation off based or?” andp, 1 < p < oo, we define
error-based mesh qualitQ (7, f, p) as

QT, f,p) =IIf = fillzr (-

For a quadratic convex functiofiand an integep > 1, it
was shown in [4] that

‘T‘Hp( Z diij,Hp)p ~ Q(T7 fvp)7

,5,1<J

whered.,; i, and|7|q, are the edge length and the volume
of 7 under the metricd,, given in (3), respectively.A <

B means there exist two constatit, C> such thatC; A <
B<C)A

We will derive several formulas ap (7, f, 1) for later use.
The following lemma can be found in [20, 4].

Lemma 1. For a convex quadratic functigh

n

I7] 2
1) = i = %[5z
Q(vav ) 2(n+2)(n+1);‘|x XJHVZf
where||v||gz; = v V2 fv.
In particular, f(x) = ||x||*> corresponds to the Euclidean

metric. By Lemma 1 and the inequality between the total
edge length and the volume of a simplex, we see

Q(r [IxI*,

and the equality holds if and only 1f is equilateral. In (4),
C,, is a constant only depending on the dimensioand it
can be calculated by taking an equilateral simptexThus
the distortion metric [11, 18] for a simplex can be defined by
the following ratio (or its reciprocal)

Qr x|, 1) _ X di;

C’n|7-|1+2/n - C’n|7'|2/"’

1) > Cy|r|' /" 4

where C,, is used to normalize the quality, and the opti-
mization of the distortion metric will lead to equilateral sim-
plexes. Lemma 1 shows the relation between the distortion
metric and the interpolation error. We will look at the inter-
polation error and optimize it directly.

With Lemma 1, we get an interesting formula for our error-
based mesh quality.

Theorem 1.For a convex quadratic functigh

+1Z [ I xilegax ©)

Q(T, f,1)

Proof. Let {\;(x)}7] be the barycenter coordinatexfin

the simplexr. Thenx = 3% \;x; and
n+1
Z/ux—xkuvz
n+1
= > /)\A xi — xx)" VZf(x; — xx)
i,j,k=1

I7] i re2
= —00— (xi —x1) V2 f(
(n+2)(n+1) <=
n—+1

_ on+1 |7
- e ey

- (n+1)/\fz(X)—f(X)\-

Xj — Xk)

The last equality follows from Lemma 1. The third one is

obtained by summing up the following basic identity:

XkHQv?f
T2
—2(x; —xx)" Vf(x; — xk).

2 2
lxi —x;ll92p = llxi — xkllo2y + x5 —

Noting that
Ng n+1 N
2
S5 [ k- = [ Ix =il
i=1 k=1"Ti i=17

we get the result. Herd'g is the number of elements in the

triangulation. Q.E.D.

This formula motivates a natural definition of a metric-base

mesh quality.

Definition. For a given triangulatiory and metricG, we
define a metric-based mesh qualiy7, G, 1) as

— Z/ I — il Zx

Q(T,G,1) =

For a convex function we can get another formula which ce
be found in our recent work [1]. Since it is the basis of ou

mesh smoothing schemes, we present the proof here.
Theorem 2. For a convex functioryf,

=7 X sl - [ ik @

x; €T

QT f,1)

Proof. Becausef;(x) > f(x) in Q, we get
Q(T,f,1)

: Z/M_/f

€T

n+1
= Z (TIZf(xrk ) —/f(X)dx
- nHfomm—/f

x; €T
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Figure 1: Lifting and Projection of a Delaunay Triangu-
lation and a Voronoi Tessellation in one dimension

Q.ED.

We conclude this section by considering the geometric
meaning of the interpolation error. To make it clear, let us
introduce some notation first. We identi**! asR™ x R.

A pointin R™** can be written agx, 1), wherex € R"
andz,+1 € R. For a pointx € R™, we can lift it to the
paraboloid(x, ||x||?) living in R"*! and denote this lifting
operator as, namelyx’ = (x, ||x||?). For a given point set
Sin R™, we then have a set of poin in R™! by lifting
points in S to the paraboloid. For the sake of simplicity, in
the sequel we chooge as an inscribed polytope @,, the
unit ball inR™. The graph of functiorf (x) = ||x||? is the
paraboloid andf(B,) U (Bn, 1) bound a convex bod¢'.

For a triangulatior?, the graph off; and(€2, 1) will bound

a polytopeP". Sincefr(x) > f(x) and fr(xi) = f(x:),

the polytopeP? can be seen as an inscribed polytope approx-
imation to the convex bod¢. P’ is convex if and only if
the underling triangulation is a Delaunay triangulation. Ac-
tually this is a characterization of Delaunay triangulation and
called the lifting method [21]. See Figure 1 for an illustration
in one dimension. From a function approximation point of
view, it is easy to see that the convex polytdplis the opti-
mal linear approximation to the paraboloid for a fixed points
set sincel)(7, f, 1) is nothing but their volume difference.

Optimal Delaunay triangulations with respect to
Q(T,||x|?,1) is the optimal inscribed polytopB® € Pk

in the sense of minimizing the volume difference, where we
use superscript to indicate that it is the set of inscribed
polytopes. The optimal inscribed polytope approximation to
a general convex body is also well studied in the literature
(see, for example, Gruber [22]). Note that the graplyof

can be thought as an approximation of the boundary surface

of the convex body”. The results and algorithms developed
in the optimal polytope approximation can be applied to
surface mesh generation and simplification. We would like

to point out that in this case the metric should correspond to

the second fundamental form of the surface [23].

3. CENTROID VORONOI
TESSELLATIONS

In this section, we understand the Voronoi tessellations
circumscribe polytopes approximation of the paraboloid. W
measure the approximation error by the volume differenc
The optimal one is called a centroid Voronoi tessellatio
(CVT) and it is, more or less, the dual of an ODT.

We begin with the classic definition of Voronoi tessellation:
(or Voronoi diagrams).

Definition. LetQ be an open setiR"™ andS = {x;}; C
Q. For anyx; € S, we define the Voronoi region of; as

Vi={x € Qst|x—xl| < ||x —x;]}

ThenQ = " Vi. We call this partitior)) a Voronoi tessella-
tion or Voronoi diagramof 2 and points{x; } generators

If we lift generators to the paraboloitk, [|x||*), we can

characterize the Voronoi tessellation as the vertical proje
tion of an upper convex envelope of tangential hyperplan:
at those points [24]. Note that the envelope will form a cir
cumscribed polytopé© of C. Thus we can understand the
VT as a circumscribe polytope approximation; See Figure
The duality of VT and DT can be understand as the pol:
duality [15] of the inscribed and circumscribe polytopes.

Theorem 3. The volume difference betwed?” andC' is
N
DV, |x|1%,1) := Z/ Ix — xi||*dx. (7
i=17Vi

Proof. Let {x;}7%]' be vertices of a simplex and TMy,
the tangential hyperplane of paraboloidkatwhich is

nt1 = [x]° — [Ix — i, ®

It is clear that the pointx., [|x.||*> — R*) satisfies (8) for
1 =1,2,..n+ 1, wherex, and R are the center and radius
of the circumscribe sphere ef The vertical projection of
the upper convex envelop& of TM,, is the Voronoi tes-
sellation. '

By the construction of VT, we see that the part of boundar
of P¢ which is projected to Voronoi regiol; is supported
by the tangent hyperplarié)M,... Thus by (8) the difference
of the volume is: '

N N
Z/ (12 = 2ns1) = 2/ I — x| 2dx.
i=1YVi i=1 7 Vi

We can generalize this quality with respect to any densi
function p(x), which is a positive function defined éhand

Jop(x)dx = 1.

Definition. Let p(x) be a density function ir2. For
a Voronoi tessellation’ of Q2 corresponding to generators
{x:}IL,, we define

Do) = 3 [ peollx—xilix.



A dual concept of the optimal Delaunay triangulations or
the optimal inscribed polytope approximations is the optimal
Voronoi tessellations or the optimal circumscribe polytope
approximations by minimizind(V*, p(x), 1).

Definition. V* is a centroid Voronoi tessellation if and only
if
D", p(x),1) = min DV, p(x), 1).

HerePn stands for the set of all Voronoi tessellation with at
most/N generators.

Why is it called centroid Voronoi tessellation? Because for
a CVT, the generatax; is also the centroid of its Voronoi

regionV;, i.e.
Jv, xp(x)

Jy, p(x)

The proof is very simple. Let; be the centroid o¥;. For
any pointz; € V;, we have

/||x xil [2p(x) = /(xfxiw(xfz-)p(x)

/Hx—x:llp 1/2/ ¢ — 4] [2p(x)) /2.
Thus
/Hx—x,np /||x—z,\|p x).

As we know, VT is the dual of DT. A natural question arises:
is a CVT the dual of an ODT? Itis interesting to compare (5)
with (7). The difference of those two quantities mainly lies
in the different decomposition é1. For a VT, itis a partition

of 2, while for a triangulation it is an overlapping decompo-
sition of 2. We conjecture that in the Euclidean metric, they
are the dual of each other asymptotically. Indeed, this con-
jecture is true for one and two dimensions since in both cases
the ODT and CVT for the Euclidean metric are known and
happen to be the dual of each other. Itis also true if we mea-
sure the difference i, > norm since both of them asymp-
totically coincide with the optimal sphere covering scheme
[20, 25]. But for generall? norm in dimensions > 3, the
answer is not known yet.

X; =

For various important and interesting applications of CVTs,
we refer to a nice review of Du et. al. [26]. Nowadays the
theories and algorithms of CVTs are successfully applied to
mesh generation and adaptation [27], both for general sur-
face grid generation [28], anisotropic mesh generation [29]
and mesh optimization in three dimensions [30]. We believe
ODT shall also play an important role in the mesh genera-
tion and adaptation. This paper is to show the application of
ODTs to the mesh smoothing.

4. MESH SMOOTHING SCHEMES

Mesh smoothing is a local algorithm which aims to improve
the mesh quality, mainly the shape regularity, by adjusting

Figure 2 : The feasible region in a local patch

the location of a vertex; in its local patch2;, which con-
sists of all simplexes containing;, without changing the
connectivity. To ensure that the moving will not destroy
a valid triangulation, namely non-overlapping or inverte
simplexes generated, we perform an explicit check, whic
is necessary when the patch is concave. Several swe
through the mesh can be performed to improve the over:
mesh quality. A general mesh smoothing algorithm is liste
below:

General mesh smoothing algorithm
For k=1:step

For i=1:N

x* = smoother(x;, Q)

If x* is acceptable thenx; = x*
End

End

The key in the mesh smoothing is the smoother. Namely hc
to compute the new location by using the information in th
local patch. Because the mesh may contain millions of ve
tices, it is critical that smoother function is computationally
inexpensive. Laplacian smoothing, the simplest inexpensi
smoother, is to move each vertex to the arithmetic average
the neighboring points.

Laplacian smoother

x" == Z X, (10)

x5 €0y, X #X;

wherek is the number of vertices d@?;. It is low-cost and

works in some heuristic way since it is not directly related t
most geometrical mesh qualities. Later we will derive Laple
cian smoother by minimizing our error-based mesh quality

An optimization-based smoothing has been proposed
[11, 12, 13]. An objected functiom(x) is composed by
combining the element qualities in the patch. A typica
choice [13] isp(x) = mini<;<k g;(x), whereg; (x) is the
quality for simplexr; € ;. Then one uses the steepest de
scent optimization or GLP (generalized linear program) [3]
to find the optimal point*.



Optimization-based smoother

x" = argmax, .o ¢(x). (12)

The domain ofp(x) is restricted to the feasible regiof,
which is the biggest convex set contained(ln such that

x € A will not result in overlapping simplexes; see Fig. 2.
The optimization-based smoother is designed to improve the
mesh quality and the theoretical results developed for GLP
ensure that the expected time for one sweep is a linear func-
tion of the problem size [31]. But it is often expensive than
Laplacian smoothing. Numerical comparison can be found
at [32]. It is worthy noting that in two dimensions Zhou
and Shimada [33] proposed an angle-based approach mesh
smoothing that strikes a balance between geometric mesh
quality and computational cost.

All the mesh smoothing schemes we discussed above are de-
signed for isotropic mesh adaptation. For anisotropic mesh
smoothing, the first step is to update our understanding of
mesh quality which we have done in Section 2. We shall de-
velop several mesh smoothers by minimizing the error-based
or the metric-based mesh quality locally, which will be a uni-
fied way to derive isotropic and anisotropic mesh smoothers.

We first consider the isotropic cas@(f,]|x|? 1) or
Q(Q;, E, 1), whereE is the identity matrix representing the
Euclidean metric. We replace the vertexby anyx € Q;,
keeping the connectivity, and try to minimize the error lo-
cally as a function ok.

By Theorem 1, we consider the following local optimization

problem
. 2
min X — dx.
min [ =yl

By the discussion of the CVT, we know that the minimizer
is the centroid of2;, namelyx* = [, xdx/|%|. Thus we
get the following smoother. )

CVT smoother |
Z cQ; X7 |T|
x =" 12)
€2
wherex is the centroid of-, i.e.x, = ZXkET x,/(n+1).

If the mesh density is nonuniform, for example, the mesh
around the transition layer will quickly change from a small
size to a much larger size. In order to keep the smoother from
stretching the elements in the high density region out into
the low density region, we have to incorporate the mesh den-
sity function into our mesh quality. Since we still need the
isotropic mesh, we choose the metpicx) £. The nonuni-
form function p(x) is to control the mesh density, which
aims to equidistribute the error or the volume of element un-
der this metric, while the matri¥ is to improve the shape
regularity of elements.

Let us consider the following optimization problem:

. 2
- dx.
ggg/ﬂi [ — yI"p(x)dx

Again the minimizer is the centroid 6f; with respect to the
densityp(x), namely

o fﬂl xp(x)dx
N sz p(x)dx

We usep-, the average gf over a simplex, to get our second
mesh smoother.

CVT smoother I

Xrpr|T
x* = M (13)
> req; PrIT]

What is the right choice of the density functipn? It could
be a priori one. Namely the density is given by the user ac
cording toa priori information about the function. In prac-
tice, especially when solving partial differential equations
the density is given by posteriorierror estimate, which of
course depends on the function and the problem.

A universal choice of the density function is related to th
volume of the element. Recall that the mesh smoothir
mainly takes care of the isotropic property of the mesh.
is reasonable to assume that after refinement and coars
ing the mesh density is almost equidistributed. Namely tt
volumes of elements are almost equal under the metric.
since|r|,,z = p2/?|7|, we may choose, = |r| /2.
With this choice, the mesh smoother (13) becomes

x* = =L . (14)

Whenn = 2, the formula (14) is

* 2 Z X]' 1
X = 3 & + BX,L.
Itis a lumped Laplacian smoothing. This relation shows th:
why Laplacian works in some sense. In three dimensions, |
such a relation exists since for a vertexof €2;, the number
of simplexes which containing; in €2; is not fixed.(In two
dimensions, this number is two.)

Since U;2; is an overlapping decomposition @8, the
change of2; will affect other patches and thus the overal
error will not necessarily be reduced. We shall make use
the formula ofQ (7, f,1) in Theorem 2 to minimize the in-
terpolation error directly.

By Theorem 2,

Qut) = g 3 (Il Y few)
T E€EQ; X} €T, X #X
+ e - [ reoi

Since we only adjust the location &f;, €2; is fixed and
Jo. f(x)dx is a constant. We only need to minimi##x)
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Figure 3: Moving a grid point in its local patch

which is defined by the following expression

> (mel Y 1L

n+1
TjEQi kaTj,xk7ﬁx

F601)) + = f ().

The domain ofE(x) is the feasible regiom. Since there
exists a small neighborhood &f in A, A is hot empty and
x; is an interior point ofA. If the triangulation is already
optimal , we conclude that; is a critical point of £'(x). We
then have the following theorem.

Theorem 4. If the triangulationZ is optimal in the sense
of minimizing Q(7, £, 1) for a convex functiory € C*(Q),
then for an interior vertex;, we have

Vi) =iy 2 (VInle 3

T €EQ; Xk €ETj XL #X;

Fxi))-

Whenn = 1, Theorem 4 says that if the grid optimize the
interpolation error inL! norm, it should satisfy
f/(xz) _ f(‘ri“rl) — f(xifl) . (15)

Ti+1 — Ti—1

We use Figure 3 to illustrate (15). We move the grid point
x; in its local patchz;—1, x:+1]. It is easy to see that mini-
mizing Q(Q;, f, 1) is equivalent to maximize the area of the

shadowed triangle. Since the base edge is fixed, it is equiva-

lent to maximizing the height. Thus (15) holds.
In two dimensions, since

1‘j+1 —.’Ifj CI?—$J'
Ti\T,Y) = )
I7l(y) Yi+1 — Yj Y=Y

we can get a similar formula

fol@oy) = D wif(@,4)),
i
folwiy) = > w!fxs,95),
i
where
FETEES R S ST L

The significance of Theorem 4 is that we can recover the
derivative exactly from the nodal values of the function if
the triangulation is optimized. With the gradient informa-
tion, we can approximatgé by higher degree polynomials or
constructa posteriorierror indicator.

If the triangulation is not optimized, Theorem 4 can be use
to solve the critical point. And the critical point can be use
as the new location for the mesh smoother. Wifér) =
xT Hx is a non-degenerate quadratic function, i#.is a

n X n nonsingular matrix. We can solve the critical point
exactly and get a mesh smoother based on ODTs.

ODT smoother |

* H_l
< =—1g7 2 (Ymel X

TiEQ, Xg €T, X #£X;

Ixill).
(16)

When the goal of the mesh adaptation is to get a uniform al
shape regular mesh, we chogdex) = ||x||*> and get

x =g 2 (Vimeol 3 ).

TiEQ; Xp €T), X #Xj
17)

Comparing with the CVT, Theorem 4 says that for an OD
the nodex; is also a kind of center of its local patch. In
general, it is not the centroid of the patch. This is the dif
ference of the ODT smoother with the CVT smoothers in
cluding Laplacian smoother. For example, if vertices of th
patch lie on a common sphere, then the optimal location
the sphere center not the centroid. In deed, since the appr
imation error only depends on the second derivative,

QT 1%, p) = QT Ix — xol*,p)-

For functionf (x) = ||x — x.||?, fr(x) = R? and
(fr = /(%) = R* — [|x — xo||?

attains the minimum value a = x,. As a byproduct, (17)
gives a simple formula to compute the circumcenter of a sin
plex, which is not easy in high dimensions.

When f is a convex quadratic function, the optimization o
interpolation error is a quadratic optimization. After we ge
the global critical point:™, we can further simplify our opti-
mization problem to be

. *112
xm61£\|fo 152 - (18)

The problem (18) is to find the projection (under the metri
V2 f) of x* to the convex se#l. For the efficiency of algo-
rithm, we only compute the projection when the global min
imum pointz™ is not acceptable. The cost of this algorithn
is a little bit higher if we need to compute the projection an
change the topological structure of the mesh. But the ove
all cost for one sweep will not increase too much since
operates like a smart-Laplacian smoothing [12].

It may happen that the new locatiari is on the boundary of
the patch; see Figure 4. For the sake of conformity we ne
to connect this hanging point to the related points which wi
reduced the error sindgx||? is convex. For two dimensional
triangulations, it looks like we perform an edge swappin
after a local smoothing. If the point* is on the boundary



Figure 4 : Moving a point to the element’s boundary

of 2, we will eliminate an element by moving an interior
point to the boundary. Conversely a point on the bound-
ary can be moved into the interior. Some boundary points,
which are called corner points, are fixed to preserve the ge-
ometric shape of the domain. But we free other boundary
points. This freedom can change the density of points near
the boundary and yield a better mesh since the interpolation
error is reduced after each local adjustment.

For a general functioyf, we can use line search to solve the
following optimization problem.

ODT smoother Il

z" = argmin, 4, F(x). (19

An alternative approach to solve (19) approximately is
to compute an average Hessian matff,, in the local
patch, and using ODT smoother | for the quadratic function
fq(x) := xT Hq,x. This approach is successfully applied
in the construction of optimal meshes in [4]. We will in-
clude several pictures in the next section. On those optimal
meshes, the interpolation error attains the optimal conver-
gence rate; see in [4] for detalils.

5. NUMERICAL EXPERIMENTS

In this section, we shall present several examples to show the
efficiency of our new smoothers in the isotropic grid adapta-
tion as well as the anisotropic case.

The first example is to compare our hew smoothers with
Laplacian smoother for the isotropic grid adaptation and
to show the reduction of the interpolation error for those
smoothers. We placz) equally spaced nodes on each edge
of the boundary of squar@, 1] x [0,1] and361 nodes in

the square. The nodes in the domain are placed randomly
while the nodes on the boundary is equally spaced since in
this example we only move the interior nodes. We use 'de-
launay’ command of the Matlab 6.1 to generate the original
mesh; see Fig 5(a). In this example, the goal of the mesh
smoothing is to get an equilateral mesh. Namely triangles
are almost equilateral and the density is uniform. We imple-
mented Laplacian smoothing, CVT smoothing | and ODT
smoothing I. In one iteration we apply the mesh smoothing
for each node and then do the edge swapping once. We in-
corporate the edge swapping in our mesh smoothing since it
can change the topological structure of the mesh. In prac-
tice, the edge swapping always come with the mesh smooth-
ing. We perform 10 iterations and present meshes obtained
by different smoothers in Figure 5. According to our theory,

(c) ODT smoother | (d) CVT smoother |

Figure 5: Comparison of Laplacian smoother, CVT
smoother | and ODT smoother |

Laplaican smoothing is not for the uniform density. Figure
5(b) shows that the triangle size is not uniform. We also te
CVT smoother | and ODT smoother | which are designe
for the uniform density. Both of them get better meshes the
Laplacian smoothing; see Figure 5(c) and 5(d).

In Figure 6, we plot the interpolation error of each mes
smoother. In this examplef(x) = ||x||?>. Therefore we
only need to comparg,, fr(x)dx which can be evaluated
exactly. See the proof of Theorem 2. The initial interpola
tion error is plotted in the location 'step 1'. Figure 6 clearly
shows the reduction of the interpolation after each iteratio
The ODT smoother | is better than the others since it has
provably error reduction property. The numeric convergen
of the interpolation errors for those smoothers is very cle:
from this picture.

The computational cost of those smoothing schemes in ec
iteration is listed in the Table 1. In order to compare th
efficiency of the smoothing schemes, we do not include tt
computational time for the edge swapping in each iteratio
Table 1 clearly shows that all of those three mesh smoothil
schemes have similar computational cost. Thus it is fair 1
say that ODT smoother | is very desirable for isotropic an
uniform mesh generation and adaptation.

Our second example is to use ODT smoothers to gener:



I
vaaes—'\,
Step Laplacian CVTI ODTI
A 1 0.19 018  0.20
: 2 0.15 0.16 0.16
z 3 0.15 0.16 0.16
£ 13355 Laplacian smoathing 4 0.15 0.16 0.15
5 0.15 0.16  0.17
. — Ot 6 0.15 0.15  0.16
J— e 7 0.15 015  0.16
8 0.16 0.16 0.15
UMSI 2 3 4 5 ] 7 8 L) 10 1 9 015 017 016
o 10 0.13 0.16 0.17

Figure 6: Error comparison of Laplacian smoother,

CVT smoother | and ODT smoother | Table 1: Computational cost comparison of Laplacian

smoother, CVT smoother | and ODT smoother |

an anisotropic mesh. We sg¢tz,y) = 1022 + 2 to be

an anisotropic function. The optimal mesh under the Hes-
sian matrix of f should be long and thin vertically. We
also include the edge swapping. In Figure 7 we list several
meshes after different iterations. Since the desirable mesh is
anisotropic, the number of boundary points on the vertical
edges should be much less than that of points on the hori-
zontal edges. Therefore we free the boundary points except
four corner points. From those pictures, it is clear that some
points are projected to the boundary and some are moved
into the square. We also plot the interpolation error in the
Figure 8. Since the local mesh smoothing is a Gauss-Seidel
like algorithm, we see the Gauss-Seidel type convergence
result for those mesh smoothing schemes; see Figure 6 and
8. An ongoing project is to develop a multigrid-like mesh
smoothing schemes. It is essentially a multilevel constraint
nonlinear optimization problem which is well studied in the
literature( see, for example, Tai and Xu [34]).

(a) Original mesh (b) Mesh after 1 iteration

The third example is to show a successful application of the
ODT smoother Il in the anisotropic mesh generation. The
function we approximate is

fla,y) = e D 10502

wherer? = (24+0.1)>+(y+0.1)? ande = 10~3. This func-
tion changes dramatically at theneighborhood of- = 0.5.

We use offse{z + 0.1, y + 0.1) to avoid the non-smoothing
Hessian matrix a0, 0) and quadratic functiofi.5r to en-
sure that Hessian matrix is not singular whers far away
from the circle so that we can focus our attention on the in-
terior layer. We use our local refinement, edge swapping
and ODT smoother Il to improve the mesh. Here we present
several pictures of our meshes. For the optimality of the ~ Figure 7: Anisotropic meshes obtained by ODT
L? norm of the interpolation error, see [4] for details. We smoother |

have applied the mesh adaptation strategies based on ODTs

in solving partial differential equations, especially for the

anisotropic problems; see our recent work [9].

(c) Mesh after 5 iterations (d) Mesh after 20 iterations
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Figure 8 : Interpolation of the second example

(a) Mesh 1

(c) Mesh 3 (d) Mesh 4

Figure 9: An anisotropic mesh and its details

6. CONCLUDING REMARKS AND
FUTURE WORK

In this paper, we have developed several mesh smoothi
schemes using optimal Delaunay triangulations as a fram
work. The proposed mesh smoothers are designed to red
the interpolation error. Our error estimates of the interpol
tion error ensures that the optimization of the interpolatio
error aims to equidistribute the edge length under some mi
ric related the Hessian matrix of the approximated functiol
Since theL? norm (p < oo) is somehow an average norm,
we can not promise that the reduction of the interpolatio
error will improve the geometric qualities, for example the
minimal angle. However, from the function approximatior
point of view, the minimal angle condition is not necessar
if we measure the interpolation error If norm.

We presented two formulations of the interpolation erro
The identity (5) in Theorem 1 seems to be new in the lit
erature and shows the close relation to the functional us
in the centroid Voronoi tessellations. We also presented
conjecture about the duality between the ODT and the CV

The mesh smoothing schemes proposed in this paper hav
strong mathematical background. In the isotropic case, tl
error-based mesh quality is guaranteed to be improved wh
the computational cost is as low as that of Laplacian smoot
ing. Laplacian smoothing can be mathematically justifie
under this framework. Another advantage of our approach
the unification of the isotropic and anisotropic mesh ada
tations. By choosing anisotropic function or metric, ou
smoothing schemes can be used to generate or improve
anisotropic mesh.

Although the formulation of our mesh smoothing scheme
hold in any spatial dimension, the numerical experiment
so far, are restricted in two dimensional triangulations. Th
three dimensional case will be investigated later.
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