SHORT BISECTION IMPLEMENTATION IN MATLAB

LONG CHEN

ABSTRACT. Thisisthe documentation of the local mesh refinement ustmgest
bisection or longest bisection in MATLAB. The new featurecofr implemen-

tation is the edge marking strategy to ensure the conformiibye short imple-

mentation is helpful for the teaching of adaptive finite edetrmethods and pro-
gramming in more advanced languages.

1. INTRODUCTION

The aim of this report is to document a short implementatibnesvest vertex
bisection and longest edge bisection in 60 lines in MATLABIsTshort implemen-
tation is helpful for the teaching of adaptive finite elemethods. It can be easily
adapted to other language, such as Fortran and C. The newef@diour algorithm
is a new edge marking strategy for the completion. This wstik ithe sprit to the
“Ten digit, five seconds, and one page” [50] and continuatiba recent trend in
the short implementation of algorithms in MATLAB [47, 17,&,,1, 37].

Adaptive finite element methods (AFEMSs) are now widely usetthé numerical
solution of partial differential equations (PDES) to ackidetter accuracy with
minimum degrees of freedom. A typical loop of AFEM througlkdbrefinement
involves

(1.2) SOLVE — ESTIMATE — MARK — REFINE.

More precisely to get a refined triangulation from the curreiangulation, we
first solve the PDE to get the solution on the current triaatjph. The error is
estimated using the solution, and used to mark a set of ofglea that are to be
refined. Triangles are refined in such a way to keep two mostitapt properties
of the triangulations: shape regularity and conformity.

Recently, several convergence and optimality results lmeen obtained for
adaptive finite element methods on elliptic PDEs [20, 3428818, 16, 14, 35, 31,
15, 12] which justify the advantage of local refinement ovgifarm refinement of
the triangulations.

In most of those works, newest vertex bisection is used irRERINE step. It
has been shown that the mesh obtained by this dividing rub®néorming and
uniformly shape regular. In addition the number of elemeaulided in each step is
under constroled which is crucial for the optimality of tlhedl refinement. There-
fore we mainly discuss newest vertex bisection in this regond include another
popular bisection rule, longest edge bisection, as a Viamiah

MATLAB allows one to very quickly implement numerical mett®odue to its
vast predefined mathematical library and compact vectarinaperations. The
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price we pay for this simplicity is the efficiency of the aldgbm. Since MATLAB

is an interpretive language, the run time can be much grésarthat of compiled
programming language like Fortran or C. To speed up the itthgoin MATLAB,
one should try to avoidor loops as much as possible using MATLAB's vector-
ized addressing and built-in functions. Our code is optidiin this sprit.

The outline of the rest is as the following. In Section 2, weie® newest
vertex bisection. In Section 3, we discuss the implantatietails: data structure,
marking strategies and refinement. In Section 4, we provigdearical examples
and in Appendix we list the code.

2. BISECTIONS INADAPTIVE FINITE ELEMENT METHODS

In this section we shall give a review of newest vertex bisecind longest edge
bisection. In short, newest vertex bisection always bssadtiangle along the edge
opposite to its newest vertex while longest edge bisectiwayes bisects a triangle
along the longest edge of a triangle.

Before we get into the details of those bisection methodsfingeintroduce
two important properties of triangulations. A trianguteitiZ;, (also indicated by
mesh or grid) of} C R? is a decomposition of? into a set of triangles. It is
called conformingor compatibleif the intersection of any two triangles and 7’
in 7, either consists of a common vertex, edgeFE or empty. An edge of a
triangle is callednon-conformingif there is a vertex in the interior of that edge
and that interior vertex is calledanging node See Fig. 1(a) for examples of
non-conforming triangles and hanging nodes.

For meshes with hanging nodes, several special basis anel ecoanplicated
matrix assembly may be required. While for a conforming mesity one finite
element basis for the reference element is necessary. Wel \keito keep this
property of the triangulations.

A triangulation7}, is shape regulaif

: 2
(2.1) max M <o
T€T) | 7]
wherediam(7) is the diameter of and|7| is the area of. A sequence of triangu-
lation {7,k = 0,1,--- } is calleduniform shape regulaif ¢ in (2.1) is indepen-
dent withk.

The shape regularity of triangulations assures that argflélse triangulation
remains bounded away frobrand which is important to control the interpolation
error inH' norm [3] and the condition number of the stiffness matrix][26

Remark 2.1. We would like to point out that in some applications with baany
layers or interior layers, an optimal triangulation may ngice a high aspect ratio
corresponding to the Hessian matrix of the solutii8, 23, 24, 22, 21, 27, 28, 19]
In these cases, we do not need to keep the shape regularitg tfdangulation but
the conformity is still needed.

After we marked a set of triangles to be refined, we need tdubrelesign the
rule for dividing the marked triangles such that the refinegimis still conforming
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(a) Bisect a triangle (b) Completion

FIGURE 1. Newest vertex bisection

and shape regular. Such refinement rules include red and geieement [8],
longest edge bisection [40, 39] and newest vertex bise¢4iéh In MATLAB's
PDE toolbox, the first two refinement methods are implemenfexdwe point out
in the introduction, we will mainly discuss newest vertegdation and include
longest edge bisection as a variant of it.

2.1. Newest vertex bisection.Given a shape regular triangulatiéh of €2, for
each triangler € 7, we label one vertex of as peakor newest vertex The
opposite edge of the peak is callbdseor refinement edgeThis process is called
a labeling of7". The rule of newest vertex bisection includes:

(1) atriangle is bisected to two new children triangles bgrexting the peak
to the midpoint of the base;

(2) the new vertex created at a midpoint of a base is assignieel the peak of
the children.

Once the labeling is done for an initial triangulation, tleeent triangulations in-
herit the label by the rule (2) such that the bisection precas proceed.

We now summarize three important properties of newestxéisaction.
Sewell [46] showed that all the decendants of an originahtie fall into four
similarity classes (Fig. 2.1) and hence triangulationsaiolefd by newest vertex

bisection is uniformly shape regular.

After the marked triangles are bisected, what in generakse&onformity, to
recovery the conformity, bisections are propagated toieéie the hanging nodes.
See Fig. 1(b) for a illustration. This process is calbednpletionor closure

One step of completion may produce more hanging nodes agda@udnave to
show the completion process will terminate. Mitchell [38HaBansch [11] show
the completion will terminate. We shall discuss this issu8éction 3.2.

The last property is not used in this report but is essentiatife optimality of
the AFEM. It says the completion will not add too many elersesimparing to
the marked elements.

Binev, Dahmen and DeVore [14] show thathif is the collection of all trian-
gles refined in going from some well labeled (we shall expkhie later) initial
conforming triangulatior?y to 7, then

#Tp, < #1o + CH#M,
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FIGURE 2. Four similarity classes of triangles generated by
newest vertex bisection

where# A denotes the cardinality of the sét Recently, this result is extended to
a bisection scheme of simplices in general spacial dimasdiy Stevenson [49].

2.2. Longest edge bisection.The longest edge bisection are proposed and studied
by Rivara’s group [41, 42, 43, 40]. In this method, triangéee always bisected
using one of their longest edges.

In the longest edges bisection, every time the largest dagl&vided and thus
it is reasonable to expect this bisection will maintain thepe regularity. Indeed,
it has been proven by Rosenberg and Stenger [44] that thdesthahgle is at
least half of the smallest angle in the initial triangulatiol he termination of the
completion process has been shown by Rivara.

We shall view the longest edge bisection as a variant of nieveetex bisection
using a different labeling scheme. Namely we label the b&sach triangle as
its longest edge. Unlike newest vertex bisection, thisliagdas performed in the
beginning of each loop like (1.1). This viewpoint will unifite implementation of
those two bisections methods.

In some cases, those two bisections are equivalent. Thisehapwhenever
the longest edge is always opposite newest vertex. One temgasuch example
is uniform meshes: meshes obtained by dividing rectangitestriangles using
their diagonals. The peaks are always at the right angleshendngest edges are
opposite to the peaks. Indeed isosceles right trianglesgi®al, in terms of angle
conditions, for bisection methods [33].

3. IMPLEMENTATION

In this section, we shall discuss the implementation of rstwertex and longest
edge bisection. The new feature is a new edge marking syradesnsure the con-
formity which makes the bisection can be implemented in 6€diin MATLAB.

3.1. Data Structure. We shall first discuss the data structure to represent trian-
gulations and facilitate the refinement procedure. Theeedploma for the data
structure in the implementation level. If more sophistchtiata structure is used
to easily traverse on the mesh, for example, to get all thengurrounding a vertex
or an edge, it will simplify the implementation of refinemefn the other hand,
once a triangle is bisected, one has to update those sepldsti data structure
which complicates the implementation.

We only keep updating two basic data structuoele, elem to represent the
triangulation. The following few lines will build other dafstructure used in the
bisection algorithm. Before we explain it line by line, wewld like to point out
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(a) A simple triangluation (b) Dual graph

FIGURE 3. A triangulation and its dual graph

that since we make use built-in functions in MATLAB, the ctiastion of those
data structure is efficient. We thus rebuild those data &trean the beginning
of each loop (1.1). If one uses Fortran or C and concerns tlimality of the
operations, one has to update those auxiliary data steuigtbenever performing
bisections of triangles.

edge=[elem(:,[1,2]); elem(;,[1,3]); elem(:,[2,3])];

edge=unique(sort(edge,2), rows’);

N=size(node,1); NT=size(elem,1); NE=size(edge,1);
dualedge=sparse(elem(:,[1,2,3]),elem(:,[2,3,1]),[1: NT,1:NT,1:NT],N,N);
d2p=sparse(edge(;,[1,2]),edge(:,[2,1]),[1:NE,1:NE], N,N);

node, elem are standard data structure to represent a triangulatiotielnode
matrix node, the first and second rows contain andy-coordinates of the nodes
in the mesh. In the element matretem , the three rows contain indices to the
vertices of elements, given in anti-clockwise order.

Note that a cyclical permutation of three indices of a triangpresents the
same triangle. We shall make use the order of vertices t@sept a labeling of
a triangle. Namely we assunedem(t,1) is always the peak of New added
elements will follow this rule.

For the triangulation in Fig. 3.1, the indices of nodes isdated by bigger num-
bers and the indices of triangles is given by circled numb@uppose it represents
the squard0, 1] x [0, 1]. Then thenode, elem matrix are given in the Table 3.1.
edge=[elem(;,[1,2]); elem(:,[1,3]); elem(:,[2,3])];
edge=unique(sort(edge,2), rows’);

In the edge matriedge, the first and second rows contain indices of the starting
and ending point. The row afdge is sorted in the way that for every edge
edge(k,1)<edge(k,2) . For the triangulation in Fig. 3.1, the indices for edges
is in small numbers. Thedge array is listed in the Table 3.1.

N=size(node,1); NT=size(elem,1); NE=size(edge,1);
N, NT, andNEare number of nodes, triangles, and edges, respectively.
dualedge=sparse(elem(:,[1,2,3]),elem(:,[2,3,1]), [1: NT,1:NT,1:NT],N,N);

For a given triangulatior?, its dual graph is defined as follows. Triangles in
T are interior dual nodes in the dual graph and those nodesoarescted if two
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t elem(t,l) elem(t,2) elem(t,3)

1 2 3 1
2 4 1 3
‘1 ”Ode(g’l) ”Ode(v‘zc)) (i) dualedge(ij) d2p())
5 1 0 3.1 2 5
5 1 1 (1,3) 1 5
. 0 1 (1,2) 2 1
2,1) 0 1
(2,3) 2 2
k edge(k,l) edge(k,2) (3,2) 0 2
1 1 2 (3,4) 1 3
2 2 3 (4,3) 0 3
i i j 4,1) 1 4
. : ; (1,4) 0 4

TABLE 1. Data structure for the triangulation in Fig. 3(a)

triangles are neighbors i.e. they share a common edge. Wanalsduce boundary
dual nodes in the dual graph for boundary edges and connacbdundary nodes
to interior dual nodes if the corresponding edges of a bayndaal node is an
edge of the triangle corresponding to the interior dual ndaeo boundary nodes
are connected if the corresponding edges share a commax.veit. 3(b) is the
dual graph of the triangulation in Fig. 3(a).

dualedge is an N x N sparse non-symmetric matrix which stores the non-
boundary edges of the dual graph of the triangulation. Nmhel dash line in Fig.
3(a). It can be formed by the following loop.
for t=1:NT

dualedge(elem(t,1),elem(t,2))=t;

dualedge(elem(t,2),elem(t,3))=t;

dualedge(elem(t,3),elem(t,1))=t;
end

By the definition,dualedge(i,j) denotes the element(if it exists) such that
v;v; is an edge of anddualedge(j,i) will give another (if it exists) element’
such that edge;v; is an edge of’. If one of them is zero, it implies that this edge
is a boundary edge.

One should avoidor loop as much as possible when coding in MATLAB
since each line in the loop will be interpreted in each iterat This can quickly
add significant overhead when dealing with large systemis @ften the case with
finite element codes). To this end, we usesparse function because of the nice
summation property for duplicated indices. Trglp sparse in MATLAB for
the usage. It will become quite nature and useful after yowsgged to it.
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d2p=sparse(edge(;,[1,2]),edge(:,[2,1]),[1:NE,1:NE], N,N);

d2p isanN x N symmetric sparse matrix which denotes the index map between
dual edge and primary edge set. Again we sigarse command which does the
same as the following loop

for k=1:NE
i=edge(k,1); j=edge(k,2);
d2p(ij)=k; d2p(,i=k;
end

3.2. Initial labeling. In this subsection, we shall discuss labeling algorithnts fo
the initial triangulation which is crucial to ensure the qaation will terminate in
finite steps.

We begin with some concepts. Given a labeled triangulafipan edge isom-
patibleif it is the base of all triangles sharing it. A triangledsmpatibleif its base
is compatible. A labeled triangulatigh is calledcompatibleif every triangle in
7 is compatible and the label &f is called acompatible label Fig. 3.2 shows a
compatible (Fig. 4(b)) and non-compatible (Fig. 4(a)) ldbea triangulation. In
this figure, the peak of each triangle is denoted by a smalhdat the vertex. It
is obvious that the completion for a compatible triangolatis terminated in one
step.

Theorem 3.1(Mitchell 1988) For any conforming triangulatiory’, there exist a
compatible label scheme.

Proof. For simplicity, we assumg@ is simply connected. It is easy to see that the
dual graph of7 is a 3-regular graph, i.e. each dual node has degree 3. And the
dual graph has no cut edges, i.e. removing one dual edge uiegchph is still
connected. Note that a compatible label corresponds tofagbenatching of the
dual graph. By the graph theory [30], which can be traced baéletersen (1891)
[38], every 3-regular graph without cut edges has a perfettiing. O

The above theorem only ensures the existence of a compkii@é The next
guestion is on algorithms for this compatible label. Altbhdor general k-regular
graph (every node has-degree), the problem to find a perfect matching is N-P
hard, for 3-regular planar graph, there does exist polyabtithe algorithms to
find a perfect matching. Recently in [13] it has been shown tthia even can be
done inO(N) operations for a triangulation witl elements.

Theorem 3.2(Bied! et al 1999) For a triangulation 7 with IV triangles, there
exists anD (N )-time algorithm which give a compatible label bt

It is a temptation to put such labeling algorithm inside nstwwesrtex bisection.
Namely we always call a labeling algorithm in the beginniddoop (1.1) such
that the current triangulation is compatible. Then no egifart is required to en-
sure the conformity. However since we change the peaks iy éo@p, we cannot
prevent the angle to be unacceptably large or small. Fumihiexr, Mitchell [32]
shows that if the the refined triangulations are always caitlpathe only possi-
bility is to perform the uniform refinement of an initial coatble triangulation.
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(a) Non-compatible label (b) Compatible label

FIGURE 4. Different labeling for a triangulation

In this sense, the complexity of the completion for non-catitye triangulation is
the price we have to pay for the efficiency of the local refineme

It is desirable that the initial labeling can be done in ariropt way. But the
algorithm presented in [13] is kind of complicate. Note tf@tnewest vertex bi-
section we only need to labeling the initial triangulatiohigh has, in practice,
small number of elements. We would like to sacrifice the caxip} for the sim-
plicity.

In our implementation, we shall choose a longest edge asafeefor each trian-
gle in the initial triangulatiory. Such labeled triangulation may not be compatibly
divisible. But we shall show the completion will termianta £very triangulation
refined from such labele@, using newest vertex bisection in Section 3.3.

Although the completion will terminate for longest edgedityy, the refine-
ment of an element can enforce the bisection of remote elesméthere we use
this method for its simplicity. If one implement bisectiosing Fortran or C, one
had better give a compatible labeling for the initial triategion. For a simple
algorithm, we refer to Zikatanov [54].

We now list and explain our code for the labeling.
function elem=label(node,elem)

edgelength(:,1)=(node(elem(:,3),1)-node(elem(:,2),1 )72 ..
+(node(elem(:,3),2)-node(elem(:,2),2))."2;

edgelength(:,2)=(node(elem(:,1),1)-node(elem(:,3),1 )72 ..
+(node(elem(:,1),2)-node(elem(:,3),2))."2;

edgelength(:,3)=(node(elem(:,3),1)-node(elem(:,2),1 )72 ...

+(node(elem(:,3),2)-node(elem(:,2),2))."2;
[temp,l]=max(edgelength,[],2);
elem((I==2),[1 2 3])=elem((I==2), [2 3 1]);
elem((I==3),[1 2 3])=elem((I==3), [3 1 2]);

The first 3 lines is to compute the edge lengths. Then we findbtiigest edge
and switch the nodes of each triangle such ¢lam(t,1) is always opposite to
the longest edge.

Note that for newest vertex bisection, once the peak (or)bfasehe initial
triangulation is chosen, the peak or base for decent triatigns are assigned by
newest vertex bisection rule. Thus we only need to call thizr@utine for the
initial triangulation.
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If we relabel the longest edge as the base in each loop, theTdmes longest
edge bisection. Thus we includereethod input argument in our bisection algo-
rithm.

function [node,elem,marker,d2p] = bisection(node,elem, eta,theta,method)
if (method==1), elem = label(node,elem); end

When method==1 , we call the label subroutine and the bisection becomes
longest edge bisection. Otherwise it is newest vertex bsec

3.3. Marking strategy. In this subsection, we shall discuss marking strategies
used in our algorithm. We need to distinguish two types ofkingr one is to
mark triangles for reducing the error and another one is tdkredges for the
conformity.

Marking triangles for reducing the errorLet us first discuss the marking strategy
used with the error indicator. Let

=Y
T€T},
be an error indicator with local contributioms associated with a triangle. The
traditional maximum marking strategy is to mark triangiaias 7 such that

Ny > Omaxn,, forsomed € (0,1).
€T

This marking strategy is proposed in the pioneering workbjdBabuska and Vo-
gelius and currently used in the MATALB&daptmesh function.

We shall use the bulk marking strategy proposed by DorflBf. [2Vith such
strategy, one defines the marking 8étsuch that

(3.1) > n2>=6n forsomed € (0,1).

TeEM
Bigger 8 will result more refinement of triangles in one loop and serall will
result more optimal grid but more refinement loops. Usuakyohoose& = 0.2 —
0.5.

The advantage of the bulk marking strategy is that one cawepiar elliptic
problems, with other reasonable assumptions, the appadiximerror is decreased
by a fixed factor for each loop (1.1) and thus the local refirgml convergence.
Furthermore it will give optimal numerical approximatiamterms of the number
of degrees of freedoms. For details we refer to [20, 34, 48318516, 14, 35, 31,
15, 12].

Completion. After those marked triangles are bisected, the cruciallpromow is
maintaining of the mesh conformity. We first survey two bagiproaches for the
completion and then propose a new edge marking strategy.

A standard iterative algorithm of the completion is thedwling. Let)M denotes
the set of triangles to be refined.

Iterative algorithm
SUBROUTINE completion
WHILE M # () DO
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Bisect eacht € M;
Let now M be the set of nhon-conforming triangles.
END WHILE

A more efficient recursive algorithm is proposed by Mitc{8R, 33] and gen-
eralized by Kossaczky [29] to 3-D. Because of the efficieitdg implemented in
the adaptive finite element package ALBERTA [45]. This ajppiois based on
an observation that if a triangle is not compatible, thepradt single division of
the the neighbor opposite the peak, it will be. Of course,alyrhe possible that
the neighboring triangle is also not compatible, so theritlym recursively check
the neighboring triangle until a compatible triangle isridu The recursion occurs
before the division, so it always bisect a pair of compatthbngles (except near
the boundary) and thus the conformity is ensured.

Recursive algorithm
SUBROUTINE divide_triangle(r)
IF 7 is not compatiblerHEN
divide_triangle(neighbor ofr opposite the peak)
divide the triangler and the neighbor opposite the peakrof
END IF

One has to show the recursion will terminate. Indeed thersteea labeled
triangulation such that the recursion does not terminate Hg. 4(a) for such
an example. Note that the labeled triangulation in Fig. 4a)on-compatible.
Mitchell [32, 33] proved that if the initial triangulatiors compatible labeled, then
the recursion will terminate. Let the triangles of the alitriangulation be assigned
generationl. Let children have generation4- 1 wherei is the generation of the
parent.

Theorem 3.3(Mitchell 1988) If the initial triangulation is compatible, the length
of the recursion oflivide_triangle(t) in Recursive algorithm is bounded by the
generation ofr.

The proof of this theorem based on the fact that if a triangleat compatible,
the triangle opposite its peak has one less generationdwvthat the initial tri-
angulation is compatible. And thus the generation of ttantyies decreases with
each recursive call. Since the minimum generatiob, ithe number of recursive
calls is bounded by the generation of the first triangle.

We can relax the compatible requirement for the initialrtgalation. For exam-
ple, we can use longest edge labeling. Indeed Kossaczliyjtiss choice.

Theorem 3.4(Kossaczky 1994) Suppose that each triangle of the initial trian-
gulation has the unique longest edge. Let the base of eaahgtg of an initial
triangulation 7 be the longest edge of the triangle. Thiwvide_triangle(t) stops
on 7, and also on every refinementff, created by this method.

The above theorem need a well-defined tie-breaking for thepesison of the
edge length. Due to the round-off error, the example in Fi¢p) & still possi-
ble. Note that many mesh generators will generate gridsagung a sub-grid like
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Fig. 4(a). To apply the recursive algorithm, it is safe to getompatible initial
triangulation.

Marking edges for the conformitywe shall propose a new approach to address the
conformity issue. Note that in the output mesh, the new pané always middle
points of some edges of the input mesh. Instead of operatinigamgles, we mark
a set of edges. The marking strategy is that if an edge is matken the base of
the triangles sharing that edge should be marked too.

This marking strategy can be implemented in a recursive v&iygua minor
modification ofdivide_triangle(t).
Recursive edge marking algorithm
SUBROUTINE mark(7)
mark the base of
7/ = neighbor ofr opposite the peak
IF base ofr’ is not markedrHEN

mark(7’)
END IF

The termination of the recursion is obvious since everyngon will mark an
edge and the number of edges for the current triangulatiefirite.

To control the stack and easily access to the data struoiwerémplement a
non-recursive edge marking strategy. We list our code helow

total = sum(eta); [temp,ix] = sort(-eta);
current = 0; marker = zeros(NE,1);
for t = LINT
if (current > theta +total), break; end
index=1; ct=ix(t);
while (index==1)
base = d2p(elem(ct,2),elem(ct,3));
if (marker(base)>0), index=0;
else
current = current + eta(ct);
N = size(node,1)+1;
marker(d2p(elem(ct,2),elem(ct,3))) = N;
node(N,:) = mean(node(elem(ct,[2 3]),));
ct = dualedge(elem(ct,3),elem(ct,2));
if (ct==0), index=0; end
end
end
end

The first line is to compute the total sum of the error estimatand sort the
index by the value ofy in decent ordercurrent is used to denote the current
summation of the error indicator contributed by markechgias. We do a loop for
elem matrix, and mark the triangles. Line 4 is the bulk markingtstgy.

The arraymarker is used to denote wether the edge is marked or not. If
marker(k)=0 , it means thek-th edge is not marked. Otherwigserker(k) de-
notes the global index of the new nodes (the middle point@ktth edge).

For current trianglet , we first get its base usimdgp matrix. If the base oft
is not marked, we mark this edge, introduce the new nodesduhtha coordinates
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FIGURE 5. Divide a triangle according to the marked edges

of this new nodes is added into thede matrix. Then we take the neighbor con-
taining its base and repeat the process. whige loop ends until the base of
is already marked or it is a boundary edge.

We only append new nodes in thede matrix during the marking. Since we
do not bisect any triangles, we can keep using the auxiliatg dtructureedge,
dualedge ,d2p.

3.4. Refinement. Refinement is short and easy since the conformity is ensared i
the marking step. It is purely local in the sense that we oelgdnto divide each
triangle according to how many edges are marked.

for t=1:NT
base=d2p(elem(t,2),elem(t,3));
if (marker(base)>0)
p=[elem(t,:), marker(base)];
elem=divide(elem,t,p);
left=d2p(p(1),p(2)); right=d2p(p(3),p(1));
if (marker(right)>0)
elem=divide(elem,size(elem,1), [p(4),p(3),p(1),marke r(right)]);
end
if (marker(left)>0)
elem=divide(elem,t,[p(4),p(1),p(2),marker(left)]);
end
end
end
Ofmmmmmmmmmmmmmmmmmmmmmmmmmmmmmemmmemmmemmememee el
function elem=divide(elem,t,p)
elem(size(elem,1)+1,:)=[p(4),p(3).p(1)]; elem(t,:)=[ P(4).p(1).p(2)];

We first explain thalivide function.t is the current triangle to be divided. Its
vertices aren(1), p(2),p(3), andp(4) is the new vertex added in its base (Fig. 5).
We modify the current triangle and add one new element étem array. Note
that in those elements, the first node is changep(49, newest vertex added by
the bisection.

We do a loop forelem matrix. For each triangle, we first check if its base is
marked. If so we divide it and then check the other two edgiesnéd of them is
marked, we then divide children with suitable order. See Fifpr an illustration.

4. NUMERICAL EXAMPLE

In this section, we shall present a numerical example to dfmwto cooperate
our bisection algorithm in adaptive finite element methods.
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We will solve the following crack problem consider in [35,)5Let Q = {|z| +
lyl < 1}\{0 <z <1,y = 0} with a crack and the solution satisfies the Poisson
equation

. 0
—Au=finQ w=wuponl;, and 8—” =gonlsy,
n

wheref = 1,T'y = 09, andl'y = (). We choose:p such that the exact solutian
in polar coordinates is
1. 1 2
u(r,0) =r2 sin g — 7%

We use piecewise linear and global continuous finite elertoeswlve this Pois-
son equation. The initial grid is given by hand. For genemahdins, one can use
MATLAB'’s PDE tool box or use distmesh [37], a simple mesh gater written
in MATLAB, to generate an initial mesh and cédlbel for the initial labeling.

For the assembling and solving of Poisson equation, we @sshibrt finite ele-
ment implementation in [1]. We optimize the code by avoidingfor loop. It is
much faster than the original implementation in [1].

We shall us€uls; -, the W21 norm ofu, as our error indicator. By the em-
bedding theorem and the optimality of the finite elementtsmbu;, based on the
triangulation7y, it is easy to show that

lu—upli <C Z Jul3, -
€T,

Furthermore, if the triangulatioiy with N elements equidistributes tH& 2!
norm of u in the sense thatu|z1, < CN~tula1.0, V7 € Ty, then the finite
element approximationy based o/ is of optimal approximation order [5]:

(4.1) lu—un)i < ON"Y2|ulyq q.

Sinceu is unknown andD?uy, is zero almost everywhere, in the estimate func-
tion, we first use simplest Zienkiewicz-Zhu recovery [52] 88get a piecewise
linear approximation oV u, denoting byRuy, and then us& Ru,, as a piecewise
constant approximation db?u. Sophisticated approximation @2, for exam-
ple, the method by Bank and Xu [9, 10], can be also implemeatgdiently in
MATLAB.

After the current triangulation is refined, one needs to tpdhe boundary
edges. Thanks to our data structure, the updating of bovrathyes can be sim-
ply done by the following function. In the functiobdedge is a subset oédge
array.

function bdedge=updatebd(marker,bdedge,d2p)
ND=size(bdedge,1);
for k=1:ND
i=bdedge(k,1); j=bdedge(k,2);
if marker(d2p(i,j)) >0
bdedge(k,:)=[i,marker(d2p(i,j))];
bdedge(size(bdedge,1)+1,:)=[j,marker(d2p(i,j)];
end
end
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(a) Original mesh (b) mesh aftei 0 iterations

(c) mesh afted 5 iterations (d) mesh afteR0 iterations

FIGURE 6. Meshes after different iterations

For domains with curved boundaries, one needs to projeciniddle points
on the boundary edges to the boundary. To this edeédge should store more
information; See, for example, the data structure used ML [7].

Fig. 6 displays the grid for several loops of (1.1). The MATRAode for the
crack problem is listed in Appendix.
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APPENDIX A: MATLAB CODE FORBISECTION

function [node,elem,marker,d2p] = bisection(node,elem, eta,theta,method)
if (method==1), elem = label(node,elem); end
edge = [elem(:,[1,2]); elem(,[1,3]); elem(;,[2,3])];
edge = unique(sort(edge,2),'rows’);
N = size(node,1); NT = size(elem,1); NE = size(edge,l);
dualedge = sparse(elem(:,[1,2,3]),elem(:,[2,3,1]),[1: NT,1:NT,1:NT],N,N);
d2p = sparse(edge(;,[1,2]),edge(:,[2,1]),[1:NE,1:NE], N,N);
total = sum(eta); [temp,ix] = sort(-eta);
current = 0; marker = zeros(NE,1);
for t = LINT
if (current > theta xtotal), break; end
index=1; ct=ix(t);
while (index==1)
base = d2p(elem(ct,2),elem(ct,3));
if (marker(base)>0), index=0;
else
current = current + eta(ct);
N = size(node,1)+1;
marker(d2p(elem(ct,2),elem(ct,3))) = N;
node(N,:) = mean(node(elem(ct,[2 3]),));
ct = dualedge(elem(ct,3),elem(ct,2));
if (ct==0), index=0; end
end
end
end
for t = LINT
base = d2p(elem(t,2),elem(t,3));
if (marker(base)>0)
p = [elem(t,:), marker(base)];
elem = divide(elem,t,p);
left = d2p(p(1),p(2)); right = d2p(p(3),p(1));
if (marker(right)>0)
elem = divide(elem,size(elem,1),[p(4),p(3),p(1),marke r(right)]);
end
if (marker(left)>0)
elem = divide(elem,t,[p(4),p(1),p(2),marker(left)]);
end
end
end
hold off; trimesh(elem,node(;,1),node(;,2),zeros(size (node,1),1));
view(2),axis equal,axis off
Ofmmmmmmmmmmmmm e mmmmmmmmmmmmmmmmmmmmmee e
function elem = divide(elem,t,p)
elem(size(elem,1)+1,:) = [p(4),p(3),p(1)];
elem(t,)) = [p(4),p(1).p(2)];

Ofmmmmmmmmm e e
function elem=label(node,elem)
edgelength(:,1)=(node(elem(:,3),1)-node(elem(:,2),1 )72 ..

+ (node(elem(:,3),2)-node(elem(:,2),2))."2;
edgelength(:,2)=(node(elem(:,1),1)-node(elem(:,3),1 )72 ..

+ (node(elem(:,1),2)-node(elem(:,3),2))."2;
edgelength(:,3)=(node(elem(:,3),1)-node(elem(:,2),1 )72 ..

+ (node(elem(:,3),2)-node(elem(:,2),2))."2;
[temp,l]=max(edgelength,[],2);
elem((I==2),[1 2 3])=elem((I==2),[2 3 1]);
elem((I==3),[1 2 3])=elem((I==3),[3 1 2]);

15
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APPENDIX B: MATLAB CODE FOR THE CRACK PROBLEM

function crack
clear all
% Initial Mesh
node = [1,0; 0,1; -1,0; O,-1; 0,0; 1,0];
elem = [5,1,2; 5,2,3; 5,3,4; 5,4,6];
Dirichlet = [1,2; 2,3; 3,4; 4,6; 1,5; 5,6];
Neumann = [;
% Adaptive Finite Element Method
for step = 1:20
% Stepl: Solver
u = Poisson(node, elem, Dirichlet, Neumann, @f, @u_D, @g);
% Step2: Estimate
eta = estimate(node,elem,u);
% Step3: Refine
[node,elem,marker,d2p] = bisection(node,elem,eta.”2,0 .4,0);
% refine boundary edges
Dirichlet = updatebd(Dirichlet,marker,d2p);
Neumann = updatebd(Neumann,marker,d2p);
end
u = Poisson(node, elem, Dirichlet, Neumann, @f, @u_D, @g);

L S S
function z = f(p) % data

z = 1,

0f e e
function z = u_D(p) % Dirichlet boundary condition

r = sqgrt(sum(p."2,2));

z = sqrt(0.5  *(r-p(:,1)))-0.25 *1.72;

0f ——cmmmmmemmmeeeemoeoeeeeeee. e
function z = g(p) % Neumann boundary condition

z =0
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