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Abstract
Some virtual element methods on polytopal meshes for the Stokes problem are proposed and
analyzed. The pressure is approximated by discontinuous polynomials, while the velocity
is discretized by H(div) virtual elements enriched with some tangential polynomials on
the element boundaries. A weak symmetric gradient of the velocity is computed using the
corresponding degree of freedoms. Themain feature of the method is that it exactly preserves
the divergence free constraint, and therefore the error estimates for the velocity does not
explicitly depend on the pressure.

Keywords Stokes equations · Virtual element methods · H(div) element · Divergence free

1 Introduction

Let Ω ⊂ R
d , d = 2, 3 be a bounded and simply connected polytopal domain. Given an

external force field f ∈ L2(Ω), we consider the steady-state incompressible Stokes problem:
⎧
⎨

⎩

− div(2νε(u)) + ∇ p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

(1)

Long Chen was supported by the National Science Foundation (NSF) DMS-1418934 and in part by the Sea
Poly Project of Beijing Overseas Talents, and Feng Wang was supported by National Natural Science
Foundation of China (Grant Nos. 11371199, 11371198, 11301275) and the Fund of Overseas Research and
Training Program for Excellent Young and Middle-aged Teachers and Presidents in Universities and
Colleges of Jiangsu.

B Feng Wang
fengwang@live.cn

Long Chen
chenlong@math.uci.edu

1 Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology,
Beijing 100124, China

2 Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA

3 Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University,
Nanjing 210023, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-018-0796-5&domain=pdf
http://orcid.org/0000-0002-3650-5663


Journal of Scientific Computing

where ε(u) = (∇u + ∇uᵀ)/2 is the symmetric gradient of u, ν > ν0 > 0 stands for the
constant viscosity, u denotes the velocity field, and p is the pressure. This model describes
many natural phenomena, such as the ocean currents, water flow in a pipe, and air flow around
a wing etc.

There are tremendous amount of work on the numerical methods for Eq. (1), see themono-
graphs [8,28,32] and the references therein. Traditionally, the main difficulty in proposing
suitable schemes is to make the velocity space and the pressure space well coupled, i.e., satis-
fying the inf-sup condition, to ensure the existence and the stability of the solution. Recently,
it is emphasized that (see the review paper [31]), on the discrete level, one should preserve
the exact mass conservation property, i.e., the exact divergence free constraint. This is a key
point to obtain a pressure-robust method.

Several divergence free elements have been proposed for two dimensional problems,
see, e.g., [27,40]. It is, however, quite difficult to construct simple exact divergence free
conforming elements in H1 space, especially in three dimensions. For example, Zhang [50]
proved that the element Pc

k − Pdc
k−1(k ≥ 6) was stable on uniform tetrahedral grids. A

relatively simple divergence free finite element can be starting from the H(div) conforming
elements, and then using some techniques to deal with the H1 requirement for the velocity.
One way is adding divergence free functions, e.g., curl of particular bubble functions, to
H(div) element spaces to enforce the tangential continuity and obtain a H1-conforming or
nonconforming methods, see, e.g., [30,36,49] for 2D and [29,49] for 3D. The other one
is using appropriate discrete variational forms. Cockburn et al. [19] and Wang and Ye [46]
introduced tangential penalty and obtained discontinuous Galerkin divergence free methods
respectively, see also in [23] for the problemswithmore general boundary conditions. In [21],
the authors proposed a class of H(div) conforming HDG methods based on the gradient–
velocity formulation by sending the normal stabilization function to infinity in the HDG
methods, see also [20,22] for the overview of other versions of HDG methods for Stokes
equations. Recently by rewriting the vector Laplacian to the “curl-div” formulation and
introducing a discrete dual curl operator, Chen et al. [17] proposed a divergence free MAC
scheme on triangular grids. We should mention that, via the Stokes complex, some H1

divergence free finite elements were introduced from H2 conforming elements, see, e.g.,
[27,29]. One can also get pressure independent error estimates by divergence preserving
velocity reconstruction for some traditional finite element pairs, see, e.g., [25,33].

In the last few years, due to the great flexibility for problems on complicated geometry,
numerical methods on polytopalmeshes have drawn increasingly attentions. Several methods
have been proposed, such as, mimetic finite differencemethods [34], virtual element methods
(VEM) [2,3],weakGalerkin (WG)methods [47], hybrid high ordermethods [24], generalized
barycentric coordinatesmethod (e.g., [18]) and so on. For the Stokes problems, there also exist
some recent works. A polygonal finite element was proposed in [43] on convex polygonal
partition. Wang and Ye [48] introduced a weak Galerkin method, in which, they used totally
discontinuous polynomials on elements and the boundaries, and introduced weak gradient
and weak divergence to handle the nonconformity. Cangiani et al. [14] proposed a method
using nonconforming virtual elements for each component of the velocity and discontinuous
piecewise polynomials for the pressure. Similar method was also presented in [35]. Di Pietro
and Lemaire [26] extended the standard Crouzeix–Raviart elements to general meshes. All
of these methods are not exactly divergence free and the error estimates for the velocity
will thus depend on the pressure. Antonietti et al. [1] introduced a virtual element method
based on a 2D stream formulation Stokes problem. Beirão da Veiga et al. [6] proposed a kind
of H1 conforming divergence free virtual elements for Stokes problems on 2D polygonal
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meshes and generalized it to the 3D polyhedral grids (see also [7,44] for the applications to
the Brinkman model and the Navier–Stokes equation).

In this paper, we shall present an exact divergence free elements on polytopal meshes for
the Stokes equation formulated as (1). We use discontinuous polynomials to approximate
the pressure, and the H(div) virtual elements [4,13] to discretize the velocity. To enforce
the tangential continuity, following the idea of WG, we introduce polynomial spaces on the
element faces to approximate the tangential trace and define a weak symmetric gradient. We
use the stress formulation but not the gradient formulation in order to model more practical
model in the engineering applications, and thus the spaces, both of the H(div) conforming
virtual element space and the tangential space, should contain rigid body motions to ensure
the Korn inequality holds in the discrete level. We note that the proposed velocity element is
only H(div) conforming but H1 nonconforming, since the normal continuity of the element
is enforced pointwisely while the tangential continuity is only enforced weakly. In this sense,
our work can be considered as an extension of MTW element [36] on triangles and XXX
elements [49] on tetrahedra to polytopalmeshes. It should be also emphasized that developing
a divergence free element on 3D is much more difficult, our approach can deal with both 2D
and 3D cases.

The tangential spaces only defined on the element boundaries and have no influence on
the range of div operator. Due to this property, we obtain an exact divergence free virtual
element methods, and the error estimates for the velocity do not depend on the pressure.More
precisely, let (uh, ph) be the solution of the discrete problem and (uI , pI ) be the interpolation
of the exact solution, we will show that

‖uI − uh‖1,h + ‖pI − ph‖ � hk‖u‖k+1 + ν−1‖h( f − Πo
h f )‖,

where Πo
h denotes the L2 projection to piecewise Pk polynomial space.

An outline of the paper is as follows. In Sect. 2 we introduce the weak virtual element
spaces. Section 3 concerns with the discrete problem and its well-posedness. The error esti-
mates are given in Sect. 4. In Sect. 5, we report some numerical experiments to verify our
results.

Throughout the paper, we use the standard notation for Sobolev spaces and norms. For any
region D, (·, ·)D (or 〈·, ·〉D) denotes the L2 inner product. The norm and seminorm for the
functions in the scalar Sobolev space Hm(D) or the vector Sobolev space Hm(D) (m ≥ 0)
are denoted by ‖ · ‖m,D and | · |m,D respectively. When m = 0, we usually omit the subscript
and use ‖ · ‖D to denote the L2 norm. When D stands for the whole domain Ω , we drop the
subscript Ω in the norms and inner products. We also use H(div) (H(curl )) to denote the
Sobolev space, in which the functions and their divergence (curl ) are in L2(L2) space.

2 Weak Virtual Element Spaces

Let Th be a polytopal mesh ofΩ withmesh size h, andFh denote the collection of all the d−1
dimensional faces. Here we assume that the mesh is shape regular in the sense that: For each
element E ∈ Th , there exist d real numbers γi > 0 such that, all the constituents (volume,
faces, and edges) are star-shaped with respect to a disk of radius ρi > γi hE , where hE is
the diameter of E . With the above geometric conditions, we can establish the trace theorem
and inverse inequalities on polytopal elements, see [12,16]. We further assume that the mesh
is quasi-uniform in the sense that the diameters of all the elements are of comparable size.
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We use nE to denote the outward unit normal vector defined on ∂E and the subscript will be
suppressed if it is clear from the context.

We use Pk to denote the polynomial space of degree≤ k, and use Pk for the corresponding
vector polynomial space. We usually use bold fonts to indicate vector variables, operators,
and spaces throughout this paper.

2.1 H(div)-ConformingVirtual Element Spaces

On each element E , following [4] (also [13]), we introduce a local space

V E =
{
v ∈ H(div, E) ∩ H(curl , E) : v·n ∈ Pk( f ) ∀ f ⊂ ∂E,

div v ∈ Pk−1(E), curl v ∈ curl Pk(E)
}
,

We note that the definition is a three dimensional version, while for the two dimension
case, the operator H(curl , E) and curl v ∈ curl Pk(E) are replaced by H(rot, E) and
rotv ∈ Pk−1(E) respectively. It is obvious that Pk(E) is a subspace of V E , which ensures
an optimal approximation property of the space. Unlike the traditional FEMs, there are non-
polynomial functions in the space V E , and one does not know explicitly the shape function
(a basis) of V E . Thus the element is generally not computable except its degree of freedoms,
which is the reason that it is called “virtual element”. The novelty of VEM is that only degree
of freedom is needed for an accurate discretization. The global virtual element space is

V div
h := {v ∈ H(div,Ω), v|E ∈ V E ∀E ∈ Th, v·n = 0 on ∂Ω} .

It is H(div,Ω) conforming as the function is piecewise smooth and the normal component
is continuous across the element.

The degree of freedoms (d.o.f.) for functions in V E are stated as (see Fig. 1 for an
illustration of the simplest element in 2D)

Type I
∫

f
v·nqk ds ∀ qk ∈ Pk( f ), f ⊂ ∂E,

Type II
∫

E
v·qk−2 dx ∀ qk−2 ∈ Gk−2(E),

Type III
∫

E
v·qk dx ∀ qk ∈ Pk(E)\Gk(E),

Fig. 1 An illustration of the
degree of freedoms of the lowest
order element on a polygon. The
tangential d.o.f. is colored in red,
while the others are for the virtual
element space V E (Color figure
online)
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where Gk(E) stands for the range of the gradient of the polynomial space Pk+1(E). By a
direct calculation, the dimension of V E is

dim(V E ) =

⎧
⎪⎪⎨

⎪⎪⎩

(k + 1)n f + k2 + k − 1, if d = 2,

(k + 1)(k + 2)

2
n f + (k + 2)(k2 + 2k − 1)

2
, if d = 3,

where n f denotes the number of d−1 dimensional faces of E . The unisolvence can be found
in [4], and the 3D casewill be discussed briefly below. First of all, the following local problem

div v = φ, curl v = ψ in E, v·n = ϕ on ∂E, (2)

has a unique solution if and only if the consistent condition
∫

E φ = ∫

∂E ϕ holds. We define
two local problems: − div gradΦ = φ in E , ∂Φ/∂n = ϕ on ∂E , and curl curlΨ = ψ,

divΨ = 0 in E , curlΨ ·n = 0 on ∂E . It is well known that the first problem has a unique
solutionΦ (up to a constant). The existence and uniqueness of Ψ for the second problem can
be found in Corollary 3.1 and Theorem 3.5 in [28]. Setting v = ∇Φ + curlΨ is the desired
result.

We now discuss what we can compute using these d.o.f. in the 3D case. Type I d.o.f.
will determine piecewise polynomial flux v·n on each face of E . In Type II d.o.f., writing
qk−2 = ∇ pk−1 and using the integration by parts, we have

−
∫

E
div v pk−1 dx =

∫

E
v·∇ pk−1 dx +

∫

∂E
v·n pk−1 ds.

Therefore div v ∈ Pk−1(E) can be computed using Type I and Type II d.o.f.. Using the
Helmholtz decomposition of Pk , the L2-orthogonal complement of space Gk(E) in Pk(E)

is curl ∗(curl (Pk(E))), where curl ∗ is the L2-adjoint of curl and thus Type III is equivalent
to

∫

E
curl v· pk−1 dx ∀ pk−1 ∈ curl (Pk(E)),

and consequently curl v ∈ curl (Pk(E)) is uniquely determined by Type III d.o.f.. As div v,
curl v, v·n are uniquely determined by these d.o.f., the unisolvence then follows from the
local problem (2).

On each E , we shall define a L2 projection. For each v ∈ V E , let Πo
Ev ∈ Pk(E) satisfy

∫

E
Πo

Ev · q :=
∫

E
v · q ∀ q ∈ Pk(E).

Although the function in V E is virtual, the L2 projection is computable. In view of Type
III d.o.f., we only need to determine

∫

E v · ∇ pk+1 for pk+1 ∈ Pk+1(E) which is again
computable through integration by parts

∫

E
v·∇ pk+1 dx = −

∫

E
div v pk+1 dx +

∫

∂E
v · npk+1 ds.

Note that although pk+1 ∈ Pk+1(E), the polynomials div v and v · n have been computed
and considered as known.
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2.2 WeakVirtual Element Space

In order to approximate the velocity in H1, we also need some d.o.f. on element boundaries
to involve the tangential part of the velocity. On one hand, kth-order convergence requires
continuity at least with respect to k−1 polynomials, see, e.g., [38]. On the other hand,
discrete Korn’s inequality needs tangential continuity with respect to rigid motion functions
on element faces [37]. Thus, on each face f ∈ Fh , we introduce a space V f := Pk−1( f ) +
RM( f ), where RM( f ) denotes the space of rigid motions, i.e., RM( f ) := {c + Rx, c ∈
R
d−1 and R ∈ Sd−1}. Here Sd−1 is the space of anti-symmetric (d−1)×(d−1) matrices.

The d.o.f. for functions in V f are
∫

f
v·q ds ∀q ∈ Pk−1( f ) + RM( f ).

We note that V f = Pk−1( f ) for the case k > d−2, and V f = RM( f ) for the case k = 1
in 3D. It is easy to obtain

dim (V f ) =
{
k, if d = 2,
k(k + 1) + δk1, if d = 3,

where δk1 = 1 for k = 1, and δk1 = 0 otherwise. For ease of presentation, we usually
express the vector polynomial space V f in the d dimension, e.g., for all v ∈ V f , we rewrite
it as

v =
d−1∑

i=1

viτ i , vi = (v·τi ) ∈ Pk( f ),

where τ i , i = 1, · · · , d−1, denote orthogonal unit tangential vectors on the face. Then, the
element boundary space is defined as

V t
h := {vt , vt | f ∈ V f , f ∈ Fh, v

t = 0 on ∂Ω}.
Combining the above two kinds of spaces together, gives our weak virtual finite element
space:

V h :=
{
{vdivh , vth}, vdivh ∈ V div

h , vth ∈ V t
h

}
.

Let N f and NE be the number of d−1 dimensional faces and elements of Th . By a explicit
computation, the total number of d.o.f. in V h is

dim(V h) =

⎧
⎪⎪⎨

⎪⎪⎩

(2k + 1)N f + (k2 + k − 1)NE , if d = 2,

[
(k + 1)(3k + 2)

2
+ δk1

]

N f + (k + 2)(k2 + 2k − 1)

2
NE , if d = 3.

Remark 1 There are two components for the functions vh in the weak virtual element space
V h , that is, the H(div) conforming part vdivh defined on the whole domain, and tangential
part vth associated with element boundaries. For any vh = {vdivh , vth}, the divergence operator
can be applied on vdiv in the usual sense and further on vh since vth only defined on a set
having a measure of zero in the d dimension. Namely we have div vh = div vdivh on Ω .
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Remark 2 We note that, compared with MTW element [36] or XXX elements [49] on trian-
gles, our element has more degree of freedoms in the interior of the element. We may reduce
some interior d.o.f. using the serendipity technique proposed in [5]. �

With the help of the tangential trace, we can compute a weak symmetric gradient on each
element E ∈ Th for functions in V h following the idea of weak Galerkin method [39,47].
Let Ps

k−1 be the space of symmetric matrices, whose components are polynomials of degree
at most k−1. For any v = {vdiv, vt } ∈ V h , we define εw

E (v) ∈ P
s
k−1(E) satisfying

(εw
E (v),W)E : = −(vdiv, divW)E + 〈vdiv·n, (Wn)·n〉∂E +

d−1∑

i=1

〈vt ·τ i , (Wn)·τ i 〉∂E

= −(Πo
Evdiv, divW)E + 〈vdiv·n, (Wn)·n〉∂E +

d−1∑

i=1

〈vt ·τ i , (Wn)·τ i 〉∂E
(3)

for all W ∈ P
s
k−1(E). Here (Wn)·τ i denotes the matrix and vector multiplcation nᵀ

Wτ i .
Due to the definition of the d.o.f., all the items in the right hand side are computable.

Remark 3 We can also define the weak symmetric gradient as in [45] by first introducing
weak gradient and then taking the symmetric part. All the analysis in this manuscript can be
used for this definition.

The triple of polynomials (Πo
Evdiv, vdiv·n, vt ) can be thought as a special form of theweak

function used in the weak Galerkin method. The difference here is the interior polynomial
and the flux are connected through a H(div)-conforming function vdiv. Being in H(div),
divergence free condition, i.e., div vh = 0 can be imposed pointwisely. In the definition of
our weak virtual element space, vt is independent of vdiv. We need to impose the continuity
through boundary integrals which are also known as stabilization terms.

2.3 Jumps on the Boundary

If vdiv is in H1(E), recalling the integration by parts

(ε(vdiv),W)E = −(vdiv, divW)E + 〈vdiv,Wn〉∂E ,

and using the vector decomposition

vdiv = (vdiv·n)n +
d−1∑

i=1

(vdiv·τ i )τ i , Wn = ((Wn)·n)n +
d−1∑

i=1

((Wn)·τ i )τ i ,

we can rewrite the definition of εw
E (v) as

(εw
E (v),W)E = (ε(vdiv),W)E +

d−1∑

i=1

〈(vt−vdiv)·τ i , (Wn)·τ i 〉∂E (4)

which means that εw
E (v) is the elementwise ε(vdiv) plus contributions from the boundary.

The term vdiv·τ i , however, is not computable, since there is no d.o.f. associated with the
tangential trace of an H(div) element.
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To get a computable stabilization term, we shall use the second formulation in (3) on the
weak symmetric gradient and apply integration by parts to get

(εw
E (v),W)E = (ε(Πo

Ev),W)E + 〈J n
∂E (v),Wn〉∂E +

d−1∑

i=1

〈J τ i
∂E (v),Wn〉∂E , (5)

where J n
∂E (v) and J τ i

∂E (v) denote the differences of v and Πo
Ev in the normal and tangential

parts respectively, that is

J n
∂E (v) := ((vdiv−Πo

Evdiv)·n)n, J τ i
∂E (v) := ((vt−Πo

Evdiv)·τ i )τ i .

When the superscript omitted, it indicates the whole jump on the element boundary

J∂E (v) := J n
∂E (v) + J τ

∂E (v) with J τ
∂E (v) :=

d−1∑

i=1

J τ i
∂E (v).

With these notations, we can simply write (5) as

(εw
E (v),W)E = (ε(Πo

Ev),W)E + 〈J∂E (v),Wn〉∂E .

Wenote themismatchof the degree of polynomials ofvt ∈ Pk−1( f ) andΠo
Evdiv ∈ Pk(E)

since to have optimal order of approximation, only the so-called weak continuity of the
tangential trace is needed [41]. Therefore we further introduce a projection to the tangential
polynomial space on each element face. On the face f ⊂ ∂E , we define (Πt

∂Ev)| f ∈ V f as

∫

f
Πt

∂Ev · q :=
∫

f
v|E · q ∀q ∈ V f .

By the definitions of Πt
∂E and V f , we have

Πt
∂E (v·τ iτ i ) = Πt

∂E (v)·τ iτ i , (Πt
∂Ev)·n = 0.

If v is continuous, e.g., v ∈ H1(Ω), we have (Πt
∂E1

v)| f = (Πt
∂E2

v)| f , where E1 and E2

are the elements having the common face f . The notation Π∂E is defined as

Π∂Ev := (v·n)n + Πt
∂Ev.

Now, due to Wn ∈ Pk−1 on each face, we have the third version of (5)

(εw
E (v),W)E = (ε(Πo

Ev),W)E + 〈Π∂EJ∂E (v),Wn〉∂E . (6)

We note that the projectionΠ∂E acts on the polynomialsΠo
Evdiv but not the virtual functions

vdiv and thus the term Π∂EJ∂E (v) is still computable.
Therefore we obtain by the Schwarz inequality, the trace theorem, the inverse inequality,

and the assumption of the mesh regularity that

‖ε(Πo
Ev) − εw

E (v)‖2E � h−1‖Π∂EJ∂E (v)‖2∂E . (7)
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2.4 Interpolation Error Analysis

For any v ∈ H1(E), IdivE v ∈ V E is defined by the degree of freedoms, i.e.,
∫

f
IdivE v·n qk =

∫

f
v·n qk ∀ qk ∈ Pk( f ), f ⊂ ∂E,

∫

E
IdivE v·qk−2 =

∫

E
v·qk−2 ∀ qk−2 ∈ Gk−2(E),

∫

E
IdivE v·qk =

∫

E
v·qk ∀ qk ∈ Pk(E)\Gk(E).

Lemma 1 We have for anyW ∈ P
s
k−1 that

(ε(v),W)E = (εw
E (I Ev),W)E , (8)

where I Ev := {IdivE v,Πt
∂Ev}.

Proof The identity follows from the definitions of weak symmetric gradient and the interpo-
lation,

(εw
E (I Ev),W)E = −(IdivE v, divW)E + 〈IdivE v·n, (Wn)·n〉∂E

+
d−1∑

i=1

〈Πt
∂Ev·τ i , (Wn)·τ i 〉∂E

= −(v, divW)E + 〈v·n, (Wn)·n〉∂E +
d−1∑

i=1

〈v·τ i , (Wn)·τ i 〉∂E

= (ε(v),W)E .

The proof is completed. 
�
We then present the following error estimates.

Lemma 2 Assume that the element E is shape regular. Then, for all v ∈ Hk+1(E), it is true
that

‖v − IdivE v‖E + h
1
2 ‖v − IdivE v‖∂E � hk+1‖v‖k+1,E , (9)

‖v − Πo
Ev‖E + h‖∇(v − Πo

Ev)‖E + h
1
2 ‖v − Πo

Ev‖∂E � hk+1‖v‖k+1,E , (10)

‖v − Πo
E I

div
E v‖E + h‖∇(v − Πo

E I
div
E v)‖E � hk+1‖v‖k+1,E , (11)

‖Πt
∂EJ

τ
∂E (I Ev)‖∂E � hk+

1
2 ‖v‖k+1,E . (12)

Proof Since Pk(E) ⊂ V E , the first three inequalities follow from the standard arguments,
see, e.g., [11,12].

For the last inequality, we have

‖Πt
∂EJ

τ
∂E (I Ev)‖2∂E =

d−1∑

i=1

‖Πt
∂E (Πt

∂Ev − Πo
E I

div
E v)·τ iτ i‖2∂E

=
d−1∑

i=1

‖Πt
∂E (v − Πo

E I
div
E v)·τ iτ i‖2∂E

≤ ‖v − Πo
E I

div
E v‖2∂E ,

which, together with the trace theorem and inequality (11), gives the desired result. 
�
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Lemma 3 On each shape regular element E ∈ Th, we have for any u ∈ Hk+1(E) that

‖ε(u) − εw
E (I Eu)‖E + h‖ε(u) − εw

E (I Eu)‖1,E � hk‖u‖k+1,E .

Proof We note by the triangle inequality that the error can be bounded by two terms

‖ε(u) − ε(Πo
E I

div
E u)‖E + h‖ε(u) − ε(Πo

E I
div
E u)‖1,E

and

‖ε(Πo
E I

div
E u) − εw

E (I Eu)‖E + h‖ε(Πo
E I

div
E u) − εw

E (I Eu)‖1,E ,

and the first term can be estimated by Lemma 2. For the second term, we derive from the
inverse inequality and inequality (7) that

‖ε(Πo
E I

div
E u) − εw

E (I Eu)‖E + h‖ε(Πo
E I

div
E u) − εw

E (I Eu)‖1,E
� ‖ε(Πo

E I
div
E u) − εw

E (I Eu)‖E
� ‖ε(Πo

E I
div
E u) − ε(Πo

Eu)‖E + ‖ε(Πo
Eu) − εw

E (I Eu)‖E
� hk‖u‖k+1,E + h− 1

2 ‖Π∂EJ∂E (I Eu)‖∂E .

Then using the property of the L2 projection, the trace inequality, and again Lemma 2, we
have

‖Π∂EJ∂E (I Eu)‖∂E ≤ ‖IdivE u − Πo
E I

div
E u‖∂E + ‖Πt

∂E (Πt
∂Eu − Πo

E I
div
E u)‖∂E

= ‖IdivE u − Πo
E I

div
E u‖∂E + ‖Πt

∂E (u − Πo
E I

div
E u)‖∂E

≤ ‖IdivE u − Πo
E I

div
E u‖∂E + ‖u − Πo

E I
div
E u‖∂E

� hk+1/2‖u‖k+1,E , (13)

which yields the desired result. 
�

When the subscript E is replaced by the mesh size h, the operators introduced above
are element-wise defined on the whole domain, i.e., (εw

h (·))|E = εw
E (·), Πo

h |E = Πo
E ,

Idivh |E = IdivE , Ih |E = I E .

3 The Discrete Problem and Its Well-Posedness

In this sectionwe shall present the discretization of Stokes equation (1) using ourweak virtual
element space. The key is an appropriate stabilization so that the Korn inequality holds on
the discrete level.

3.1 Discretization

Let Sh ⊂ L2
0(Ω) be a discontinuous piecewise Pk−1 element space. Then, the corresponding

discrete variational formulation for problem (1) is to seek uh = {udivh , uth} ∈ V h and ph ∈ Sh
satisfying

{
ah(uh, vh) + b(vh, ph) = ( f ,Πo

hv
div
h ) ∀ vh ∈ V h,

b(uh, qh) = 0 ∀ qh ∈ Sh,
(14)
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where

ah(uh, vh) : = (2νεw
h (uh), εw

h (vh)) + 2νsh(uh, vh),

b(vh, ph) : = −(div vh, ph),

with the stabilization term defined as

sh(uh, vh) : =
∑

E∈Th

〈
h−1Π∂EJ∂E (uh),Π∂EJ∂E (vh)

〉

∂E
.

We stress that our method is exactly divergence free, since div V h = Sh .
In the following, we shall discuss the well-posedness of the discrete problem. By the

Babuška–Brezzi theory [8], we should define suitable norms on the discrete spaces, and
verify the continuity and coercivity of ah(·, ·), and the continuity and the inf-sup condition
of b(·, ·).

For any vh ∈ V h , we introduce a mesh dependent H1 seminorm as

‖vh‖21,h :=
∑

E∈Th

‖vh‖21,h,E , (15)

where the seminorm on each element is defined as

‖vh‖21,h,E := ‖∇Πo
Evdivh ‖2E + ‖h− 1

2 Π∂EJ∂E (vh)‖2∂E .

3.2 The Poincaré and Korn Inequalities

In this subsection, we first present some technical lemmas, and then prove the Poincaré and
Korn inequalities.

Lemma 4 On each element E ∈ Th, we have for any v ∈ Pk(E) that

‖v − Πt
∂Ev‖∂E � h

1
2 ‖ε(v)‖E .

Proof By the definition of the space V f , we have for any rigid body motion q ∈ RM(E)

that

(Πt
∂Eq)|∂E = q|∂E .

Then, for any q ∈ RM(E), it follows from the property of the L2 projection, the trace
inequality, and the scaling argument, that

‖v − Πt
∂Ev‖∂E = ‖(v + q) − Πt

∂E (v + q)‖∂E

� ‖v + q‖∂E

� h− 1
2 ‖v + q‖E + h

1
2 ‖∇(v + q)‖E .

On the other hand, for any w ∈ H1(E), it holds that

inf
q∈RM(E)

(
h−1‖w + q‖E + ‖∇(w + q)‖E

)
� ‖ε(w)‖E .

Then the desired inequality follows. 
�
Lemma 5 For any vh ∈ V div

h , we have

‖vh − Πo
Evh‖2E � h‖J n

∂E (vh)‖2∂E , (16)
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and thus by the triangle inequality, we obtain

‖vh‖2E � ‖Πo
Evh‖2E + h‖J n

∂E (vh)‖2∂E . (17)

Proof We note that (vh − Πo
Evh) ∈ V E . Thus, it can be expressed by the d.o.f.. By the

definition of Πo
E , all the d.o.f. vanish except

∫

f (vh − Πo
Evh)·n. Using the standard scaling

argument and the shape regular assumption, we achieve the inequality (16). 
�
Lemma 6 It is true for any vh = {vdivh , vth} ∈ V h that

‖J∂E (vh)‖2∂E � ‖Π∂EJ∂E (vh)‖2∂E + h‖ε(Πo
Evdivh )‖2E ≤ h‖vh‖21,h . (18)

Proof We only need to estimate the norm of the jump on the tangential directions as the
one for the normal jump J n

∂E (vh) appears in the right hand side. It follows from the triangle
inequality and Lemma 4 that

‖J τ i
∂E (vh)‖2∂E = ‖(vt − Πo

Evdivh )·τ i‖2∂E
� ‖(vt − Πt

∂EΠo
Evdivh )·τ i‖2∂E + ‖(Πt

∂EΠo
Evdivh − Πo

Evdivh )·τ i‖2∂E
� ‖Πt

∂EJ
τ i
∂E (vh)‖2∂E + h‖ε(Πo

Evdivh )‖2E .

Then summing over the inequality for tangential directions completes the proof. 
�
As traditionally used in the discontinuous Galerkin methods, the notation [·] f stands for

the jump of functions across the interior face f ∈ Fh . When f is an outer boundary face, we
use the same notation to indicate the function values.

Lemma 7 For each face f , let E f be the set of the elements taking f as a face. Then, for all
vh = {vdivh , vth} ∈ V h, we have

‖[Πo
hv

div
h ]‖2f �

∑

E∈E f

(‖Π∂EJ∂E (vh)‖2∂E + h‖ε(Πo
Evdivh )‖2E

)
. (19)

Proof We note that the normal component vdivh ·n is continuous across f and vth is a single
value on f , and both of them vanish on the outer boundary. Then it follows from the triangle
inequality that

‖[Πo
hv

div
h ]‖2f �

∑

E∈E f

‖J∂E (vh)‖2L2(∂E)
,

which, together with Lemma 6, gives the desired result. 
�
Lemma 8 For any vh = {vdivh , vth} ∈ V h, we have the discrete Poincaré inequality:

‖vdivh ‖ � ‖vh‖1,h .
Proof Using the general framework of the Poincaré inequality in [9], we have

‖Πo
hv

div
h ‖2 �

∑

E∈Th

‖∇Πo
hv

div
h ‖2E + h−1

∑

f ∈Fh

∥
∥
[
Πo

hv
div
h

]∥
∥2
f

�
∑

E∈Th

(‖∇Πo
hv

div
h ‖2E + h−1‖Π∂EJ∂E (vh)‖2∂E

)
,

where, in the second inequality, we have used Lemma 7. By inequality (17), we then obtain
the desired result. 
�
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Lemma 9 The discrete Korn inequality holds for any vh = {vdivh , vth} ∈ V h that

‖vh‖21,h � ‖εw
h (vh)‖2 + h−1

∑

E∈Th

‖Π∂EJ∂E (vh)‖2∂E .

Proof It follows from the Korn inequality for the piecewise H1 vector fields [10] (see
also [37]) and inequality (19) that

∑

E∈Th

‖∇Πo
hv

div
h ‖2E �

∑

E∈Th

‖ε(Πo
hv

div
h )‖2E + h−1

∑

f ∈Fh

‖[Πo
hv

div
h ]‖2f

�
∑

E∈Th

(‖ε(Πo
hv

div
h )‖2E + h−1‖Π∂EJ∂E (vh)‖2∂E

)
.

Then the proof is completed by using the triangle inequality and inequality (7). 
�

3.3 TheWell-Posedness of the Discrete Problem

In this subsection, we show that the bilinear form ah(·, ·) is continuous and coercive, the
bilinear form b(·, ·) is continuous and satisfies the inf-sup condition, and thus the problem
has a unique solution.

Lemma 10 For all uh, vh ∈ V h, it holds that

ah(uh, vh) � ν‖uh‖1,h‖vh‖1,h,
ah(uh, uh) � ν‖uh‖21,h .

Proof The two inequalities follows directly from inequality (7), the definition of the norm,
and Lemma 9. 
�
Lemma 11 For any vh= {vdivh , vth} ∈ V h and qh ∈ Sh, it is true that

b(vh, qh) � ‖vh‖1,h‖qh‖.
Proof By integration by parts and the property of the L2 projection, we have

‖ div vdivh − divΠo
hv

div
h ‖2E =

∫

∂E
div(vdivh − Πo

hv
div
h )(vdivh − Πo

hv
div
h )·n ds

≤ ‖J n
∂E (vh)‖∂E‖ div(vdivh − Πo

hv
div
h )‖∂E ,

which, together with the assumption of mesh regularity, yields

‖ div vdivh − divΠo
hv

div
h ‖E � h− 1

2 ‖J n
∂E (vh)‖∂E ≤ ‖vh‖1,h .

Then, the desired inequality follows from the Schwarz inequality and the triangle inequality.

�

Lemma 12 For any ph ∈ Sh, there exists a vh = {vdivh , vth} ∈ V h such that

div vh = ph and ‖vh‖1,h � ‖ph‖.
Proof It is well known that for any ph ∈ Sh , there exists a function v ∈ H1

0(Ω) satisfying

div v = ph and ‖v‖1 � ‖ph‖.

123



Journal of Scientific Computing

We define vh = {vdivh , vth} as vdivh |E = IdivE v, vth |∂E = Πt
∂Ev. Then, for any q ∈ Pk−1(E),

we have
∫

E
div vdivh q = −

∫

E
vdivh ∇q +

∫

∂E
vdivh ·n q = −

∫

E
v∇q +

∫

∂E
v·n q =

∫

E
div v q.

By noting div v = ph ∈ Pk−1 on E , we obtain the equality

div vh = div vdivh = ph .

It follows from the triangle inequality, the inverse inequality, and inequalities (10), (11), that

‖∇Πo
Evdivh ‖E ≤ ‖∇v‖E + ‖∇(v − Πo

Ev)‖E + ‖∇(Πo
Ev − Πo

Evdivh )‖E
� ‖∇v‖E + h−1‖Πo

E (v − vdivh )‖E � ‖∇v‖E .

The inequalities (10) and (12) give

‖ΠEJ∂E (vh)‖2∂E = ‖J n
∂E (vh)‖2∂E + ‖Πt

∂EJ
τ
∂E (vh)‖2∂E � h‖∇v‖E .

Then the desired result follows. 
�
FromLemmas 10–12 and the standard framework for saddle point problems [8], we conclude
the well-posedness of the discretization.

Theorem 1 There exists a unique pair of solution (uh, ph) to problem (14) and

ν‖uh‖1,h + ‖ph‖ � ‖Πo
h f ‖. (20)

4 Error Analysis

In this section, we assume that (u, p) ∈ (Hk+1 ∩ H1
0) × (Hk ∩ L2

0) is the weak solution of
problem (1), and define the interpolation uI = {udivI , utI } as udivI |E = IdivE u, utI |∂E = Πt

∂Eu,
pI = Qh p, where Qh denotes the L2 projection to the space Sh . We shall estimate uh − uI

and ph − pI .

4.1 Error Equation

Let vh ∈ V h and div vh = 0. We compute the error equation

ah(uh − uI , vh) = (Πo
h f , v

div
h ) − ah(uI , vh)

= (Πo
h f − f , vdivh ) − (2ν div ε(u) − ∇ p, vdivh ) − ah(uI , vh)

= (Πo
h f − f , vdivh − Πo

hv
div
h ) + 2νsh(uI , vh)

+ 2ν
[−(div ε(u), vdivh ) − (εw

h (uI ), ε
w
h (vh))

]
,

where we have used the fact div vdivh = 0 to remove the pressure terms.
For any vh = {vdivh , vth} ∈ V h , we derive by integration by parts that

−(div ε(u),Πo
hv

div
h ) =

∑

E∈Th

(ε(u), ε(Πo
hv

div
h ))E − 〈ε(u)n,Πo

hv
div
h )〉∂E

=
∑

E∈Th

(ε(u), ε(Πo
hv

div
h ))E + 〈ε(u)n,J∂E (vh)〉∂E ,
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where, in the second equality, we have used the fact that

∑

E∈Th

〈ε(u)n, vdivh ·nn + vth〉∂E = 0,

since both vdivh ·n and vth are single values on the faces inΩ and vanish on the outer boundary
of Ω . On the other hand, it follows from (5) that

(εw
h (uI ), ε

w
h (vh)) =

∑

E∈Th

(εw
h (uI ), ε(Π

o
hv

div
h ))E + (εw

h (uI ), ε
w
h (vh) − ε(Πo

hv
div
h ))E

=
∑

E∈Th

(εw
h (uI ), ε(Π

o
hv

div
h ))E + 〈εw

h (uI )n,J∂E (vh)〉∂E .

Combining the above two equations and Lemma 1 gives

− (div ε(u), vdivh ) − (εw
h (uI ), ε

w
h (vh))

= (div ε(u),Πo
hv

div
h − vdivh ) +

∑

E∈Th

(ε(u) − εw
h (uI ), ε(Π

o
hv

div
h ))

+
∑

E∈Th

〈(ε(u) − εw
h (uI ))n,J∂E (vh)〉∂E

= (
(I − Πo

h) div ε(u), (I − Πo
h)v

div
h

) +
∑

E∈Th

〈(ε(u) − εw
h (uI ))n,J∂E (vh)〉∂E .

Therefore we obtain the error equation

ah(uh − uI , vh) = ((I − Πo
h)( f + 2ν div ε(u)),Πo

hv
div
h − vdivh ) − 2νsh(uI , vh)

+
∑

E∈Th

2ν〈(ε(u) − εw
h (uI ))n,J∂E (vh)〉∂E

� I1 + I2 + I3. (21)

4.2 Error Estimates

Theorem 2 Let (u, p) ∈ (Hk+1∩H1
0)×(Hk ∩L2

0) and (uh, ph) ∈ V h × Sh be the solutions
of Eqs. (1) and (14), and f ∈ L2. It is true that

‖uI − uh‖1,h + ‖pI − ph‖ � hk‖u‖k+1 + ν−1h‖ f − Πo
h f ‖. (22)

Moreover, we have

‖∇u − ∇h(Π
o
hu

div
h )‖ � hk‖u‖k+1 + ν−1h‖ f − Πo

h f ‖, (23)

‖p − ph‖ � hk(‖u‖k+1 + ‖p‖k) + ν−1h‖ f − Πo
h f ‖, (24)

where ∇h denotes the element wise gradient.

Proof Setting vh = uh − uI and using the coercivity of ah(·, ·) and Eq. (21) to get

ν‖uI − uh‖21,h � ah(uh − uI , vh) = I1 + I2 + I3. (25)
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Webound the three terms in (25) respectively. For the first term, we have from the Schwarz
inequality and inequalities (10) and (16) that

I1 ≤ (‖ f − Πo
h f ‖ + 2ν‖ div ε(u) − Πo

h(div ε(u))‖) ‖Πo
hv

div
h − vdivh ‖

�
(
h‖ f − Πo

h f ‖ + νhk‖u‖k+1

)
⎛

⎝
∑

E∈Th

h−1‖J n
∂E (vh)‖2L2(∂E)

⎞

⎠

1
2

≤
(
h‖ f − Πo

h f ‖ + νhk‖u‖k+1

)
‖vh‖1,h .

For the second term, it follows from the Schwarz inequality and inequality (13) that

I2 = −2ν
∑

E∈Th

h−1
〈
Π∂EJ∂E (uI ),Π∂EJ∂E (vh)

〉

∂E

≤ 2ν
∑

E∈Th

h−1‖Π∂EJ∂E (uI )‖∂E‖Π∂EJ∂E (vh)‖∂E

� νhk‖u‖k+1‖v‖1,h .
For the third term, we derive by the Schwarz inequality, the trace inequality, Lemma (3), and
inequality (18) that

I3 ≤ 2ν‖(ε(u) − εw
h (uI ))n‖∂E‖J∂E (vh)‖∂E

� νhk‖u‖k+1,E‖vh‖1,h,E .

Then, we have proved that

‖uI − uh‖1,h � hk‖u‖k+1 + ν−1h‖ f − Πo
h f ‖.

The velocity error in inequality (23) follows from the triangle inequality, (22), and Lem-
mas 2 and 10, that is,

‖∇u − ∇h(Π
o
hu

div
h )‖ ≤ ‖∇u − ∇h(Π

o
hu

div
I )‖ + ‖uI − uh‖1,h

� hk‖u‖k+1 + ν−1h‖ f − Πo
h f ‖.

We next estimate the error for the pressure. It follows from Lemma 12 that there exists a
wh = {wdiv

h ,wt
h} ∈ Wh such that

divwh = divwdiv
h = pI − ph and ‖wh‖1,h � ‖pI − ph‖.

Then, we derive that

‖pI − ph‖2 = (pI − ph, divwh)

= (pI , divwh) − (ph, divwh)

= (pI , divwh) + ( f ,Πo
hw

div
h ) − ah(uh,wh)

= (pI , divwh) + ( f ,Πo
hw

div
h − wdiv

h )

+ (−2ν div ε(u) + ∇ p,wdiv
h ) − ah(uh,wh)

= (pI − p, divwh) − (
(I − Πo

h) f , (I − Πo
h)w

div
h

)

+ (−2ν div ε(u),wdiv
h ) − ah(uh,wh).
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By the definition of the L2 projection, we have

(pI − p, divwdiv
h ) = 0,

and therefore, we obtain

‖pI − ph‖2 = − (
(I − Πo

h) f , (I − Πo
h)w

div
h

) + (−2ν div ε(u),wdiv
h ) − ah(uh,wh)

= − (
(I − Πo

h) f , (I − Πo
h)w

div
h

) + (−2ν div ε(u),wdiv
h ) − ah(uI ,wh)

+ ah(uI − uh,wh)

� (hk‖u‖k+1 + ν−1h‖ f − Πo
h f ‖)‖wh‖1,h,

which gives

‖pI − ph‖ � hk‖u‖k+1 + ν−1h‖ f − Πo
h f ‖.

Thus,

‖p − ph‖ ≤ ‖p − pI ‖ + ‖pI − ph‖ � hk(‖u‖k+1 + ‖p‖k) + ν−1h‖ f − Πo
h f ‖.

The proof is completed. 
�
Remark 4 From the error estimates, the term ‖h( f − Πo

h f )‖ is usually a higher order term.
If we assume that f is piecewise Hk with respect to Th , we have

‖uI − uh‖1,h + ‖pI − ph‖ � hk
(‖u‖k+1 + ν−1h‖ f ‖h,k

)
. (26)

Here, ‖ f ‖h,k denotes the piecewise Hk norm. �

4.3 L2 Error Estimates for the Velocity

To derive the L2 error estimates for the velocity, we first define an auxiliary problem
⎧
⎨

⎩

− div(2νε(ψ)) + ∇λ = uh − uI in Ω,

divψ = 0 in Ω,

ψ = 0 on ∂Ω,

(27)

and assume the solution of the above problem satisfies the H2 regularity:

ν‖ψ‖2 + ‖λ‖1 � ‖uI − uh‖. (28)

We have the following L2 error estimate.

Theorem 3 Provided problem (27) has H2 regularity (28), it holds that

‖u − uh‖ � hk+1‖u‖k+1 + ν−1h2‖ f − Πo
h f ‖.

Proof Setting vh = uh − uI and noting div(uh − uI ) = 0, we have

‖uh − uI ‖2 = (− div(2νε(ψ)) + ∇λ, vdivh )

= (− div(2νε(ψ)), vdivh ) − ah(ψ I , vh) + ah(ψ I , vh),
(29)

where ψ I = {ψdiv
I ,ψ t

I } is the interpolation of ψ satisfying ψdiv
I |E = IdivE ψ , ψ t

I |∂E =
Πt

∂Eψ . The first two terms can be estimated as in Theorem 2, that is

(− div(2νε(ψ)), vdivh ) − ah(ψ I , vh) � hν‖ψ‖2‖vh‖1,h .
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From (21) and Lemma 1, we have

ah(ψ I , vh) = ah(uh − uI ,ψ I )

= ( f + 2ν div ε(u),Πo
hψ

div
I − ψdiv

I ) − 2νsh(uI ,ψ I )

+
∑

E∈Th

2ν〈(ε(u) − εw
h (uI ))n,J∂E (ψ I )〉∂E .

Similarly as the proof of Theorem 2 and using inequalities (10)–(11), we have

( f + 2ν div ε(u),Πo
hψ

div
I − ψdiv

I ) � (h2‖ f − Πo
h f ‖ + hk+1ν‖u‖k+1)‖ψ‖2,

and

sh(uI ,ψ I ) =
∑

E∈Th

h−1
〈
Π∂EJ∂E (uI ),Π∂EJ∂E (ψ I )

〉

∂E
� hk+1‖u‖k+1‖ψ‖2.

By noting the fact that ψ t
I is a single value on each interior face and vanishes on the outer

boundary, we have
∑

E∈Th

〈ε(u)n,J∂E (ψ I )〉∂E =
∑

E∈Th

〈ε(u)n,ψ − Πo
Eψdiv

I 〉∂E .

On the other hand, from the definition of the L2 projection Πt
∂E , we obtain

∑

E∈Th

〈εw
h (uI )n,J∂E (ψ I )〉∂E =

∑

E∈Th

〈εw
h (uI )n,ψ − Πo

Eψdiv
I 〉∂E .

Thus,
∑

E∈Th

〈(ε(u) − εw
h (uI ))n,J∂E (ψ I )〉∂E =

∑

E∈Th

〈(ε(u) − εw
h (uI ))n,ψ − Πo

Eψdiv
I 〉∂E

≤
∑

E∈Th

‖ε(u) − εw
h (uI )‖∂E‖ψ − Πo

Eψdiv
I ‖∂E

� hk+1‖u‖k+1‖ψ‖2,
where we have used Lemmas 3 and 2 in the last inequality.

Using the H2 regularity assumption (28), we have

‖uh − uI ‖2 � hν‖ψ‖2‖uh − uI ‖1,h + ν‖ψ‖2(hk+1‖u‖k+1 + ν−1h2‖ f − Πo
h f ‖)

� h‖uh − uI ‖(‖uh − uI ‖1,h + hk‖u‖k+1 + ν−1h‖ f − Πo
h f ‖),

which, together with Theorem 2, the triangle inequality, and Lemma 2, leads to the desired
result. 
�

5 Numerical Experiments

In this section, we shall present some numerical tests to verify our theoretical conclusions.
Denote eu := uI − uh , ep := Qh p − ph , and ẽp = p − ph . We will test the errors ‖eu‖0,h ,
‖eu‖1,h , ‖ep‖, and ‖ẽp‖ for the lowest order method (k = 1) on different meshes, where the
norm ‖ · ‖0,h is defined as

‖eu‖20,h :=
∑

E∈Th

‖Πo
E e

div
u ‖2E + ‖h 1

2 Π∂EJ∂E (eu)‖2∂E .
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Fig. 2 Illustrations of meshes T 1, T 2, T 3, T 4, T 5, and T 6

We only test the velocity error between the interpolation uI and solution uh with respect
to the mesh dependent norms ‖ · ‖0,h and ‖ · ‖1,h , since the virtual element function is not
computable and we cannot measure the error u − uh directly.

On a two dimensional domain Ω = [0, 1]2, the velocity and pressure are set to be

u = [sin(x) sin(y), cos(x) cos(y)]ᵀ
p = 2α (cos(x) sin(y) − sin(1)(1 − cos(1))) ,

and the corresponding right hand side f = 2νu+2α[− sin(x) sin(y), cos(x) cos(y)]ᵀ. Here
α is a constant to be set latter.

We first fixed the parameters ν = 1 and α = 1, and tests on six types meshes, that is,
uniform triangulation T 1, uniform rectangle mesh T 2, quadrilateral mesh T 3 by perturbing
the interior nodes of T 2 with a parameter 0.25 (see [15] for details), polygonal mesh T 4

generated by the dual of the triangle mesh T 1, distorted polygonal mesh T 5, centroidal
VoronoimeshT 6 using twoLloyd’s iterations [42], respectively (see Fig. 2 for an illustration).

In Tables 1, 2 and 3, we list the all the resulting errors and the corresponding ratios of
the errors on two successive meshes. As expected by Theorems 2–3, it is found that the H1

errors for the velocity and L2 error for the pressure are of the order O(h) for all types of the
meshes, and the L2 error for the velocity is of the order O(h2) in most cases and a little worse
on the perturbed meshes T 3 and distorted polygonal meshes T 5 due to the low mesh quality.
On some meshes, we also observe superconvergent phenomenon for the pressure errors (see
columns 6–7 in the Tables 1, 2 and 3).

We also do the test on non-convex grids denoted by T 7, see Fig. 3. The errors are listed
in Table 4. It is observed the errors ‖eu‖0,h , ‖eu‖1,h , and ‖ẽp‖ are optimal. We also have
superconvergence for the error ‖ep‖.

To clearly see the consequences of pressure-robustness, we next do the tests for different
α = 10i , i = −4, · · · , 4 on fixed meshes T 1, T 3, T 4, and T 5 respectively. Although the
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Table 1 The errors for a series of the uniform triangle meshes T 1 (upper) and uniform rectangle meshes T 2

(below)

#Dof ‖eu‖0,h r ‖eu‖1,h r ‖ep‖ r ‖ẽ p‖ r

232 1.84e−03 – 3.32e−02 – 4.76418e−02 – 9.42e−02 –

880 4.83e−04 3.81 1.68e−02 1.98 2.46427e−02 1.93 4.76e−02 1.98

3424 1.24e−04 3.89 8.44e−03 1.99 1.23832e−02 1.99 2.38e−02 2.00

13504 3.14e−05 3.96 4.23e−03 1.99 6.19090e−03 2.00 1.19e−02 2.00

53632 7.87e−06 3.99 2.12e−03 2.00 3.09409e−03 2.00 5.96e−03 2.00

560 3.34e−04 – 1.55e−02 – 5.18106e−03 – 5.63e−02 –

2144 8.62e−05 3.87 7.98e−03 1.95 1.70559e−03 3.04 2.81e−02 2.00

8384 2.19e−05 3.94 4.03e−03 1.98 5.17998e−04 3.29 1.40e−02 2.00

33152 5.49e−06 3.98 2.02e−03 1.99 1.49812e−04 3.46 7.01e−03 2.00

131840 1.38e−06 3.99 1.01e−03 2.00 4.20080e−05 3.57 3.50e−03 2.00

Table 2 The errors for a series of quadrilateral meshes T 3 (upper) and polygonal meshes T 4 (below)

#Dof ‖eu‖0,h r ‖eu‖1,h r ‖ep‖ r ‖ẽ p‖ r

560 1.24e−03 – 3.42e−02 – 8.95474e−03 – 5.86e−02 –

2144 3.26e−04 3.81 1.84e−02 1.86 4.73324e−03 1.89 2.95e−02 1.99

8384 8.49e−05 3.83 9.49e−03 1.94 2.47033e−03 1.92 1.49e−02 1.98

33152 2.07e−05 4.10 4.64e−03 2.05 1.19207e−03 2.07 7.42e−03 2.00

131840 5.39e−06 3.84 2.37e−03 1.96 5.90401e−04 2.02 3.71e−03 2.00

978 3.26e−04 – 4.29e−02 – 5.97877e−03 – 5.02e−02 –

3362 9.29e−05 3.51 2.27e−02 1.89 2.25144e−03 2.66 2.57e−02 1.95

12354 2.54e−05 3.66 1.17e−02 1.95 8.25196e−04 2.73 1.30e−02 1.98

47234 6.66e−06 3.81 5.90e−03 1.98 2.96710e−04 2.78 6.54e−03 1.99

184578 1.71e−06 3.90 2.97e−03 1.99 1.05618e−04 2.81 3.28e−03 1.99

Table 3 The errors for a series of the distorted polygonal meshes T 5 (upper) and CVT meshes T 6 (below)

#Dof ‖eu‖0,h r ‖eu‖1,h r ‖ep‖ r ‖ẽ p‖ r

314 1.42e−03 – 7.60e−02 – 1.89704e−02 – 9.52e−02 –

978 6.92e−04 2.05 5.18e−02 1.47 9.88020e−03 1.92 5.33e−02 1.78

3362 2.39e−04 2.90 3.17e−02 1.64 4.19512e−03 2.36 2.87e−02 1.86

12354 6.95e−05 3.43 1.72e−02 1.84 1.55384e−03 2.70 1.48e−02 1.94

47234 1.87e−05 3.71 8.86e−03 1.94 5.50772e−04 2.82 7.47e−03 1.98

217 1.77e−03 – 5.07e−02 – 2.28554e−02 – 1.16e−01 –

841 8.66e−04 2.05 3.88e−02 1.31 1.14238e−02 2.00 5.47e−02 2.12

3391 1.86e−04 4.65 1.95e−02 1.99 4.93532e−03 2.31 2.76e−02 1.98

13660 4.23e−05 4.40 9.64e−03 2.02 2.35466e−03 2.10 1.36e−02 2.03

54553 1.08e−05 3.92 4.87e−03 1.98 1.18903e−03 1.98 6.81e−03 1.99
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Fig. 3 An illustration of a
non-convex mesh T 7

Table 4 The errors for a series of the distorted polygonal meshes T 7

#Dof ‖eu‖0,h r ‖eu‖1,h r ‖ep‖ r ‖ẽ p‖ r

272 2.42e−03 – 9.43e−02 – 1.42047e−02 – 1.16e−01 –

992 6.29e−04 3.84 5.25e−02 1.79 5.95947e−03 2.38 5.78e−02 2.01

3776 1.56e−04 4.04 2.75e−02 1.91 2.30576e−03 2.58 2.87e−02 2.01

14720 3.86e−05 4.03 1.40e−02 1.96 8.55894e−04 2.69 1.43e−02 2.01

58112 9.62e−06 4.01 7.07e−03 1.98 3.10039e−04 2.76 7.15e−03 2.00

Table 5 The L2 velocity errors ‖eu‖0,h with respect to changing pressures

#Dof i = −4 i = −2 i = −1 i = 0 i = 1 i = 2 i = 4

T 1 53632 7.87e−06 7.87e−06 7.87e−06 7.87e−06 7.87e−06 7.88e−06 7.99e−06

T 3 33152 2.13e−05 2.15e−05 2.14e−05 2.09e−05 2.13e−05 2.17e−05 2.30e−05

T 4 47234 6.66e−06 6.66e−06 6.66e−06 6.66e−06 6.66e−06 6.66e−06 7.02e−06

T 5 47234 1.87e−05 1.87e−05 1.87e−05 1.87e−05 1.87e−05 1.87e−05 1.92e−05

Table 6 The H1 velocity error ‖eu‖1,h with respect to changing pressures

#Dof i = −4 i = −2 i = −1 i = 0 i = 1 i = 2 i = 4

T 1 53632 2.12e−03 2.12e−03 2.12e−03 2.12e−03 2.12e−03 2.12e−03 2.21e−03

T 3 33152 4.72e−03 4.70e−03 4.72e−03 4.68e−03 4.68e−03 4.74e−03 4.89e−03

T 4 47234 5.90e−03 5.90e−03 5.90e−03 5.90e−03 5.90e−03 5.90e−03 6.13e−03

T 5 47234 8.86e−03 8.86e−03 8.86e−03 8.86e−03 8.86e−03 8.86e−03 9.16e−03

pressure p varies, the velocity u is unchanged. We list the velocity errors in Tables 5 and
6. On each row, it is observed that both the H1 and L2 errors for the velocity are robust to
different pressure scales.
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