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a b s t r a c t

In this paper, we construct an auxiliary space multigrid preconditioner for the weak
Galerkin method for second-order diffusion equations, discretized on simplicial 2D or 3D
meshes. The idea of the auxiliary spacemultigrid preconditioner is to use an auxiliary space
as a ‘‘coarse’’ space in the multigrid algorithm, where the discrete problem in the auxiliary
space can be easily solved by an existing solver. In our construction, we conveniently use
the H1 conforming piecewise linear finite element space as an auxiliary space. The main
technical difficulty is to build the connection between the weak Galerkin discrete space
and the H1 conforming piecewise linear finite element space. We successfully constructed
such an auxiliary space multigrid preconditioner for the weak Galerkin method, as well as
the reduced system of the weak Galerkinmethod involving only the degrees of freedom on
edges/faces. The preconditioned systems are proved to have condition numbers indepen-
dent of the mesh size. Numerical experiments further support the theoretical results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the second-order elliptic equation

−∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω
(1.1)

where Ω is a polygonal or polyhedral domain in Rd (d = 2, 3). Assume that A is a symmetric, uniformly positive definite,
and uniformly bounded-above diffusion matrix. Namely, there exist positive constants α and β such that

αξ T ξ ≤ ξ TA(x)ξ ≤ βξ T ξ for all ξ ∈ Rd and x ∈ Ω. (1.2)

The goal of this paper is to construct and analyze an auxiliary space multigrid preconditioner for the weak Galerkin finite
element discretization of Problem (1.1).

The weak Galerkin method was recently introduced in [1] for second order elliptic equations. It is an extension of the
standard Galerkin finite element method where classical derivatives were substituted by weakly defined derivatives on
functions with discontinuity. Optimal order of a priori error estimates has been observed and established for various weak
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Fig. 1.1. Illustration of auxiliary space multigrid. We use black rectangles and black dots to denote different types of discretization spaces. The dashed
circles show how to derive an auxiliary space ‘‘multi’’-grid method by using a classical multigrid as a coarse solver in the two-grid auxiliary spacemultigrid
framework.

Galerkin discretization schemes for second order elliptic equations [1–3]. An a posteriori error estimator was given in [4].
Numerical implementations of weak Galerkin were discussed in [2,5] for some model problems.

The weak Galerkin method has already demonstrated many nice properties in various cases [1–3,6]. Thus we are moti-
vated to study fast solvers and preconditioning techniques for the weak Galerkin method.

The main results of this paper are:

• We develop a fast auxiliary space preconditioner for weak Galerkin methods using Raviart–Thomas element and
Brezzi–Douglas–Marini element on triangular grids.

• We consider both the original system and the reduced system. The original weak Galerkin discretization of (1.1) involves
degrees of freedom both on the interior of eachmesh element and onmesh edges/faces. The reduced system, which only
involves degrees of freedom on edges/faces, is to our knowledge first rigorously constructed and analyzed here.

Recently, Li and Xie announced an auxiliary spacemultigrid preconditioningmethod for theweakGalerkin finite element
method, and the result was posted on ArXiv [7]. This result became known to us after the bulk portion of the present paper
was developed. Following a thorough comparison, we conclude that our results are more general, and the two approaches
are different in analysis. Although themultigrid algorithm is essentially the same, the analysis in [7] only works for one type
of weak Galerkin elements which uses the Brezzi–Douglas–Marini element for the flux, while our work uses a more general
theoretical framework and applies to a larger selection ofweakGalerkin elements. Non-trivial and necessary technique tools
are developed in our proof for the general case. In addition, our result offers a new feature by covering the weak Galerkin
method in the reduced system.

We shall briefly introduce the auxiliary space preconditioner constructed in [8]. A classical geometric multigrid method
constructs discrete spaces on different mesh levels using the same type of discretization. For example, in the classical
multigrid method for H1 conforming piecewise linear (P1) finite element approximation, one uses a set of nested meshes
with characteristicmesh sizes h, 2h, 4h, . . . , from the finestmesh to the coarsest. An illustration of V-cyclemultigrid is given
in Fig. 1.1. The auxiliary spacemultigridmethod can be essentially understood as a two-level method involving a ‘‘fine’’ level
and a ‘‘coarse’’ level, while the ‘‘fine’’ space and ‘‘coarse’’ space are not necessarily using the same type of discretization or the
same type ofmeshes. This gives great freedom in choosing the ‘‘coarse’’ space,which is also called an auxiliary space. Herewe
use theweakGalerkin discretization for the ‘‘fine’’ level, and theH1 conforming piecewise linear finite element discretization
for the ‘‘coarse’’ level. Both the ‘‘fine’’ level and the ‘‘coarse’’ level are discretized on the same mesh, as shown in Fig. 1.1. In
the figure, we conveniently use black rectangles and black dots to denote different type of discretization spaces on different
levels. Because the fast solvers for the H1 conforming piecewise linear finite element discretization have been thoroughly
studied, one can use any existing solvers/preconditioners as a ‘‘coarse’’ solver. For example, onemay use a classicalmultigrid
method as a ‘‘coarse’’ solver and consequently achieves a true ‘‘multi’’-grid effect (see Fig. 1.1).

The weak Galerkin method is often compared with the hybridizable discontinuous Galerkin (HDG) method [9]. Indeed,
these twomethods share some common tools, for example, the discrete/weak gradient [1,9,10] etc., and are identicalwhenA
is piecewise constant. However,we emphasize that they are constructed by fundamentally different concepts. As a result, the
weak Galerkinmethod differs fromHDG for themodel problem (1.1) when the coefficientmatrixA is not equal to a constant
times the identity matrix. More differences between the weak Galerkin method and HDG have been stated in [2]. We shall
mention that recently an auxiliary space multigrid preconditioner has been developed for HDG [11]. Given the similarity of
HDG andWG, it is not surprising that themultigrid preconditioner to be developed in this paper share some similaritieswith
the preconditioner proposed in [11]. For example, both use the H1 conforming piecewise linear finite element space as the
auxiliary space, and both use the same type of projection operator as the intergrid transfer operator. However, we point out
that they also have significant differences. First, the multigrid preconditioner in [11] is designed for a linear system involv-
ing only the Lagrange multiplier on edges/faces, while we develop multigrid preconditioners for both the original system
and a reduced system. Second, although both multigrid preconditioners are proved to be optimal, our analysis requires less
regularity than the analysis in [11]. To be more specific, the analysis in [11] requires that the solution to System (1.1) satisfy
u ∈ H1+s(Ω) for s > 1/2, while we only require s > 0. Finally, many techniques in our proof are different from those in [11].
For example, we explicitly construct an averaging operator with nice properties, which has greatly simplified the proof.
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The rest of the paper is organized as follows. In Section 2, we give a brief introduction of the weak Galerkin method, and
in Section 3, we construct the auxiliary space multigrid preconditioner for the weak Galerkin discretization, and prove that
the condition number of the preconditioned system does not depend on the mesh size. After that, we consider a reduced
system of the weak Galerkin discretization in Section 4 and construct an auxiliary space multigrid solver/preconditioner for
the reduced system, againwith an optimal condition number estimate. Finally in Section 5,we present supporting numerical
results.

2. A weak Galerkin finite element scheme

In this section, we give a brief introduction to the weak Galerkin method. Related notation, definitions, and several
important inequalities will be stated.

Let D ⊆ Ω be a polygon or polyhedron, we use the standard definition of Sobolev spaces Hs(D) and Hs
0(D) with s ≥ 0

(e.g., see [12,13] for details). The associated inner-product, norm, and semi-norms in Hs(D) are denoted by (·, ·)s,D, ∥ · ∥s,D,
and | · |r,D, 0 ≤ r ≤ s, respectively. When s = 0,H0(D) coincides with the space of square-integrable functions L2(D). In this
case, the subscript s is suppressed from the notation of norm, semi-norm, and inner products. Furthermore, the subscript D
is also suppressed when D = Ω . For s < 0, the space Hs(D) is defined to be the dual of H |s|

0 (D).
The above definition/notation can easily be extended to vector-valued and matrix-valued functions. The norm, semi-

norms, and inner-product for such functions shall follow the same naming convention. In addition, all these definitions can
be transferred from a polygonal/polyhedral domain D to an edge/face e, a domain with lower dimension. Similar notation
system will be employed. For example, ∥ · ∥s,e and ∥ · ∥e would denote the norm in Hs(e) and L2(e), etc. We also define the
H(div) space as follows

H(div, Ω) = {q : q ∈ [L2(Ω)]d, ∇ · q ∈ L2(Ω)}.

Using the notation defined above, the variational form of Eq. (1.1) can be written as: Given f ∈ L2(Ω), find u ∈ H1
0 (Ω)

such that

(A∇u, ∇v) = (f , v) for all v ∈ H1
0 (Ω). (2.1)

It is well known that Eq. (2.1) admits a unique solution. In addition, we assume that the solution to (2.1) has H1+s regu-
larity [14,15], where 0 < s ≤ 1. In other words, the solution u is in H1+s(Ω) and there exists a constant C independent of u
such that

∥u∥1+s ≤ C∥f ∥0. (2.2)

Next, we present the weak Galerkin method for solving (2.1). Let Th be a shape-regular, quasi-uniform triangu-
lar/tetrahedral mesh on the domain Ω , with characteristic mesh size h. For each triangle/tetrahedron K ∈ Th, denote by
K0 and ∂K the interior and the boundary of K , respectively. Geometrically, K0 is identical to K . Therefore, later in the paper,
we often identify these two if it causes no ambiguity. The boundary ∂K consists of three edges in two-dimension, or four
triangles in three-dimension. Denote by Eh the collection of all edges/faces in Th. For simplicity, throughout the paper, we
use ‘‘.’’ to denote ‘‘less than or equal to up to a general constant independent of the mesh size or functions appearing in the
inequality’’.

Let j be a non-negative integer. On each K ∈ Th, denote by Pj(K0) the set of polynomials with degree less than or equal to
j. Likewise, on each e ∈ Eh, Pj(e) is the set of polynomials of degree no more than j. Following [1], we define a weak discrete
space on mesh Th by

Vh = {v : v|K0 ∈ Pj(K0) for K ∈ Th; v|e ∈ Pl(e) for e ∈ Eh, and v|e = 0 for e ∈ Eh ∩ ∂Ω}, where l = j or j + 1.

Observe that the definition of Vh does not require any continuity of v ∈ Vh across interior edges/faces. A function in Vh is
characterized by its value on the interior of each mesh element plus its value on edges/faces. Therefore, it is convenient to
represent functions in Vh with two components, v = {v0, vb}, where v0 denotes the value of v on all K0 and vb denotes the
value of v on Eh. The polynomial space Pl(e) consists of two choices: l = j or j + 1 and the corresponding weak function
space will sometimes be abbreviated asWj,j orWj,j+1, respectively.

The weak Galerkin method seeks an approximation uh ∈ Vh to the solution of problem (2.1). To this end, we first
introduce a discrete gradient operator, which is defined element-wisely on each K ∈ Th. For the choices of Vh given above,
i.e., using Wj,j or Wj,j+1, suitable definitions of the weak gradient involve the Raviart–Thomas (RT) element [16] and the
Brezzi–Douglas–Marini (BDM) element [17], respectively. Let K be either a triangle or a tetrahedron and denote byPk(K) the
set of homogeneous polynomials of order k in the variable x = (x1, . . . , xd)T . Define the BDMelement byGj(K) =


Pj+1(K)

d
and the RT element by Gj(K) =


Pj(K)

d
+Pj(K)x for j ≥ 0. Then, define a discrete space

Σh = {q ∈ (L2(Ω))d : q|K ∈ Gj(K) for K ∈ Th}.

Here in the definition of Vh and Σh, the RT element is paired with Wj,j while the BDM element is paired with Wj,j+1. Note
that Σh is not necessarily a subspace of H(div, Ω), since it does not require any continuity in the normal direction across
mesh edges/faces.
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Definition 2.1 (Discrete Weak Gradient). The discrete weak gradient of vh denoted by ∇wvh is defined as the unique
polynomial (∇wvh)|K ∈ Gj(K) satisfying the following equation

(∇wvh, q)K = −(v0, ∇ · q)K + ⟨vb, q · n⟩∂K for all q ∈ Gj(K), (2.3)

where n is the unit outward normal on ∂K .

Clearly, such a discrete weak gradient is always well-defined. Furthermore, if v ∈ H1(K), i.e. vb = v0|∂K , and∇v ∈ Gj(K),
then one has ∇wv = ∇v. In this paper we only consider the Wj,j − RT and Wj,j+1 − BDM pairs on simplicial elements in
the discretization, for which the weak gradient operator has been introduced in [10] to design a domain decomposition
preconditioner of the saddle point system arising from the mixed method discretization of elliptic equations. But there are
many other different choices of discrete spaces in the weak Galerkin method, defined on either simplicial meshes or other
types of meshes including general polytopal meshes [2]. Extension of the multigrid preconditioner to other weak Galerkin
discretizations will be considered in the future work.

We define an L2 projection from H1
0 (Ω) onto Vh by setting Qhv ≡ {Q0v, Qbv}, where Q0v|K0 is the local L2 projection of v

to Pj(K0), for K ∈ Th, and Qbv|e is the local L2 projection to Pl(e), for e ∈ Eh. We also introduce Qh the L2 projection onto Σh.
It is not hard to see the following operator identity [1]:

Qh∇u = ∇wQhu, for all u ∈ H1
0 (Ω) (2.4)

For the Wj,j − RT and Wj,j+1 − BDM pairs, it follows directly from (2.4) that the discrete weak gradient is a good
approximation to the classical gradient, as summarized in the following lemma [1].

Lemma 2.2. For any vh = {v0, vb} ∈ Vh and K ∈ Th, ∇wvh|K = 0 if and only if v0 = vb = constant on K . Furthermore, for
any v ∈ Hm+1(Ω), where 0 ≤ m ≤ j + 1, we have

∥∇w(Qhv) − ∇v∥ . hm
∥v∥m+1.

In particular, for v ∈ H1(Ω), the L2-projection Qh is energy stable, i.e,

∥∇w(Qhv)∥ . ∥∇v∥ for v ∈ H1(Ω). (2.5)

Now we are able to present the weak Galerkin finite element formulation for (2.1): Find uh = {u0, ub} ∈ Vh such that

ah(uh, vh) = (f , v0) for all vh = {v0, vb} ∈ Vh, (2.6)

where the bilinear form ah(·, ·) on Vh × Vh is defined by

ah(uh, vh) := (A∇wuh, ∇wvh). (2.7)

Remark 2.1. When A = cI where c is piecewise constant, it is known [1,6,18] that, by setting the weak gradient as the flux
and ub as a Lagrange multiplier, the weak Galerkin formulation (2.6) is equivalent to the hybridized mixed finite element
method using either the RT or the BDMelement in the discretization [17,19]. But in general, these twomethods are different.

The well-posedness and error estimates of the weak Galerkin formulation (2.6) have been discussed in [1,6]. To state
these results, we first define a few discrete inner-products and norms. For any vh = {v0, vb} and φh = {φ0, φb} in Vh, define
a discrete L2 inner-product by

((vh, φh)) ,

K∈Th

[(v0, φ0)K + h(v0 − vb, φ0 − φb)∂K ] .

It is not hard to see that ((vh, vh)) = 0 implies vh ≡ 0. Hence, the inner-product is well-defined. Notice that the inner-
product ((·, ·)) is also well-defined for any v ∈ H1(Ω), for which vb|e = v|e is the trace of v on the edge e. In this case, the
inner-product ((·, ·)) is identical to the standard L2 inner-product.

Define on each K ∈ Th

∥vh∥
2
0,h,K = ∥v0∥

2
K + h∥v0 − vb∥

2
∂K ,

∥vh∥
2
1,h,K = ∥v0∥

2
1,K + h−1

∥v0 − vb∥
2
∂K ,

|vh|
2
1,h,K = |v0|

2
1,K + h−1

∥v0 − vb∥
2
∂K .

Using the above quantities, we define the following discrete norms and semi-norms on the discrete space Vh

∥vh∥0,h :=


K∈Th

∥vh∥
2
0,h,K

1/2

,



L. Chen et al. / Computers and Mathematics with Applications ( ) – 5

∥vh∥1,h :=


K∈Th

∥vh∥
2
1,h,K

1/2

,

|vh|1,h :=


K∈Th

|vh|
2
1,h,K

1/2

.

It is clear that ∥vh∥
2
0,h = ((vh, vh)). Moreover, we point out that the above norms and semi-norms are also well-defined for

functions in H1(Ω). In this case they are identical to the usual L2-norm, H1-norm, and H1-seminorm, respectively. Similar
norms are also used in the analysis of HDG method [9].

With the aid of the above defined norms, we state an additional estimate of the L2 projection Qh, whichwas proved in [6].

Lemma 2.3. For any v ∈ Hm(Ω) with 1
2 < m ≤ j + 1, we have

∥v − Qhv∥0,h . hm
∥v∥m. (2.8)

The following three Lemmas have also been proved in [6]. First, we have the equivalence between ∥∇w(·)∥ and the | · |1,h
semi-norm.

Lemma 2.4. For any vh = {v0, vb} ∈ Vh, we have

|vh|1,h . ∥∇wvh∥ . |vh|1,h. (2.9)

Moreover, the discrete semi-norms satisfy the usual inverse inequality, as stated in the following lemma.

Lemma 2.5. For any vh = {v0, vb} ∈ Vh, we have

|vh|1,h . h−1
∥vh∥0,h. (2.10)

Consequently, by combining (2.9) and (2.10), we have

∥∇wvh∥ . h−1
∥vh∥0,h. (2.11)

Next, the discrete semi-norm ∥∇w(·)∥, which is equivalent to | · |1,h as shown in Lemma 2.4, satisfies a Poincaré-type
inequality.

Lemma 2.6. The Poincaré-type inequality holds true for functions in Vh. In other words, we have the following estimate:

∥vh∥0,h . ∥∇wvh∥ for all vh ∈ Vh. (2.12)

Following the above lemmas and (1.2), it is clear that Eq. (2.6) admits a unique solution. This, togetherwith error estimates
for the weak Galerkin method, has been proved in [1].

Theorem 2.7. Assume Problem (2.1) has H1+s regularity, where 0 < s ≤ 1. The weak Galerkin problem (2.6) admits a unique
solution. Let u ∈ H1

0 (Ω) ∩ Hm+1(Ω), 0 ≤ m ≤ j + 1 be the solution to (2.1) and uh = {uh,0, uh,b} be the solution to (2.6), then
we have

∥∇w(Qhu − uh)∥ . hm
∥u∥m+1, (2.13)

∥Q0u − uh,0∥ . hm+s
∥u∥m+1 + h1+s

∥f − Q0f ∥. (2.14)

Remark 2.2. Theorem 2.7 is only stated for homogeneous Dirichlet boundary value problems. Similar results hold for
problems with non-homogeneous Dirichlet boundary or Neumann boundary conditions [1,6].

At the end of this section, we state a scaled trace theorem. Let K be an element with e as an edge. It is well known that
for any function g ∈ H1(K) one has

∥g∥2
e . h−1

∥g∥2
K + h∥∇g∥2

K . (2.15)

3. An auxiliary space multigrid preconditioner

In this section, we construct an auxiliary space multigrid method for the weak Galerkin formulation (2.6). The auxiliary
space multigrid method was introduced by J. Xu in [8]. Its main idea is to use an auxiliary space as a ‘‘coarse’’ space in the
multigrid algorithm, where the discrete problem in the auxiliary space can be easily solved by an existing solver. In our
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construction, we will use the H1 conforming piecewise linear finite element space as an auxiliary space. The main technical
difficulty is to build the connection between the weak Galerkin discrete space Vh and the H1 conforming piecewise linear
finite element space.

Define the auxiliary space Vh ⊂ H1
0 (Ω) to be the H1 conforming piecewise linear finite element space on mesh Th. The

spaces Vh andVh are equippedwith inner-products ((·, ·)) and (·, ·), and induced norms ∥·∥0,h and ∥·∥, respectively. Define
linear operators A : Vh → Vh and A : Vh → Vh by

((Au, v)) = (A∇wu, ∇wv) for all v ∈ Vh,

(Au, v) = (A∇u, ∇v) for all v ∈ Vh.
(3.1)

By the Poincaré inequality and Lemma 2.6, it is clear that operators A andA are symmetric and positive definite with respect
to ((·, ·)) and (·, ·), respectively. Hence we can define the A-norm and A-norm on Vh and Vh, respectively, by

∥v∥A = ((Av, v))1/2 = (A∇wv, ∇wv)1/2 for allv ∈ Vh,

∥w∥A = (Aw, w)1/2 = (A∇w, ∇w)1/2 for allw ∈ Vh.

It is well-known that the spectral radius and condition number of operatorA isO(h−2) [20].We have similar estimate for
the operator A. Note that the authors of [7] also give a proof of the order of the condition number. But our proof is different
from theirs and seems to be easier.

Lemma 3.1. The spectral radius of operator A, denoted by ρA = λmax(A), and the condition number of operator A, denoted by
κ(A), are both of order h−2.

Proof. By the definition of A and Lemma 2.5, for all v ∈ Vh,

((Av, v)) . ∥∇wv∥
2 . h−2

∥v∥
2
0,h = h−2((v, v)).

Because A is symmetric and positive definite with respect to ((·, ·)), the above inequality implies that λmax(A) . h−2. The
discrete Poincaré inequality (2.12) implies λmin(A) & 1. Therefore κ(A) = λmax(A)/λmin(A) . h−2.

To derive a lower bound for λmax(A), we first consider functions in Vh with the form v = {0, vb}. In other words, v0 ≡ 0.
Then, by the definition of discrete norms, Lemma 2.4 and the fact that A is uniformly positive definite, for such function v
we have

((Av, v)) & ∥∇wv∥
2 & |v|

2
1,h =


K∈Th

h−1
∥vb∥

2
∂K

= h−2

K∈Th

h∥vb∥
2
∂K = h−2

∥v∥
2
0,h = h−2((v, v)).

Therefore, we must have λmax(A) & h−2. This implies the spectral radius ρA = λmax(A) = O(h−2).
To get λmin(A) . 1, we chose the eigenfunction w of the smallest eigenvalue, λ1, of −∆ with homogeneous Dirichlet

boundary condition which satisfies 1 = ∥∇w∥ =
√

λ1∥w∥. It is well known that λ1 = O(1). We then project w to Vh
using the L2-projection, i.e., wh = Qhw. We estimate the norm of wh as follows: when h is sufficiently small, by the triangle
inequality and Lemma 2.3 one has

∥wh∥ ≥ ∥w∥ − ∥w − wh∥ & ∥w∥ − Ch∥∇w∥ = ∥w∥ − Ch & ∥w∥,

where C is a positive, general constant. By the above inequality and the stability of Qh in the energy norm, c.f. (2.5), we have

∥wh∥A . ∥∇w∥ =


λ1∥w∥ . ∥wh∥.

This completes the proof of the lemma. �

Remark 3.1. By the triangle inequality, the trace inequality (2.15) and the inverse inequality, the norm ∥vh∥0,h is equivalent

to


K∈Th
(∥v0∥

2
K + h∥vb∥

2
∂K )
1/2

in Vh. In practice, Eq. (2.6) can be written as a linear algebraic system by using the
canonical bases of Vh, i.e. Lagrange bases of Pj(K) and Pl(e) on each K and e. Using the standard scaling argument and the
equivalent norm of ∥ · ∥0,h, it is not hard to see that for any vh ∈ Vh, one has ∥vh∥

2
0,h ≈ hd

∥vh∥
2
l2
, where vh is the vector

representation of vh under the canonical bases and ∥ · ∥l2 is the Euclidean norm of vectors. Then, the stiffness matrix in the
linear algebraic system resulting from (2.6), i.e., the matrix representation of ((A·, ·)), also has condition number of order
O(h−2). Thus it is not easy to solve Eq. (2.6) without efficient preconditioning.

Next, we introduce the auxiliary spacemultigridmethod for solving Eq. (2.6). The idea is to construct a multigridmethod
using Vh as the ‘‘fine’’ space and Vh as the ‘‘coarse’’ space. Since A is the discrete Laplacian on the conforming piecewise
linear finite element space, the ‘‘coarse’’ problem in Vh can be solved by many efficient, off-the-shelf solvers such as the
standard multigrid solver or a domain decomposition solver. Denote B : Vh → Vh to be such a ‘‘coarse’’ solver. It can be
either an exact solver or an approximate solver that satisfies certain conditions, which will be given later. Next, on the fine
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space, we need a ‘‘smoother’’ R : Vh → Vh, which is symmetric and positive definite. For example, R can be a Jacobi or
symmetric Gauss–Seidel smoother. Finally, to connect the ‘‘coarse’’ space with the ‘‘fine’’ space, we need a ‘‘prolongation’’
operator Π : Vh → Vh. A ‘‘restriction’’ operator Π t

: Vh → Vh is consequently defined by

(Π tv, w) = ((v, Πw)) for v ∈ Vh and w ∈ Vh.

Then, the auxiliary space multigrid preconditioner B : Vh → Vh, following the definition in [8,20], is given by

Additive B = R + ΠBΠ t , (3.2)

Multiplicative I − BA = (I − RA)(I − ΠBΠ t)(I − RA). (3.3)

Both the additive and the multiplicative versions define symmetric multigrid solvers/preconditioners. Readers may
refer to [21] for the equivalence between symmetric solvers and preconditioners for symmetric problems. Non-symmetric
multiplicative multigrid solver can similarly be defined but it cannot be used as a preconditioner. Thus we restrict our
attention to the symmetric version.

According to [8], the following theorem holds.

Theorem 3.2. Assume that for all v ∈ Vh, w ∈ Vh,

ρ−1
A ((v, v)) . ((Rv, v)) . ρ−1

A ((v, v)), (3.4)

(Aw, w) . (BAw, Aw) . (Aw, w), (3.5)
∥Πw∥A . ∥w∥A (stability of Π), (3.6)

and furthermore, assume that there exists a linear operator P : Vh → Vh such that

∥Pv∥A . ∥v∥A (stability of P), (3.7)

∥v − ΠPv∥
2
0,h . ρ−1

A ∥v∥
2
A (approximability). (3.8)

Then the preconditioner B defined in (3.2) or (3.3) satisfies

κ(BA) . O(1).

Remark 3.2. Theorem 3.2 states that B is a good preconditioner for A as the condition number of BA is uniformly bounded.
We thus can use the preconditioned conjugate gradient (PCG) method with B being an effective preconditioner for solving
the linear algebraic equation system associate to Au = f . According to [21], Theorem 3.2 also implies that I − ωBA, where
0 < ω < 2/ρBA, defines an efficient iterative solver.

Remark 3.3. Operator P is only needed in the theoretical analysis. In the implementation, one only needs B, R and Π .
It is also well-known that the matrix representation of the restriction operator Π t is just the transpose of the matrix
representation of the prolongation operator Π .

Now we shall construct an auxiliary space preconditioner which satisfies all conditions in Theorem 3.2, namely,
inequalities (3.4)–(3.8). It is straight forward to pick B that satisfies condition (3.5). For example, B can be either the direct
solver, for which B = A−1, or one step of classical multigrid iteration [20] which satisfies condition (3.5).

The smoother R is also easy to define. In view of Remark 3.1, a Jacobi or a symmetric Gauss–Seidel smoother [20] will
satisfy condition (3.4). Hence it remains to construct operators Π and P that satisfy the conditions (3.6)–(3.8).

The operator Π is actually easy to choose, and we simply define Π = Qh = {Q0, Qb}. Note when Vh consists of Wj,j
elements orWj,j+1 elements with j ≥ 1, it is clear that for all w ∈ Vh and K ∈ Th, (Πw)|K = {w|K0 , w|∂K } which is just the
natural inclusion of Vh into Vh. The stability of Π in the energy norm follows immediately from (2.5) and the boundedness
of the diffusion coefficient A, as shown in the following lemma.

Lemma 3.3. Let Π = Qh = {Q0, Qb}. Then Π satisfies condition (3.6), i.e.,

∥Πw∥A . ∥w∥A, for all w ∈ Vh.

Next, we construct an operator P that satisfies (3.7) and (3.8).

Definition 3.4. Let 0 ≤ α1, α2, . . . , αk ≤ 1 satisfy
k

i=1 αi = 1, and let {c1, c2, . . . , ck} be a sequence of numbers. The valuek
i=1 αici is called a convex combination of {c1, c2, . . . , ck}.

A function in Vh is completely determined by its value on mesh vertices. Let v = {v0, vb} ∈ Vh. To define Pv, one only
needs to specify its value on all mesh vertices. Hence we can define P as follows: on each mesh vertex x, the value of Pv(x)
is a prescribed convex combination of the values of v0(x) and vb(x) on all mesh elements and edges/faces that have x as
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a vertex. Moreover, to preserve the homogeneous boundary condition, when x ∈ ∂Ω , the convex combination shall be
constructed such that it only depends on the value of vb(x) on boundary edges/faces that have x as a vertex. Of course, for
problems with the homogeneous Dirichlet boundary condition, one can simply set Pv(x) = 0 on boundary vertices. But the
current set-up would allow easy extension to non-homogeneous boundary conditions.

Lemma 3.5. Operator P satisfies

∥v − Pv∥
2
0,h + h2

|v − Pv|
2
1,h . h2

|v|
2
1,h, for all v ∈ Vh. (3.9)

Proof. For each K ∈ Th, denote by V (K) the vertices of K . For each K ∈ Th and v = {v0, vb} ∈ Vh, denote by Ih,Kv0 the
nodal value interpolation of v0 into P1(K), i.e., Ih,Kv0 ∈ P1(K) and is identical to v0 on V (K). By the approximation property
of nodal value interpolations, the scaling argument, the definition of P , the triangle inequality, and the finite overlapping
property of quasi-uniform meshes, we have

∥v − Pv∥
2
0,h =


K∈Th


∥v0 − Pv∥

2
K + h∥v0 − vb∥

2
0,∂K


.

K∈Th


∥v0 − Ih,Kv0∥

2
K +


x∈V (K)

h2
|Ih,Kv0(x) − Pv(x)|2 + h∥v0 − vb∥

2
0,∂K



.

K∈Th


h2

|v0|
2
1,K +


x∈V (K)

h2
|v0(x) − vb(x)|2 + h∥v0 − vb∥

2
0,∂K


.

K∈Th


h2

|v0|
2
1,K + h∥v0 − vb∥

2
0,∂K


= h2

|v|
2
1,h.

Combining the above with the inverse inequality (2.10) completes the proof of the lemma. �

Lemma 3.6. The operator P satisfies the properties (3.7) and (3.8).

Proof. By using inequalities (3.9) and (2.9), for all v ∈ Vh, we have

∥Pv∥
2
A . |Pv|

2
1,h . |v − Pv|

2
1,h + |v|

2
1,h . |v|

2
1,h . ∥v∥

2
A.

This completes the proof of Inequality (3.7).
We then estimate ∥Pv − ΠPv∥0,h. When j ≥ 1, ∥Pv − ΠPv∥0,h = 0 since Π is the natural inclusion. We only need to

consider the case j = 0. Since ΠPv is the average of Pv, we get

∥Pv − ΠPv∥K . h|Pv|1, ∥Pv − ΠPv∥∂K . h|Pv|1,∂K ,

by the average type Poincaré inequality. By the scaled trace inequality (2.15) and the fact |Pv|2,K = 0 for a piecewise linear
function, we can bound h1/2

|Pv|1,∂K . |Pv|1,K . Therefore, we obtain

∥Pv − ΠPv∥0,h . h|Pv|1 = h|Pv|1,h . h|v|1,h.

Then, by the triangle inequality and the coercivity of operator A, for all v ∈ Vh, we have

∥v − ΠPv∥0,h . ∥v − Pv∥0,h + ∥Pv − ΠPv∥0,h . h|v|1,h . h∥v∥A.

Combining the above with the estimate ρA = O(h−2) (see Lemma 3.1), this completes the proof of Inequality (3.8). �

Remark 3.4. In the proof of Lemma 3.6, onemay also use Lemma 2.3 and the Poincaré inequality to estimate ∥Pv−ΠPv∥0,h,
i.e.,

∥Pv − ΠPv∥0,h . h∥Pv∥1 . h|Pv|1.

This requires the Poincaré inequality for Pv, which is not true for non-homogeneous Dirichlet boundary problems. The
current approach avoids such difficulty and can thus be easily extended to non-homogeneous Dirichlet boundary problems
or Neumann boundary problems.

By now, all conditions in Theorem 3.2 have been verified for the given multigrid construction. We summarize these in
the following theorem.

Theorem 3.7. Suppose we have a smoother R and an auxiliary solver B satisfying the property: for all v ∈ Vh, w ∈ Vh,

ρ−1
A ((v, v)) . ((Rv, v)) . ρ−1

A ((v, v)),

(Aw, w) . (BAw, Aw) . (Aw, w).



L. Chen et al. / Computers and Mathematics with Applications ( ) – 9

Let B = R + ΠBΠ t or defined implicitly by the relation I − BA = (I − RA)(I − ΠBΠ t)(I − RA). Then B is symmetric and
positive definite and κ(BA) . O(1).

4. Reduced system and its multigrid preconditioner

By using the Schur complement, the weak Galerkin problem (2.6) can be reduced to a system involving only the degrees
of freedomonmesh edges/faces. In this section,we present such a reduced systemand construct an auxiliary spacemultigrid
preconditioner for the reduced system.

4.1. Reduced system

Let

V0 = {v|v = {v0, 0} ∈ Vh},

Vb = {v|v = {0, vb} ∈ Vh},

be two subspaces of Vh. Clearly one has Vh = V0 + Vb. For any function v = {v0, vb} ∈ Vh, it is convenient to extend the
notation of v0 and vb so that, without ambiguity, v0 ∈ V0 and vb ∈ Vb. Functions in V0 and Vb will also often be referred to
as v0 and vb, respectively.

Then Eq. (2.6) can be rewritten into

ah(u0, vb) + ah(ub, vb) = 0, for all vb ∈ Vb,

ah(u0, v0) + ah(ub, v0) = (f , v0) for all v0 ∈ V0.
(4.1)

By choosing a basis of Vh, we can obtain a matrix form of (4.1). Let v be the vector representation of a weak function
v ∈ Vh and M be the matrix representation of an operator M relative to the chosen basis. We can write the matrix form of
(4.1) as follows

Ab Ab0
A0b A0


ub
u0


=


0
f


. (4.2)

Note thatA0 is block-diagonal.We can thus solveu0 from the second equation and substitute into the first equation to obtain
the Schur complement equation

(Ab − Ab0A−1
0 A0b)ub = −Ab0A−1

0 f. (4.3)

After ub is obtained by solving (4.3), the interior part u0 = A−1
0 (f − A0bub) can be computed element-wise.

The reduced system (4.3) involves less degrees of freedom than the original weak Galerkin system (4.2). Indeed, the
difference between these two degrees of freedom is exactly dim(V0), which is equal to (j + 1)(j + 2)/2 times the total
number of mesh triangles in two-dimension, and (j + 1)(j + 2)(j + 3)/6 times the total number of mesh tetrahedron in
three-dimension. More importantly, the Schur complement Ab − Ab0A−1

0 A0b is also a SPD matrix and has the same sparsity
as Ab. Therefore solving the reduced system (4.3) is more efficient than solving the original system (4.2) provided a good
preconditioner for (4.3) is available. In the rest of this section, we will construct a fast auxiliary multigrid preconditioner
for (4.3). Note that the algorithm is implemented in the matrix formulation. The analysis, however, is given in the operator
form. In the following we will introduce corresponding operators.

We first introduce an ah(·, ·)-orthogonal projector P0 from Vb to V0 as follows: For vb ∈ Vb, define P0vb ∈ V0 such that

ah(P0vb, ζ0) = ah(vb, ζ0) for all ζ0 ∈ V0.

It is not hard to see that ∥(I − P0)vb∥0,h = ∥{−P0vb, vb}∥0,h is a well-defined norm on Vb. In the following analysis we shall
always equip Vb with this new norm and V0 with the inherited norm ∥ · ∥0,h. By the trace inequality, the inverse inequality
and the definition of ∥ · ∥0,h, one has

∥P0vb∥0,h . ∥P0vb∥ . ∥{−P0vb, vb}∥0,h = ∥(I − P0)vb∥0,h,

which implies that P0 : Vb → V0 is a bounded linear operator under the newly assigned norms. Denote by V ′

0 and V ′

b the
space of bounded linear functionals on V0 and Vb, respectively. Then the bounded linear operator P0 induces a bounded dual
operator P ′

0 : V ′

0 → V ′

b, i.e., for F ∈ V ′

0, ⟨P
′

0F , vb⟩ , ⟨F , P0vb⟩ for all vb ∈ Vb. In particular, let F be defined by ⟨F , ·⟩ = (f , ·)
for f ∈ L2(Ω), then one has ⟨P ′

0F , vb⟩ = (f , P0vb).
We claim, and will prove later, that the operator form of the Schur complement equation (4.3) is

ah((I − P0)ub, vb) = −⟨P ′

0F , vb⟩, for all vb ∈ Vb. (4.4)

Note that by the property of the projection P0, Eq. (4.4) can also be written into the symmetric form ah((I − P0)ub, (I −

P0)vb) = −⟨P ′

0F , vb⟩ for all vb ∈ Vb.
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To prove this, we first define a linear operator A−1
0 : L2(Ω) → V0 by: for a function g ∈ L2(Ω), one has A−1

0 g ∈ V0 such
that

ah(A−1
0 g, v0) = (g, v0) for all v0 ∈ V0.

The well-posedness of A−1
0 follows directly from the coercivity of ah(·, ·) on Vh, and consequently on its subspace V0.

Moreover, the restriction of A−1
0 to V0 is symmetric and positive definite. Noticing that ∇wv0 is locally defined on each

mesh element, it is clear that A−1
0 is also locally defined on each mesh element.

Denote by ∇h· the piecewise divergence operator on Σh, and by Qh : L2(Ω)d → Σh the L2 projection. Using the above
notation and the definition of ∇w , the second equation in (4.1) implies that for all v0 ∈ V0,

(A∇wu0, ∇wv0) = (f , v0) − (A∇wub, ∇wv0)

= (f , v0) + (∇h · (QhA∇wub), v0), (4.5)

which leads to

u0 = A−1
0 (f + ∇h · (QhA∇wub)). (4.6)

Next, we note that the projection P0 is identical to −A−1
0 ∇h · (QhA∇w) on Vb, as shown in the following lemma.

Lemma 4.1. The orthogonal operator P0 : Vb → V0

P0vb = −A−1
0 ∇h · (QhA∇wvb) for all vb ∈ Vb.

Proof. By the definition of weak gradient ∇w and A−1
0 , we have

(A∇wvb, ∇wζ0) = −(∇h · (QhA∇wvb), ζ0)

= −(A∇wA−1
0 ∇h · (QhA∇wvb), ∇wζ0).

By the definition of P0, we then complete the proof of the lemma. �

Remark 4.1. The operator P0 corresponds to the matrix A−1
0 A0b.

Now, by (4.6) and Lemma 4.1, one has u0 = A−1
0 f − P0ub. Substituting this into the first equation of (4.1) gives

ah((I − P0)ub, vb) = −ah(A−1
0 f , vb) = −ah(A−1

0 f , P0vb)

= −(f , P0vb) = −⟨P ′

0F , vb⟩.

This completes the derivation of the reduced problem (4.4) from the original problem (2.6). Here we emphasize again
that P ′

0F ∈ V ′

b is bounded in the sense that

|⟨P ′

0F , vb⟩| . ∥(I − P0)vb∥0,h. (4.7)

We will further reformulate the reduced system (4.4). To this end, we define a subspace of Vh as Vr = {vr | vr =

(I − P0)vb = {−P0vb, vb} for all vb ∈ Vb}, which is just the graph of Vb under I − P0. The space Vr inherits the norm
∥ · ∥0,h from Vh, and hence Vr and Vb (equipped with the norm ∥(I − P0) · ∥0,h) are clearly isomorphic under the mapping
I − P0 : Vb → Vr . Moreover, the right-hand side of Eq. (4.4) can be written into

−⟨P ′

0F , vb⟩ = −⟨{0, P ′

0F}, {−P0vb, vb}⟩ = −⟨{0, P ′

0F}, vr⟩

, ⟨F , vr⟩,

where F is a bounded linear functional on Vr according to (4.7).
By using Lemma 4.1 and combining the above analysis, Eq. (4.4) can now be rewritten into: Find ur ∈ Vr such that

ah(ur , vr) = ⟨F , vr⟩, for all vr ∈ Vr . (4.8)

The well-posedness of (4.8) then follows from the continuity and coercivity of the bilinear form ah(·, ·) restricted to Vr and
the fact that F is a bounded linear functional on Vr .

4.2. Auxiliary space preconditioner for the reduced system

Nowwe are able to consider an auxiliary space multigrid preconditioner for the reduced system (4.8), using again the H1

conforming piecewise linear finite element space as the auxiliary space. Denote by Ar the restriction of operator A, defined
in (3.1), to the subspace Vr . That is, Ar : Vr → Vr is defined by

((Aru, v)) = ah(u, v) for all v ∈ Vr .

To apply Theorem 3.2, we define a prolongation operator Πr : Vh → Vr and a linear operator Pr : Vr → Vh by

Πr = (I − P0)Qb and Pr = P|Vr .
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Lemma 4.2. Both Πr and Pr are stable in the energy norm, i.e.,

∥Πrv∥A . ∥v∥A, for all v ∈ Vh (4.9)
∥Prvr∥A . ∥vr∥A, for all vr ∈ Vr . (4.10)

Proof. The stability of Πr follows from the property of P0 and the stability (2.5) of Qh:

∥Πrv∥
2
A = ∥(I − P0)Qbv∥

2
A = (A∇w(I − P0)Qbv, ∇w(Qbv + Q0v))

. ∥Πrv∥A∥Qhv∥A . ∥Πrv∥A∥v∥A.

The stability of Pr simply follows from that of P . This completes the proof of the lemma. �

To verify the approximation property, we first explore the relation between Qhw and Πrw for w ∈ Vh. It turns out that
Qhw = Πrw for all w ∈ Vh when the diffusion coefficient matrix A is piecewise constant.

Lemma 4.3. When A is piecewise constant, we have for all w ∈ Vh,

Qhw = Πrw.

Proof. Recall that Πrw = (I − P0)Qbw. Since P0 is the orthogonal projection, we have

(A∇wΠrw, ∇wζ0) = (A∇w(I − P0)Qbw, ∇wζ0) = 0 for all ζ0 ∈ V0.

On the other hand, using the relation (2.4) and the fact that both ∇w and A are piecewise constant,

(A∇wQhw, ∇wζ0)K = (AQh∇w, ∇wζ0)K = (A∇w, ∇wζ0)K

= −(∇h · (A∇w), ζ0)K = 0, for all ζ0 ∈ V0.

Therefore

ah(Πrw − Qhw, ζ0) = 0, for all ζ0 ∈ V0. (4.11)

The fact Πrw − Qhw ∈ V0 and the orthogonality (4.11) imply Πrw = Qhw. �

Similar to the analysis in Section 3, we can establish the following results.

Lemma 4.4. Suppose A is piecewise constant and the space Vr is non-trivial, i.e., the triangulation contains at least one interior
vertex. Then the spectral radius of operator Ar , denoted by ρAr , is of order h

−2.

Proof. Recall that

ρAr = λmax(Ar) = max
v∈Vr

((Arv, v))

((v, v))
= max

v∈Vr

((Av, v))

((v, v))
.

Since Vr ⊂ Vh, we immediately get ρAr ≤ ρA . h−2.
To show the lower bound, we pick a hat function w ∈ Vh. By the standard scaling argument,

∥w∥ . h|∇w|. (4.12)

We then chose v = Πrw ∈ Vr and estimate its norms. First

∥v∥0,h = ∥Πrw∥0,h = ∥Qhw∥0,h . ∥w∥. (4.13)

Second, as ∇w is piecewise constant, Qh∇w = ∇w and

∥∇w∥ = ∥Qh∇w∥ = ∥∇wQhw∥ = ∥∇wΠrw∥ . (Arv, v)1/2. (4.14)

Combining (4.12)–(4.14), we obtain

h−2
∥v∥

2
0,h . (Arv, v),

which implies ρAr & h−2. �

Now we are able to derive the following approximation property.

Lemma 4.5. Under the same assumptions as in Lemma 4.4, one has

∥vr − ΠrPrvr∥0,h . ρ
−1/2
Ar ∥vr∥A for all vr ∈ Vr .
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Proof. By the triangle inequality and Eq. (3.9), one has

∥vr − ΠrPrvr∥0,h = ∥(I − P0)vb − ΠrP(I − P0)vb∥0,h

. ∥(I − P0)vb − P(I − P0)vb∥0,h + ∥w − Qhw∥0,h

. h|(I − P0)vb|1,h + h∥w∥1,

. h|(I − P0)vb|1,h,

where we conveniently denote w = P(I − P0)vb ∈ Vh and use Πrw = Qhw. In the last step, we have used

h∥w∥1 . h|w|1 = h|P(I − P0)vb|1,h . h|(I − P0)vb|1,h.

Combining the above and using Lemma 2.4 give

∥vr − ΠrPrvr∥0,h . h|(I − P0)vb|1,h . h∥vr∥A.

According to Lemma 4.4, ρAr = O(h−2). This completes the proof of the lemma. �

Finally, we consider variable coefficient A which does not change too rapidly on each K ∈ Th, i.e., there exists a piecewise
constant approximation Ā such that A is spectrally equivalent to Ā on each K ∈ Th. Then one has

(A∇wv, ∇wv) . (Ā∇wv, ∇wv) . (A∇wv, ∇wv), for all v ∈ Vh.

Therefore, a good preconditioner for the piecewise constant case will lead to a good preconditioner for the variable case.
We are able to claim that, the auxiliary space multigrid preconditioner for the reduced system (4.8) again yields a

preconditioner system with condition number of O(1).

Theorem 4.6. Suppose we have a smoother R and auxiliary solver B satisfying the property: for all v ∈ Vr , w ∈ Vh,

ρ−1
Ar ((v, v)) . ((Rv, v)) . ρ−1

Ar ((v, v)),

(Aw, w) . (BAw, Aw) . (Aw, w).

Let B = R + ΠBΠ t or defined implicitly by the relation I − BAr = (I − RAr)(I − ΠBΠ t)(I − RAr). Then B is symmetric and
positive definite and κ(BAr) . O(1).

5. Numerical results

In this section, we examine the effectiveness of the auxiliary space multigrid preconditioner using several numerical
examples. The simulation is implemented using the MATLAB software package iFEM [22].

We use preconditioned Conjugate Gradient (PCG) method with the auxiliary space multigrid preconditioner. More pre-
cisely, we apply one step of the symmetric Gauss–Seidel smoothers as R and then one V-cycle of multigrid methods of the
P1 discretization with one pre-smoothing and one post-smoothing. In the auxiliary space preconditioner, we use the multi-
plicative version (3.3). It is known that the multiplicative version multigrid usually performs better than the corresponding
additive version. The stopping criteria for PCG iterations are reached when the relative error of the residual in the precon-
ditioned norm is less than 10−8.

The matrix A for the lowest order weak Galerkin discretization, i.e., P0 − P0 element, is assembled and the matrix A for
the auxiliary problem using P1 element is obtained through the triple product A = Π tAΠ where Π : Vh → Vh is the
simple average operator. By doing so, there is no need to repeat the assembling procedure to get A and the implementation
is more algebraic. After that, thematrices in coarse levels are obtained by the triple product using the standard prolongation
and restriction operators of linear elements on hierarchical meshes.

We report results for the original system and the reduced system, respectively. Note that after solving the reduced sys-
tem, we can recover the interior part by a local solver with negligible time. Numerical solutions obtained by solving the
original system or the reduced system are close within the stopping tolerance. Since the main purpose of these numerical
results is to examine the efficiency of the auxiliary space preconditioner instead of testing the accuracy of the weak Galerkin
approximation, in the report we omit the approximation error part. Because of this, there is no need to list the exact solution
for each test problem.

Example 1. We first consider the Poisson equation defined on a circular mesh of the unit disk. The coarsest mesh is shown
in Fig. 5.1(a). A sequence of meshes are obtained by several uniformly regular refinements, i.e., a triangle is divided into four
congruent four triangles by connecting middle points of edges, of the coarsest mesh. Results are summarized in Table 5.1.

Example 2. Next, we consider a variable coefficient problem with an oscillating coefficient:

−∇ · (2(2 + sin(10πx) sin(10πy))∇u) = f

on [0, 1] × [0, 1]. The coarsest mesh has size h = 1/4 and is shown in Fig. 5.1 (b). Fourth order quadrature is used when
assembling the stiffness matrix. Results are summarized in Table 5.2.
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(a) Initial grid of Example 1. (b) Initial grid of Example 2. (c) An adaptive grid of
Example 3.

Fig. 5.1. Meshes in Examples 1–3.

Table 5.1
PCG iteration steps and CPU time (in seconds) for Example 1. The left table is for the original
system and the right table is for the reduced system.

Dof Steps Time Dof Steps Time

3,446 13 0.052 2,086 8 0.02
13,692 13 0.11 8,252 8 0.053
54,584 13 0.41 32,824 8 0.17

217,968 13 1.8 130,928 8 0.66
871,136 13 8 522,976 8 2.9

Table 5.2
PCG iteration steps and CPU time (in seconds) for Example 2. The left table is for the original
system and the right table is for the reduced system.

Dof Steps Time Dof Steps Time

1,312 13 0.017 800 9 0.013
5,184 13 0.048 3,136 9 0.036

20,608 14 0.17 12,416 10 0.082
82,176 14 0.63 49,408 9 0.27

328,192 14 2.7 197,120 9 1.1

Example 3. We consider a test problem on an L-shaped domain obtained by subtracting [0, 1] × [−1, 0] from (−1, 1) ×

(−1, 1). The Poisson equation on such a domain has H3/2-regularity. Adaptive finite element method based on a posteriori
error estimator constructed in [4] is used. A sample adaptive mesh obtained by bisection refinement is shown in Fig. 5.1 (c).
For bisection grids, we apply the coarsening algorithm developed in [23] to obtain a hierarchy of meshes. In Table 5.3, only
results on some selected adaptive meshes are reported since the full list of adaptive meshes is long and the performance
remains similar for all of these adaptive meshes.

Example 4. We consider the Poisson equation defined on the cubeΩ = (−1, 1)3. The coarsest mesh is shown in Fig. 5.2(a).
A sequence of meshes are obtained by several uniformly regular refinements, i.e., a tetrahedron is divided into 8 small
tetrahedron by connecting middle points of edges, of the coarsest mesh. Results are summarized in Table 5.4.

Example 5. We consider the elliptic equationwith jump coefficients [24,25]. LetΩ = (−1, 1)3 and the diffusion coefficient
a(x)I be defined such that a(x) is equal to the constants a1 = a2 = 1 and a3 = ε on the three regions Ω1, Ω2 and Ω3
respectively (see Fig. 5.2(b)), where

Ω1 = (−0.5, 0)3, Ω2 = (0, 0.5)3 and Ω3 = Ω \ (Ω1 ∪ Ω2).

A sequence of meshes are obtained by several uniformly regular refinements of the coarsest mesh.
We choose f = 1 and impose the following boundary conditions: Dirichlet conditions

u{−1}×[−1,1]×[−1,1] = 0, u{1}×[−1,1]×[−1,1] = 1,

and homogeneous Neumann boundary conditions on the remaining boundary. We test the robustness of our solver as the
coefficient ε changes. Only the reduced system is solved in this example. Results are summarized in Table 5.5.

From these experiments we may draw the following conclusions:

1. In all examples, the auxiliary space preconditioner works well for the linear system arising from discretization of the
lowest order weak Galerkin method. The fluctuation of iteration steps of the PCG method applied to systems with
different sizes is small which implies the condition number of the preconditioned system is uniformly bounded.
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(a) Initial grid of Example 4. (b) Domain of Example 5.

Fig. 5.2. The coefficients a1 = a2 = 1 in the gray domains Ω1 and Ω2 , and a3 = ε in the rest of the domain.

Table 5.3
PCG iteration steps and CPU time (in seconds) for Example 3. The left table is for the original
system and the right table is for the reduced system.

Dof Steps Time Dof Steps Time

256 13 0.0099 160 8 0.0088
574 13 0.023 352 9 0.014

1,091 13 0.035 663 10 0.023
2,177 13 0.058 1317 10 0.036
4,398 13 0.11 2656 10 0.067
8,642 13 0.16 5206 9 0.091

10,742 13 0.2 6470 8 0.094

Table 5.4
PCG iteration steps and CPU time (in seconds) for Example 4. The left table is for the original
system and the right table is for the reduced system.

Dof Steps Time Dof Steps Time

1,248 16 0.018 864 11 0.058
9,600 18 0.1 6,528 12 0.054

75,264 18 1 50,688 13 0.41
595,968 19 10 399,360 13 4

4,743,168 19 100 3,170,304 13 36

Table 5.5
PCG iteration steps for Example 5. Only results for solving the reduced system are presented.

Dof ε = 10−4 ε = 10−2 ε = 1 ε = 102 ε = 104

864 36 22 13 13 13
6,528 33 21 13 13 13

50,688 32 21 13 13 13
399,360 34 21 13 13 13

3,170,304 34 21 13 13 13

2. The solver for the reduced system is more efficient than the original system. The size of the reduced system is around
two thirds of the original one and the time for solving the reduced system is around half of the original one. This shows
the efficiency gained by working on the reduced system.

3. Although our theory is developed for quasi-uniform meshes, the third example indicates that our solver works well for
adaptive grids and elliptic equations with less regularity.
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