
Journal of Computational Physics 334 (2017) 327–348
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

An interface-fitted mesh generator and virtual element 

methods for elliptic interface problems ✩

Long Chen b,a, Huayi Wei c,a,∗, Min Wen b

a Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing, 100124, China
b Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
c School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, 411105, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 July 2016
Received in revised form 16 December 2016
Accepted 5 January 2017
Available online 10 January 2017

Keywords:
Elliptic interface problem
Interface-fitted mesh
Delaunay triangulation
Semi-structured
Virtual element method

A simple and efficient interface-fitted mesh generation algorithm which can produce a 
semi-structured interface-fitted mesh in two and three dimensions quickly is developed 
in this paper. Elements in such interface-fitted meshes are not restricted to simplices but 
can be polygons or polyhedra. Especially in 3D, the polyhedra instead of tetrahedra can 
avoid slivers. Virtual element methods are applied to solve elliptic interface problems 
with solutions and flux jump conditions. Algebraic multigrid solvers are used to solve 
the resulting linear algebraic system. Numerical results are presented to illustrate the 
effectiveness of our method.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider finite element methods for solving elliptic interface problems which have a variety of applications in dif-
ferent research fields, including fluid dynamics, material science, and biological systems, etc. [20,47,55,62]. The importance 
of the coupling of the complex geometry of the interface with the numerical methods has been recognized and received 
rapidly increasing interest in recent years.

Let � be an open and bounded domain in Rd (d = 2, 3), and � be a continuous interface embedded in �. The interface 
� separates the domain � into disjoint regions �+ and �− , where �+ denotes the exterior domain and �− is the interior 
domain enclosed by �. We consider numerical methods for solving the following elliptic interface problems:

−∇ · (β(x)∇u(x)) = f (x), x ∈ �\� (1)

with prescribed jump conditions across the interface �:

[u]� = u+ − u− = q0, (2)

[βun]� = β+u+
n − β−u−

n = q1, (3)
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and boundary condition:

u = g on ∂�. (4)

Here un denotes the normal derivative (∇u) · n with n being the unit norm direction of the interface � pointing outward 
(from �− to �+). The superscripts + and − stand for the restriction of a function on �+ and �− , respectively. The diffusion 
coefficient β(x) is assumed to be uniformly positive and smooth on each subdomain, but may be discontinuous across the 
interface. Because of that, the solution u is piecewise smooth but the global regularity is low [27,48,49].

Numerical methods for elliptic interface problems can be roughly classified into two categories by using either an 
interface-fitted (also known as body-fitted or interface conforming) mesh or an unfitted mesh (e.g. a uniform Cartesian 
mesh) in the discretization of the domain. In the unfitted mesh approach, a popular way to enforce the jump conditions 
is to modify the finite difference stencils or the finite element basis near the interface. A lot of numerical methods in this 
direction have been proposed such as the immersed boundary method [74], the immersed interface method [58,59], im-
mersed finite element methods [37,44,54,63], ghost fluid methods [65], matched interface and boundary (MIB) methods [83,
87,90], multiscale finite element methods [27], extended finite element methods (XFEM) [36,68,69], and many others [39,
46,45,50,64,82]. The jump condition can be also imposed based on the Nitsche’s method [72] by introducing penalty terms 
across interfaces, see, for example, the earlier work by Babuška [5], Barrett and Elliott [7], unfitted FEM by Hansbo and 
Hansbo [41], hp-discontinuous Galerkin method [67], CutFEM [17,43], and many others [8,17–19,41–43,53,78,79]. The most 
attractive feature of the unfitted mesh approach is the easiness of the mesh generation. Indeed, if the background mesh is 
Cartesian, there is no need of meshing which is very convenient, especially when the interface is moving in time.

On the other hand, using unfitted mesh approach, it is difficult to capture the complex geometry of the interface and 
to enforce jump conditions across the interface accurately, and the resulting linear system may not be always symmetric 
which could cause problems for fast solvers. Furthermore a rigorous error analysis is difficult. Recent progress on immersed 
finite element methods can be found in [40,88].

In this work, we focus on the interface-fitted mesh approach. Provided a mesh fitted to the interface, one can use 
conforming finite element methods and get a symmetric system which can be solved efficiently by fast solvers such as 
algebraic multigrid method. Rigorous error analysis is possible. Optimal a priori estimates of linear finite element are given 
in [86,14,24] and in [60] for high order finite elements. Recent work using hybridized discontinuous Galerkin (HDG) [51]
and weak Galerkin (WG) [71] method is also based on a shape regular and body-fitted triangulation. The challenge of this 
approach is quickly generating an interface-fitted mesh, especially in three dimensions (3D), which is the topic of this study.

There is a lot of work on the unstructured interface-fitted mesh generation [66,73,89]. The unstructured mesh generator 
is, however, time consuming as it needs to modify the mesh for the whole domain, not just near the interface. For example, 
extensive and non-trivial computational effort is needed to generate a high quality 3D finite element mesh from biomedical 
image data or geological image data etc. [4,28].

We are interested in the semi-structured and body-fitted mesh generation methods [11,13,76] and will develop a simple 
and effective mesh generation algorithm. As an illustrative example, to generate an interface-fitted mesh in two dimensions 
(2D), we start from a uniform Cartesian mesh with N-mesh points, and apply three steps: 1) find all the intersection points, 
the mesh points near the interface, and add few auxiliary points; 2) generate a Delaunay triangulation of these points; 3) 
remove the unnecessary triangles and merge the regular meshes away from the interface. The resulting triangulations can 
preserve the interface and the maximal angle is bounded by 135◦ . Since the Delaunay triangulations are only constructed 
on a local region near the interface, the dominant cost is reduced to O(N1/2 log N). Due to the semi-structured mesh and 
localization near the interface, some nice properties of structured mesh are still preserved such as superconvergence in the 
energy norm and fast convergence of algebraic multigrid methods [80].

The main restriction of this approach is the quality of the generated mesh especially in 3D. Most finite element methods 
require discretizing a domain into a set of shape regular tetrahedra in three dimensions. The accuracy of the simulations 
and the efficiency of the solvers could deteriorate by the presence of badly-shaped elements. The problematic tetrahedra 
are so-called slivers, which are a type of flat tetrahedra without small edges, but with nearly zero volume. Namely, four 
vertices of a sliver are almost coplanar. Due to the presence of slivers, three-dimensional mesh generation is much harder 
than the two-dimensional case, and removing slivers from a 3D tetrahedral mesh is one of the major tasks in the field of 
mesh generation [32,61,70].

We propose a new way to solve this difficulty. We choose polyhedral meshes rather than tetrahedral meshes. Then 
silvers will be merged into nearby polyhedra. The shape of the polyhedron or other tetrahedron could be still degenerate 
but the maximal angle is bounded uniformly away from π . Notice that finite element approximation retains accurate if the 
maximal angle condition [6] is satisfied. Namely tetrahedral with small volumes are allowed as long as the four vertices are 
non-planar [30,56]. Similar results can be established for polyhedral meshes and theoretical justification will be reported 
somewhere else.

Another difficulty is encountered in the implementation. Due to the large number of possible intersections between the 
fixed mesh and the interface, a variety of interface-cells are generated leading to an equally large number of treatments, 
which could result in complex coding logistics; see [75,76].

We propose an all-in-one solution. The connectedness of intersection points is obtained by the Delaunay algorithm 
which is a well developed algorithm in computational geometry and efficient implementation is available in many software 
packages. Our mesh generation algorithm in 3D is similar to the 2D case only different in step 3: post-processing. The 
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additional work is to merge tetrahedra into polyhedra. To facilitate the merging, the polyhedra are stored in the form of 
faces and the index of the elements to which the faces belong. The resulting mesh retains the following nice properties: the 
interface is approximately preserved, the maximal angle condition is satisfied, and cost-efficient. The Delaunay algorithm 
is only called for points near the interface and thus the dominated cost is reduced to O(N2/3) which is considerably 
smaller comparing with O(N) assembling and solving of the linear algebraic system. The quality and efficiency of our mesh 
generation algorithm are balanced and suitable for the finite element simulation. No additional mesh smoothing process is 
needed in our algorithm. Of course, adding such a mesh smoothing process will furthermore improve the quality of the 
mesh and probably improve the accuracy of the finite element approximation. However, it will destroy the structure of the 
mesh. In our mesh generator, the background mesh is fixed. The Delaunay algorithm can be called element by element and 
thus local modification is possible if only part of the interface is changed. These features are important for moving interface 
problems, which will be explored in our future work.

A similar mesh generation approach was introduced in [38], where the authors introduced the Voronoi diagrams and 
Delaunay triangulation of a point set of a surface and more focused on the surface mesh generation. Our algorithm seems 
simpler and more suitable for finite element simulation as we shall discuss below.

Since elements in such interface-fitted meshes are general polyhedra, we shall apply virtual element methods (VEM) [9,
10], which can be considered as an extension of conforming finite element methods to polyhedral meshes. The resulting 
linear algebraic system is symmetric and positive definite and thus can be solved efficiently using algebraic multigrid solvers. 
Furthermore, according to our mesh generation algorithm, we will get polyhedra with triangular and square faces which 
will be much easier to assemble the matrices in VEM compared to the original approach in [10]. Optimal second order of 
convergence in the L2 and L∞ norms and a superconvergence of energy norm is observed in several numerical examples.

An outline of the paper is as follows. In Sections 2 and 3, we present the mesh algorithm for the generation of interface-
fitted meshes in two and three dimensions, respectively. In Section 4, we derive the weak formulation of the elliptic interface 
problems and discuss linear virtual element methods on all elements. In Section 5, we provide numerical results to show 
the effectiveness of our method. We end with several concluding remarks and future work.

2. Interface-fitted mesh generator: two dimensions

In this section, we introduce our interface-fitted mesh generator in 2D. We first describe the algorithm and then give 
two examples to illustrate the algorithm. In addition, we prove the generated mesh will preserve the interface approximatly 
and satisfy the maximal angle condition.

2.1. Algorithm

Let � be an interface embedded in a rectangular domain �. Assume � can be represented by the zero-level set of 
a function φ(x), i.e., � = {x ∈ � : φ(x) = 0}. The interface � separates � into subdomains �+ := {x ∈ � : φ(x) > 0} and 
�− := {x ∈ � : φ(x) < 0}. Note that �− could have multiple connected components when � consists of two or more closed 
curves.

One can easily generate a uniform Cartesian mesh �h of � with a given mesh size h. A vertex p of �h is said to be 
inside if φ(p) < 0, outside if φ(p) > 0, or on � if φ(p) = 0; an edge (p1, p2) is called a cut edge if φ(p1)φ(p2) < 0; the 
point which the cut edge intersects with � is called an intersection point; a square element K of �h which intersects with 
the interface �, i.e. |K̄ ∩�| �=∅, is called an interface element. We can find interface elements by using one of the following 
two rules:

(1) There exists at least two vertices p and q with opposite sign, i.e., φ(p)φ(q) < 0;
(2) There exists at least two vertices on the interface, namely the value of φ on these vertices is 0.

These two rules could detect all the interface elements in Fig. 1 except case (3), which could be avoided by choosing the 
initial mesh size h small enough. For disconnected interfaces (cases (6)–(9)), we assume it is described by two level set 
functions (cf. Example 2.2), and the intersection points can be found by treating each level set function one by one. We 
remark that it is much more difficult to modify stencils or the basis for such cases. In general, the modified finite differ-
ence stencils or modified finite element basis near the interface is to introduce additional but local degrees of freedom 
near the interface and then use the jump conditions to eliminate these degree of freedom by solving a small linear system 
elementwise [2,12,35,52,69,81,84]. In almost all of these work, it is assumed the intersection meets the edges of an inter-
face element at no more than two intersections and intersects at different edges for one element, cf. [44,63,64,88]. If this 
condition is violated, such as those cases (6)–(9) in Fig. 1, the local system will be much more involved since it depends on
how the interface cuts the elements.

We define the interface points as the collection of intersection points, vertices of interface elements, and some auxil-
iary points explained below. When the intersection points are diagonal, we need to add the midpoints of corresponding 
elements, which are called auxiliary points.

Recall that a Delaunay triangulation for a set of points P in a plane is a triangulation of the convex set of P such that 
no point in P is inside the circumcircle of any triangle in this triangulation [32,57].
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Fig. 1. Example of interface elements: (1)–(5) with one level set function and (6)–(9) with two level set functions.

Fig. 2. Cartesian mesh � and a circle interface �. The grayed elements are interface elements.

Our 2D interface-fitted mesh generation algorithm is described as follows:

Algorithm: 2D interface-fitted mesh generation algorithm

Input: Mesh size, h, level set function, φ(x) and square domain, �;
Output: An interface-fitted mesh of �;
1. Find all the interface points.
2. Construct a Delaunay triangulation of these points.
3. Remove triangles not in the interface elements and merge all uncut elements.

Algorithm 1: 2D mesh generator.

2.2. Examples

We give two examples to explain Algorithm 1 in detail. The first example shows the simple case when the interface is a 
circle. The second example illustrates a more complex case when the interface is unconnected and some interface elements 
are divided into three parts.

Example 2.1 (A circle). Consider the domain � = (−1, 1)2 and a circle interface � represented by the level set function 
φ(x, y) = x2 + y2 − r2, with r = 0.5. The interface elements are shown in Fig. 2.

First, we construct a point set P which includes the intersection points between cut edges and �, the vertices of all 
interface elements, and some auxiliary points. See Fig. 3(a) for the illustration. Here we use the bisection method to compute 
the intersection points within the machine precision tolerance.
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Fig. 3. Three steps to generate an interface-fitted mesh.

Then we construct a Delaunay triangulation based on the point set P . In MATLAB, we just call DT = delaunay(x,y)
(see Fig. 3(b)).

In the last step, we keep the triangles in interface elements and merge the uncut elements to get the final interface-fitted 
semi-structured mesh in Fig. 3(c)–(d).

Example 2.2 (Two circles). Consider the domain � = (−1, 1)2 and the unconnected interface � represented by the level set 
function

φ(x, y) = min
{
(x + r)2 + y2 − (1.1r)2, (x − r)2 + y2 − (0.8r)2

}
,

with r = 0.4. We can apply the same algorithm and obtain the mesh in Fig. 4. The only difference is when computing 
intersection points, we compute them for each level set function separately. We use this example to show that our algorithm 
can handle unconnected interfaces.

2.3. Properties

We explore properties of the mesh obtained in Algorithm 1. A triangle is called an interior element when the barycenter 
of the triangle is inside. The interface � could be approximated by the boundary of those interior elements and can be 
extracted easily. The obtained discrete interface is denoted by �h .

Proposition 2.3. The interface will be approximately recovered in the triangulation generated by Algorithm 1. More precisely, we have 
dist(�h, �) � h2 provided � is smooth enough and h is small enough.
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Fig. 4. Interface points and interface-fitted meshes when the interface is unconnected.

Fig. 5. Add one auxiliary point when two intersection points are diagonal.

Proof. We shall use another characterization of Delaunay triangulations: a Delaunay triangulation is the projection of the 
lower convex hull of points lifted to the paraboloid f (�x) = ‖�x‖2 [16,23,34].

The function values of f (�x) on the four vertices of a square will be on a plane. As the function f is strictly convex, the 
function value of any intersection points which are different from the vertices of the square will be below this plane. Then 
the lower convex hull when lifted to R3 will always connect the intersection points. Thus, the interface will be recovered 
under this circumstance.

If there are two diagonal vertices of a square on the interface � (see Fig. 5(c)), then the Delaunay triangulation on this 
square is not unique. Using either diagonal of the square is a valid Delaunay triangulation (see Fig. 5(a) and (b)). Therefore, 
we introduce the center of this square as an auxiliary point to make sure the interface is preserved (see Fig. 5(d)).

In both cases, �h contains a piecewise affine approximation of � with nodes on the interface and thus the distance is in 
the order of Ch2 with constant C depends on the curvature of �. �
Proposition 2.4. Assume the mesh size h is small enough such that the interior of each edge has at most one intersection point. Then 
the maximal angle of the triangulation generated by Algorithm 1 is bounded by 135◦ .

Proof. Let C be a square with vertices A, B, C, D which intersects with the interface, S the points set including the vertices 
of C and the intersection points, and DT the Delaunay triangulation of S .

The vertex of every angle in DT can be a vertex of the square or an intersection point. The angle at a square vertex must 
be bounded by 90◦ as the two rays of the angle is inside the square. Next, let us prove that the angle at an intersection 
point must be bounded by 135◦ . Let E be an intersection point on edge AB , F and G are the other two points of angle 
� F EG and G is on the right of F (see Fig. 6). Here F or G can be an intersection point or a vertex of the square.

By our assumption, F or G cannot be in the interior of edge AB and F and G cannot be in the interior of edge C D
simultaneously. So either F is on the edge AD or G is on BC . Without loss of generality, we assume G is on BC . Then 
the angle � F C G ≥ 45◦ since F is on the left of the diagonal AC . Note that the triangle �F C G may not be in the DT . 
Nevertheless, if � F EG > 135◦ , then � F EG + � F C G > 180◦ which means the circumcircle of �F EG must include vertices 
C violating the Delaunay property. So � F EG must be bounded by 135◦ . �

Let N be the number of nodes. Since we restrict the Delaunay triangulation on a local region near the interface, the 
complexity of generating a Delaunay triangulation will be O(N1/2 log N) in 2D which can be ignored compared with the 
O(N) complexity of assembling the matrix and solving the matrix equation. Such localization will make it possible to track 
the moving interface, which will be explored in our future work.

The overall complexity of our mesh generation algorithm is: c1N + c2N1/2 log N since we need to compute the sign of 
the level set function at N vertices. In practice, however, the constant c1 � c2 and the time scales like O(N1/2).
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Fig. 6. The angle � F EG at the intersection point E .

Fig. 7. Sliver exists (left) and is removed when the element is divided into polyhedra (right).

3. Interface-fitted mesh generator: three dimensions

In this section, we present a novel mesh generation algorithm to generate an interface-fitted mesh for a given smooth 
interface in three dimensions. We begin with a brief review on the difficulty of 3D mesh generation and then introduce our 
algorithm to overcome this difficulty.

3.1. Main difficulty

Tetrahedral meshes are frequently used in classical finite element methods. The size and shape of the tetrahedra influence 
the accuracy of finite element solutions [77]. The quality of the tetrahedron’s shape can be measured by using the aspect 
ratio or the radius-edge ratio. The aspect ratio of a tetrahedron is usually defined as its circumradius divided by its inradius 
and the radius-edge ratio is the circumradius divided by the shortest edge length of the tetrahedron. The aspect ratio 
or radius-edge ratio of a mesh is the largest corresponding ratio of all of its tetrahedral elements. If the aspect ratio or 
radius-edge ratio of a mesh are small, we called the mesh well-shaped [32,61]. Ideally we expect each element in the mesh 
is shape regular. But violation is allowed as long as the so-called maximal angle condition is satisfied [1,6,15,31,56].

The difficulty of mesh generation in three dimensions is due to the existence of slivers. Slivers have small radius-edge 
ratio, but large aspect ratio, which are considered as bad-shaped tetrahedral elements. The results of the accuracy and 
convergence of finite element methods may not hold anymore in the existence of slivers which violates the maximal angle 
condition. A lot of methods have been developed to remove slivers; see e.g. [25,26,33]. Sliver removal methods, however, 
involve the addition and rearrangement of points and thus destroy the semi-structure of the mesh.

We shall introduce polyhedral meshes near the interface to remove slivers. When we get the interface elements (which 
is defined similarly to 2D and will be made clear later) and intersection points (the definition is the same as in 2D), we can 
divide interface elements into polyhedra instead of tetrahedra. Slivers will be eliminated and part of their faces will become 
the faces of polyhedral elements. For example, when the interface cuts across one element with four almost coplanar 
intersection points, if we divide the element into tetrahedra, then the four intersection points could form a sliver (see 
Fig. 7). If we use a polyhedral mesh, however, the two well-shaped triangles will become the boundary of two polyhedra.

3.2. Algorithm

We write down the algorithm and explain the details step by step.

Algorithm: 3D interface-fitted mesh generation algorithm

Input: Mesh size h, level set function φ(x), and a cubic domain �;
Output: Interface-fitted mesh �;
1. Find all the interface points.
2. Construct the Delaunay mesh DT on these points.
3. Post processing: remove unnecessary tetrahedra in DT , merge tetrahedra into polyhedra, and merge with uncut elements.

Algorithm 2: 3D mesh generator.
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Fig. 8. The surface of the interface is embedded in the hexahedron.

Given a cubic domain � which includes the interface � described as the zero level set of φ, and a mesh size h, we first 
generate the uniform Cartesian mesh of � with size h. The cubes in the Cartesian mesh in domain � could be classified 
into exterior, interior, and interface elements by checking the sign of the centers of the cubes. We label them by 1, −1 and 
0 respectively.

We define interface elements as elements satisfying one of the following rules:

(1) There exists at least two vertices p and q with opposite sign, namely φ(p)φ(q) < 0;
(2) There exists at least three vertices on the interface.

All interface elements will form a hexahedral mesh of a layer of the interface (see Fig. 8). All boundary faces of this 
hexahedral mesh are extracted and will be used as faces of the polyhedral mesh for the interface. Note that these boundary 
faces are square faces.

In step 1, similarly to two dimensions, we find cut edges and intersection points, and add auxiliary points if necessary. 
The criterion of adding auxiliary points is the same as 2D: if a square face contains two opposite vertices on the interface, 
we will add the center point of this square face as the auxiliary point.

In step 2, we generate a Delaunay mesh DT of P , the set of interface points, whose definition is the same as that in two 
dimensions.

In step 3, we post-process DT to get a polyhedral mesh near the interface and merge all uncut cubic elements away 
from the interface.

Similar to the 2D case, we only keep tetrahedra inside the interface elements, which might contain slivers, and remove 
tetrahedra not in the interface elements which can be easily marked by checking the center of tetrahedra in DT .

Now we have a tetrahedral mesh of all the interface elements, and we still call this tetrahedral mesh as DT for conve-
nience. We could split the tetrahedron in DT into two categories: exterior tetrahedral set DT E and interior tetrahedral set 
DT I . For a tetrahedron in DT , if the minimum of the sign function of the φ value of the four vertex nodes is −1, we put 
it into DT I , otherwise, we add it into DT E . The interface � could be extracted using the boundary faces of DT I and the 
normal direction of the extracted surface mesh points outside of the interface. Tetrahedra in each category will be merged 
into polyhedra element by element.

Instead of storing all vertices of a polyhedron, we shall store the polyhedral mesh by the data structure face and
face2elem. The array face records indices of three (triangular face) or four (square face) vertices of all faces. The 
direction of all faces follows the right-hand side rule, that is, the normal direction of each face is outwards. The array
face2elem records the index of the polyhedron to which the faces belong.

Fig. 9 is a simple example. Given a unit cube with three intersection points, it is divided into two polyhedra. Each 
polyhedron is stored by faces and elements to which they belong. The values of face and face2elem in Fig. 9 are shown 
in Table 1.

Notice that some face, e.g., [3 7 8 4] is stored as a square instead of two triangles since this face is shared by another 
cube which is not included as an interface element. Those square faces are boundary faces of the hexahedral mesh which 
consists of all interface elements. All such square faces have been extracted when we collect all interface elements.



L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 335
Fig. 9. An interface element is divided into two polyhedra.

Table 1
The face array (left) and face2elem (right) for two polyhedra in Fig. 9.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

2 9 10
2 11 9
2 10 11

11 10 9
11 1 3
5 1 11
3 4 9
3 9 11
9 4 8
5 10 6
5 11 10

10 8 6
10 9 8
11 9 10
1 5 7 3
5 6 8 7
3 7 8 4

1 2 3 4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2

1

Every interface element is divided into several polyhedra according to our method. For each polyhedron, we need to 
assign a unique index. This index map from face to element, face2elem, can be generated in two stages. In most cases, 
the interface element is just divided into two polyhedra. In the first stage, for the interior part, we use the original interface 
element index j and for the exterior part, we append a new index j + N , where N is the number of elements in the initial 
Cartesian mesh. In some cases, however, one cube could be divided into three or more polyhedra (see the three cases in 
Fig. 10). In the second stage, we use Euler’s formula to check the connectedness of the obtained polyhedral mesh. If a 
disconnected polyhedron is found, we group faces into different connected components which is equivalent to dividing the 
original polyhedron into more polyhedra. Thanks to our data structure, we only need to change face2elem when adding 
and storing the new polyhedra.

In a nutshell, we could get a polyhedral mesh near the interface by storing the triangular and square faces. The final 
interface-fitted mesh consists of polyhedra near the interface and uncut (cube) elements away from the interface.

3.3. Properties

The generated Delaunay triangulation will approximately recover the interface by the lifting method. Namely Proposi-
tion 2.3 also holds for the 3D case since the characterization of a Delaunay triangulation as the projection of the lower 
convex hull holds in general dimensions. We formally summarize below.

Proposition 3.1. The interface will be approximately recovered in the triangulation generated by Algorithm 2. More precisely, we have 
dist(�h, �) � h2 provided � is smooth enough and h is small enough.

Next we shall show the maximum angle of the surface mesh is uniformly bounded by 144◦ . In [75], the author considers 
12 types of subdivision of boundary cells (not necessarily satisfying the Delaunay property) in three dimensions and shows 
the same bound.

Proposition 3.2. The maximal angle of the triangular faces of the polyhedral mesh is bounded by 144◦.

Proof. For simplicity, let C be a unit cube which intersects with the interface, and S the set of points including the eight 
cube vertices and the intersection points. Let DT be the 3D Delaunay triangulation on S .
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Fig. 10. A cube is divided into three parts.

For a 3D Delaunay triangulation, it satisfies the Delaunay empty sphere property such that no point in S is inside the 
circumsphere of any tetrahedron of DT . Given a tetrahedron T in DT which has a triangular face τ on one (denoted as 
F ) of the six square faces of C . Since, on the plane spanned by F , the circumcircle of τ is also on the circumsphere of T , 
then by Delaunay empty sphere property, there is no point of S on F which is inside the circumcircle of τ , namely, the 
boundary triangulation of DT on F is also Delaunay, and thus the maximal angle of these triangles is bounded by 135◦ by 
Proposition 2.4.

Next we only need to consider the interface triangles with three vertices on the interface. For these interface triangles, 
their angles can be divided into 16 cases (see Fig. 11).

In case (1) to (15), one can find the upper bound of the angle by calculus analysis. Here we take the case (1) as an 
example to show how to find the upper bound, see Fig. 11 (1). Let v L A be the vector from point L to point A and |v L A | the 
length of v L A . Similarly, we have vectors v LH , v LN , v N A, v N H , then

cos � ALH = v L A · v LH

|v L A ||v LH | = (v LN + v N A) · (v LN + v N H )√|v LN |2 + |v N A |2√|v LN |2 + |v N H |2

= |v LN |2√|v LN |2 + |v N A |2√|v LN |2 + |v N H |2 ≥ 0.

When |v LN | = 0, cos � ALH reaches the minimum value zero, namely, the maximum of � ALH is 90◦ . By the similar method, 
one can get the upper bounds for other cases except case (16) in Fig. 11.

In case (16), provided �ALG is an interface triangle and � ALG is the angle bigger than 144◦ . By Algorithm 2, 
there must exist a vertex of C , for example, vertex Q and ALG Q is a tetrahedron in the Delaunay triangulation. Let 
(1 − h1, 0, 0), (1, 0, h2) and (1, h3, 1) be the coordinates of A, L and H , respectively. Then one can get the circumcenter O
and circumradius r of the circumsphere of ALG Q , then construct function f (h1, h2, h3) := r − |P − O |. By the assumption 
� ALG > 144◦ and the 2D Delaunay empty circle property on the boundary face of C , one can show that f (h1, h2, h3) > 0, 
namely P is inside of the circumsphere of tetrahedron ALG Q , which contradicts with the Delaunay empty sphere prop-
erty. �
Remark 3.3. For the proof of the 3D angle case (16), we use the region_plot function in SageMath [29] to show 
f (h1, h2, h3) > 0 under the given assumptions.

Remark 3.4. We emphasize that the 16 cases plotted in Fig. 11 are used to prove the maximal angle condition. In the 
algorithm, we get the mesh by directly calling Delaunay algorithm with all interface points as input.
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Fig. 11. Different angle cases in the interface triangles.

Again, we restrict the Delaunay triangulations on a local region near the interface. The overall complexity of our mesh 
generation algorithm is: c1 N + c2N2/3 log N since we need to compute the sign of the level set function at N vertices but 
c1 � c2. The meshing time scales like O(N2/3). See Section 5 for numerical results.

In summary, our mesh generator is simple and fast. The generated mesh is semi-structured. The interface is approxi-
mately recovered, and the maximum angle of the surface mesh is uniformly bounded.

4. Finite element methods for elliptic interface problems

We start with Sobolev spaces and the weak formulation of the elliptic interface problem (1)–(4). We then introduce the 
linear virtual element methods and discuss the implementation detail.

4.1. Sobolev spaces and weak formulation

Let D denote a bounded and open set in Rd, d = 2, 3 and W m,p(D) be the usual Sobolev space with standard norm 
‖ · ‖m,p,D and semi-norm | · |m,p,D . In particular, for p = 2, we denote Hm(D) = W m,p(D) and the corresponding norm 
and semi-norm by ‖ · ‖m,D = ‖ · ‖m,p,D and | · |m,D = | · |m,p,D , respectively. The space H1

0(D) = {v ∈ H1(D) : v|∂ D = 0} is 
the subspace of H1(D) with zero trace. Let (·, ·)D and 〈·, ·〉∂ D denote the standard L2 inner products of L2(D) and L2(∂ D)

respectively.
Domains are considered as open sets. Define �̃ = �− ∪�+ and notice that � = �− ∪� ∪�+ = �̃∪�. For v ∈ W m,p(�̃), 

that is, v|�− ∈ W m,p(�−) and v|�+ ∈ W m,p(�+), v may not be in W m,p(�) due to the jump across the interface �.
To derive the weak formulation of elliptic interface problems (1)–(4), we multiply (1) with a test function v ∈ H1

0(�) and 
apply integration by parts. To address the jump of function values, we choose a w− ∈ H1(�−) with w− = q0 on ∂�− . With 
a slight abuse of notation, the zero extension of w− to H1(�̃) is still denoted by w− . The model (1)–(4) is equivalent to: 
find p ∈ H1

g(�) = {v ∈ H1(�) : v|∂� = g} such that

(β∇p,∇v)� = ( f , v)� − 〈q1, v〉� + (β∇w−,∇v)�− , ∀v ∈ H1
0(�), (5)
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and set u = p − w− . It is easy to show that u solves equations (1)–(4). Even though the choice of w− is not unique, 
the solution u does not depend on the choice of w− by the maximal principle. The flux jump [βun]� = q1 is imposed in 
H−1/2(�) and the jump of function value is imposed in H1/2(�).

4.2. Finite element methods in 2D

In this subsection, we present the numerical analysis of the standard finite element methods on the two-dimensional
interface-fitted mesh generated by Algorithm 1.

For simplicity of exposition, we assume the function value jump condition [u]� = 0. Let Th be an interface-fitted tri-
angular mesh with maximal angles uniformly bounded away from π . For each τ ∈ Th , let hτ denote its diameter and 
h = maxτ∈Th hτ . The vertices on � forms a polygon �h approximation of �. The polygon also splits � into two subdomains, 
�+

h and �−
h , which are the approximations of �+ and �− , respectively. Each triangle τ ∈ Th is in either �+

h or �−
h and has 

at most two vertices on �.
Let Vh be the linear finite element space on Th . The linear finite element approximation of (5) is as follows: find 

uh ∈ Vh ∩ H1
0(�) such that:

(βh∇uh,∇vh)� = ( f , vh)� − 〈q̄1, v〉�h , ∀vh ∈ Vh ∩ H1
0(�), (6)

where q̄1 = q1(P0(x)) and P0(x) is a well defined projection from �h to � (cf. [80]).
We can get the nearly optimal L2-norm and H1-norm estimates as the results in [24,85].

Theorem 4.1. Let u be the solution of (5) and uh be the linear finite element approximation in (6) based on the two-dimensional
interface-fitted mesh generated by Algorithm 1. We have

‖β1/2(∇u − ∇uh)‖0,� � h| log h|1/2(‖ f ‖0,� + ‖q1‖2,�), (7)

‖u − uh‖0,� � h2| log h|(‖ f ‖0,� + ‖q1‖2,�). (8)

Proof. For finite element approximation, we have the Céa’s lemma,

‖β1/2(∇u − ∇uh)‖0,� ≤ ‖β1/2(∇u − ∇uI )‖0,�.

Then the energy error estimate is reduced to the interpolation error estimate. In [6], the authors proved that the local 
interpolation error estimate ‖(∇u − ∇uI )‖0,τ � h‖u‖2,τ provided the maximal angle condition is satisfied which has been 
verified for the interface-fitted mesh generated by Algorithm 1; see Proposition 2.4. Another difficulty is the mismatch of 
the curved interface and the discrete interface. Then following the proof in [24,85], and replacing the mesh regular condition 
there by the maximal condition, we obtain the desired results. �

A mesh is O(h2σ ) irregular means the total area of all adjacent triangle pairs in Th which do not form an O(h2)

approximate parallelogram is O(h2σ ). For the interface-fitted mesh generated by Algorithm 1, only the adjacent triangle 
pairs near the interface is not O(h2) approximate parallelogram and other adjacent triangle pairs away from the interface 
can exactly form a parallelogram. That is σ = 0.5 for the mesh generated by Algorithm 1.

Then following the proof procedure in [80], we can also prove the following superconvergence result.

Theorem 4.2. If u ∈ H1(�) ∩ H3(�̃) ∩ W 2,∞ and � is of class C2 , then for all vh ∈ Vh,

‖β1/2
h (∇uh − ∇uI )‖0,� � h3/2

(
‖u‖3,�̃ + ‖u‖2,∞,�̃ + ‖u‖2,∞,�̃ + ‖q1‖0,∞,�

)
. (9)

Let hmin be the minimum element size of Th , by the discrete embedding result,

‖vh‖0,∞,� � | log hmin|1/2|vh|1,�, for all vh ∈ Vh ∩ H1
0(�), (10)

we have the error estimate for the maximal norm estimate.

Corollary 4.3. Assume the same hypothesis in Theorem 4.2. Then

‖β1/2
h (∇uh − ∇uI )‖0,∞,� � | log hmin|1/2

[
h3/2(‖u‖3,�̃ + ‖u‖2,∞,�̃ + ‖u‖2,∞,�̃ + ‖q1‖0,∞,�)

]
.
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4.3. Virtual element methods in 3D

In this subsection, we focus on solving three-dimensional elliptic equations by the virtual element methods (VEM) de-
veloped by Brezzi’s group [9,10].

Let Th be the interface-fitted polyhedral mesh generated by the algorithm in Section 3. Recall that elements near the 
interface � are polyhedra with triangular or square faces and a uniform cubic mesh away from the interface. We could not 
use the classical finite element methods which are not well-defined on polyhedra. Instead, we shall apply virtual element 
methods [9] which can be thought of as conforming finite element spaces defined on polyhedral meshes.

A local finite-dimensional vector space Vh(E) for a polyhedron E ∈ Th is defined as

Vh(E) := {v ∈ H1(E) : �v|E = 0, v|∂ E is continuous and piecewise linear (on triangles) or bilinear (on squares)}.
As a piecewise linear or bilinear function will be uniquely determined by its value on vertices, dim Vh(E) = nv

E , where nv
E is 

the number of vertices of E .
We define the global virtual element space

Vh = {vh ∈ H1(�) : vh|E ∈ Vh(E) for all E ∈ �h}.
Let N (Th) be the set of vertices of mesh Th and N = |N (Th)| be the number of vertices. We define the operator dofi
from Vh to R as dofi(vh) = vh(xi), for a vertex xi ∈ N (Th). The canonical basis {φ1, · · · , φN } ⊂ Vh is chosen as dofi(φ j) =
δi j, i, j = 1, · · · , N . And the nodal interpolation Ih : C(�̄) → Vh is defined as Ihu = ∑N

i=1 u(xi)φi and denoted by uI = Ihu. 
The basis does not need to be written explicitly which is the main difference between classical finite element methods and 
virtual element methods.

As mentioned before, we could extract an approximate surface �h which splits � into two subdomains: �−
h and �+

h , 
which are the approximation of �− and �+ , respectively. Similarly, βh|τ = β+ for all τ ∈ �+

h and βh|τ = β− for all τ ∈ �−
h .

Let w−
h be the nodal interpolation of w− in Vh . A simple construction is one that: interpolates q0 on �h and sets other 

coefficients to zero. The linear virtual element approximation of (5) is: finding ph ∈ Vh ∩ H1
g(�) such that:

(βh∇ph,∇vh)� = ( f , vh)� − 〈q1, vh〉� + (βh∇w−
h ,∇vh)�− , ∀vh ∈ Vh ∩ H1

0(�)

and taking uh = ph − w−
h . Suppose ph = ∑N

j=1 p jφ j , w−
h = ∑N

j=1 w jφ j , by linearity, we have for i ∈ 1, · · · , N ,

N∑
j=1

(βh∇φ j,∇φi)�p j = ( f , φi)� − 〈q1, φi〉� +
N∑

j=1

(βh∇φ j,∇φi)�− w j. (11)

We define the matrix (A−
h )i j = (β−

h ∇φ j, ∇φi)�−
h

, (A+
h )i j = (β+

h ∇φ j, ∇φi)�+
h

and (Ah)i j = (βh∇φ j, ∇φi)�h in �h . Then Ah =
A−

h + A+
h . Define the vector b = (b1, · · · , bN)t by bi = ( f , φi)� − 〈q1, φi〉� . Equation (11) is written in the matrix form as

Ah ph = b + A−
h wh, (12)

where Ah and A−
h are N × N matrices, ph = (p1

h, · · · , pN
h )t and wh = (w1, · · · , w N)t . Since the coefficient β is a positive 

constant, the matrices Ah and A−
h are symmetric and positive definite. The algebraic system (12) could be solved stably and 

efficiently by using algebraic multigrid methods.
For finite element methods, it suffices to compute the local stiffness matrix in each element and then, based on that, the 

matrices A+
h , A−

h are assembled by summing the contribution from each element. Therefore, the major task is to compute 
(∇φ j, ∇φi)E .

To do so, we introduce some projection operators at first. For each polyhedron E , the operator �∇ : Vh(E) → P1(E) is 
defined as the H1 projection to P1(E) space, i.e.,

(∇pk,∇�∇ vh)E = (∇pk,∇vh)E for all pk ∈ P1(E),

where P1(E) is the space of linear polynomials. It can be easily seen that the above condition defines �∇ vh only up to a 
constant. This can be fixed by prescribing a projection operator onto constants P0 : Vh(E) → P0(E) and requiring

P0(�
∇ vh − vh) = 0.

One such choice is P0 vh = ∑nv
E

i=1 vh(xi)/nv
E = ∑nv

E
i=1 dofi(vh)/nv

E .
Using the projection �∇ , we write the basis function φi ∈ Vh(E) as �∇φi + (I − �∇)φi and split the entry of the local 

stiffness matrix as

(∇�∇φi,∇�∇φ j)E + (∇(I − �∇)φi,∇(I − �∇)φ j)E .
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Again the second term is not computable since the basis φi is not known point-wise. Instead we replace by a so-called 
stabilization term S E (·, ·)

(∇�∇φi,∇�∇φ j)E + S E((I − �∇)φi, (I − �∇)φ j).

Let hE be |E|1/3, where |E| means the volume of E . We use a scaled l2 inner product in the stabilization term

S E((I − �∇)φi, (I − �∇)φ j) = hE

nv
E∑

r=1

dofr((I − �∇)φi)dofr((I − �∇)φ j)

in order to satisfy the assumption of S E

c1(∇v,∇v) ≤ S E(v, v) ≤ c2(∇v,∇v), ∀v ∈ Vh(E) and �∇ v = 0

for some positive constants c1 and c2 independent of E and hE . The explicit expression of the local stiffness matrix of the 
virtual element method is:

(K E
h )i j := (∇�∇φi,∇�∇φ j)E + hE

nv
E∑

r=1

dofr((I − �∇)φi)dofr((I − �∇)φ j).

We now give concrete formulae on the computation of the matrix representation of the operator �∇ . Let xE =
(xE , yE , zE ) be the center of E , i.e. xE = 1/nv

E

∑nv
E

i=1 xi . We choose a scaled monomial basis of P1(E) as m1 = 1, m2 =
(x − xE )/hE , m3 = (y − yE )/hE , m4 = (z − zE )/hE .

Let G4×4 be defined as

G :=

⎛
⎜⎜⎜⎝

P0m1 P0m2 · · · P0m4
0 (∇m2,∇m2)0,E · · · (∇m4,∇m2)0,E
...

...
. . .

...

0 (∇m2,∇m4)0,E · · · (∇m4,∇m4)0,E

⎞
⎟⎟⎟⎠ =

(
1 0
0 hE I 3

)

where I3 is a 3 × 3 identity matrix.
Let B4×nv

E
be a matrix defined as:

B :=

⎛
⎜⎜⎜⎝

P0φ1 · · · P0φnv
E

(∇m2,∇φ1)E · · · (∇m2,∇φnv
E
)E

...
. . .

...

(∇m4,∇φ1)E · · · (∇m4,∇φnv
E
)E

⎞
⎟⎟⎟⎠ .

The formulae for the first row of B is P0φ1 = P0φ2 = . . . = P0φnv
E

= 1/nv
E . For the other components (∇m j, ∇φi)E , j =

2, 3, 4, we have (∇m j, ∇φi)E = − 
∫

E �m jφi + ∫
∂ E

∂m j
∂n φi by integration by parts. The first term is zero as �m j = 0 for linear 

polynomials. We only need to compute the second term. Due to our data structure, all the faces on the ∂ E are either 
triangles or squares. Then

∫
∂ E

∂m j

∂n
φi =

∑
i∈triangular face f n j

f | f |
3hE

+
∑

i∈square face f n j
f | f |

4hE
, (13)

where n f = (nx
f , n

y
f , n

z
f ) = (n2

f , n
3
f , n

4
f ) is an outward unit normal direction on each face f and | f | is the area for each 

face f .

Remark 4.4. Using our mesh generation algorithm in Section 3, we store the polyhedron in the form of either triangles or 
squares which leads to the simple formula (13). When the faces are general polygons, additional projection operators are 
needed in order to compute the integral 

∫
f

∂m j
∂n φi (see [9,10]). �

To compute the stabilization term, we need one more matrix Dnv
E ×4

D := (
dofi(m j)

) = h−1
E

⎛
⎜⎜⎝

hE x1 − xE y1 − yE z1 − zE

hE x2 − xE y2 − yE y2 − zE

· · · · · · · · · · · ·
hE xnv

E
− xE ynv

E
− yE znv

E
− zE ,

⎞
⎟⎟⎠

where (xi, yi, zi), i = 1, · · · , nv are vertices in each polyhedron E .
E
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By definition, �∇ vh = ∑4
α=1 sαmα and the coefficients (sα) are determined by the following linear systems

(∇mα,∇(�∇ vh − vh))E = 0 α = 1, . . . ,4.

The matrix representation of �∇ : Vh(E) → P1(E) relative to the basis (mα) is �∇ = G−1 B .

We will also need the matrix representation of �∇ in the canonical basis {φi}. Let �∇φi = ∑nv
E

j=1 dof j(�
∇φi)φ j, i =

1, · · · , nv
E , then the matrix representation �∇∗ of the operator �∇ : Vh(E) → Vh(E) in the canonical basis is given by �∇∗ =

DG−1 B = D�∇ .
Finally the matrix formulation of K E

h could be written as

K E
h = [�∇]T G̃�∇ + hE [I − �∇∗ ]T [I − �∇∗ ],

where G̃ is the same with G except that the elements in the first row are all zeros.
For the first term of bi in (12), we approximate f by a piecewise constant and approximate

( f , φi)� =
∑

E∈�h

( f , φi)E ≈
∑

E∈�h

|E| f (xE , yE , zE)/nv
E .

The second term of bi could be computed by Gauss quadrature on surface mesh �h .

Remark 4.5. An abstract error estimate of VEM has been given in [9]. With a type of Céa’s lemma, the convergence analysis 
is reduced to the interpolation error estimate |u − uI |1 and |u − uπ |1,E , where uI is the nodal interpolation and uπ is a local 
approximation of u. Notice that uI ∈ Vh is continuous but uπ is most likely discontinuous. To obtain optimal order of the 
interpolation and approximation error, the authors in [9] further assume the shape-regular condition: there exists a γ > 0
such that each domain E is star-shaped with respect to a ball of radius ρ ≥ γ hE , where hE = diam(E). This shape regularity 
assumption will rule out elements generated by our algorithm.

As we mentioned before, for linear finite element space defined on triangles, a refined analysis shows that the optimal 
first order interpolation error estimate still holds if the maximum angle is uniformly bounded away from π as h → 0 [6]. 
Such angle condition is generalized to three dimensions, and to high order elements in [3,30,56]. Generalization to polyhe-
dra, however, is unknown and under investigation. �
5. Numerical experiments

In this section, we present numerical results for the elliptic interface problems in three dimensions. We implement 
mesh generation and VEM based on the MATLAB� package iFEM [22]. We also solve the algebraic system by an algebraic 
multigrid (AMG) solver implemented in iFEM [22]. We start with a simple spherical interface and then consider more 
complex geometric shapes, including two spheres, an orthocircle shape and 12 intersecting spheres. We shall report the 
following errors:

‖uI − uh‖A =
(
‖β1/2

h ∇(u−
I − u−

h )‖2
�−

h
+ ‖β1/2

h ∇(u+
I − u+

h )‖2
�+

h

)1/2
,

‖uI − uh‖∞ = max
{
‖u−

I − u−
h ‖∞,�−

h
,‖u+

I − u+
h ‖∞,�+

h

}
,

‖uI − uh‖0,h = h3/2

⎛
⎜⎝ ∑

xi∈N (�−
h )

(u−
I (xi) − u−

h (xi))
2 +

∑
xi∈N (�+

h )

(u+
I (xi) − u+

h (xi))
2

⎞
⎟⎠

1/2

,

where uh is the numerical solution obtained by the linear virtual element methods; u+
I and u−

I are the nodal interpolation 
of the exact solution u in �+

h and �−
h respectively. Note that the squared energy norm ‖uI − uh‖2

A can be computed by 
(u−

I − u−
h )T A−

h (u−
I − u−

h ) + (u+
I − u+

h )T A+
h (u+

I − u+
h ) and ‖ · ‖0,h is a good approximation of L2-norm. The rate is obtained 

by the least square fitting of the errors in the log log scale.

Example 5.1 (One sphere). The domain � is (−1, 1)3 and the interface is defined by φ(x, y, z) = x2 + y2 + z2 − r2 with radius 
r = 0.75. The coefficient β is piecewise constant. The analytic solution is given by u+ = 10(x + y + z) and u− = 5 exp(x2 +
y2 + z2) + 20. In this case, the solution is discontinuous and the flux jump across the interface is also non-homogeneous.

Fig. 12 shows the surface mesh extracted from the volume mesh generated by our algorithm for the spherical interface. 
The maximal interior angle of triangular faces on the surface mesh is bounded by 112.8104◦ . Tables 2 and 3 show the 
error for β− = 1, β+ = 10 and β− = 1, β+ = 100, respectively. It can be seen that near second order accuracy is attained 
in both ‖ · ‖0,h and ‖ · ‖∞ norms. The convergence rate in the energy norm is near 1.5, which is consistent with the 
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Fig. 12. An interface mesh with maximal angle 112.8104◦ .

Table 2
Errors for Example 5.1: β− = 1 and β+ = 10.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

10,323 0.1 4.45798e−01 5.24227e−02 3.62347e−02
72,713 0.05 1.64215e−01 1.81762e−02 8.97415e−03
547,881 0.025 6.62120e−02 5.09725e−03 2.62269e−03
4,240,529 0.0125 2.43899e−02 1.37664e−03 7.05429e−04

Rate 1.4 1.8 1.9

Table 3
Errors for Example 5.1: β− = 1 and β+ = 100.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

10,323 0.1 6.65319e−01 5.14276e−02 3.40871e−02
72,713 0.05 2.41564e−01 1.84007e−02 8.42552e−03
547,881 0.025 8.98117e−02 5.21504e−03 2.50271e−03
4,240,529 0.0125 3.21041e−02 1.42298e−03 6.80724e−04

Rate 1.5 1.7 1.9

Table 4
CPU time (in seconds) for Example 5.1: β− = 1 and β+ = 10.

#dof Assemble Solve Mesh
10,323 0.228973 0.47 0.21165
72,713 0.970122 2.59 0.4854
547,881 6.99419 13.55 1.8981
4,240,529 62.1644 121.59 8.0172

Table 5
Example 5.1: Iteration steps of AMG with fixed β− = 1 and various β+ .

#dof β+

10−3 10−2 10−1 1 10 102 103 104

7,921 10 10 10 9 9 9 9 9
63,111 11 11 11 11 11 10 10 10
509,479 12 12 12 12 14 13 13 13
4,086,927 13 12 13 15 17 16 16 16

superconvergence result obtained in [21]. This superconvergence occurs due to the nice properties of our semi-structured 
mesh. It seems that the convergence rate is robust to the variation of β .

From Table 4, we can conclude that the runtimes of the mesh generation part can be ignored compared with the 
assembling and solving parts. In Table 5, we present the variation of iteration steps of the algebraic multigrid method with 
respect to the number of degrees of freedom (#dof) and to the variation of jump coefficients (fix β− = 1 and change β+). 
It indicates that the algebraic multigrid method is a robust and efficient solver: robust to the number of degrees of freedom 
and to the variation of jump coefficients.

Example 5.2 (Two spheres). The domain � is (−1, 1)3 and the interface is defined by

φ(x, y, z) = min {φ1, φ2}
where
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Fig. 13. Two balls are embedded in the unit cube. The maximal angle is 130.4665◦ .

Table 6
Errors for Example 5.2: β− = 1 and β+ = 1.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

9,789 0.1 3.76723e−01 1.08148e−01 6.52076e−02
71,225 0.05 1.32276e−01 2.82699e−02 1.74225e−02
540,945 0.025 4.52335e−02 7.30380e−03 4.28321e−03
4,211,729 0.0125 1.60165e−02 1.92081e−03 1.11271e−03

Rate 1.5 1.9 2

Table 7
Errors for Example 5.2: β− = 1 and β+ = 100.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

9,789 0.1 3.67145e+00 1.15596e−01 5.54995e−02
71,225 0.05 1.35081e+00 3.08549e−02 1.51136e−02
540,945 0.025 4.78640e−01 8.22331e−03 3.74778e−03
4,211,729 0.0125 1.72934e−01 2.25395e−03 9.77991e−04

Rate 1.5 1.9 2

Table 8
CPU time (in seconds) for Example 5.2: β− = 1 and β+ = 1.

#dof Assemble Solve Mesh
9,789 0.160716 1.01 0.259938
71,225 0.706959 5.84 0.36018
540,945 6.32812 27.26 1.78691
4,211,729 52.7369 133.86 10.067

φ1 = (x + 0.5r)2 + (y + 0.5r)2 + (z + 0.75r)2 − r2,

φ2 = (x − 0.25r)2 + (y − 0.75r)2 + (z − r)2 − r2,

with radius r = 0.4. The coefficient β is piecewise constant. The analytic solution is given by u+ = 10(x2 + y2 + z2) and 
u− = 5 cos (x2 + y2 + z2).

Fig. 13 shows that two spheres are embedded in the unit cube. When h = 0.1, i.e., the background Cartesian mesh is 
not fine enough, there exists an interface element which is divided into three parts by these two spheres. The maximal 
interior angle of triangular faces on the surface mesh is bounded by 130.4665◦ . Tables 6 and 7 show the numerical results 
for β− = 1, β+ = 1 and β− = 1, β+ = 100, respectively. Table 8 shows how the computational time grows with respect to 
the number of degrees of freedom. Table 9 shows the number of iterations taken by the algebraic multigrid method for 
various values of input parameters.

All results are consistent with our conclusion. It indicates that our algorithm works in a case when the interface is 
unconnected.
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Table 9
Example 5.2: Iteration steps of AMG with fixed β− = 1 and various β+ .

#dof β+

10−3 10−2 10−1 1 10 102 103 104

7,387 10 11 10 9 9 9 9 9
61,623 11 11 11 10 10 10 10 10
502,543 12 12 12 12 12 11 12 11
4,058,127 13 13 13 12 13 13 13 13

Fig. 14. The interface is an orthocircle with maximal angle 132.4673◦ .

Table 10
Errors for Example 5.3: β− = 1 and β+ = 1.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

11,145 0.12 2.93834e−01 5.50055e−02 5.14120e−02
76,469 0.06 7.95795e−02 1.05921e−02 4.18525e−03
561,957 0.03 2.35627e−02 2.22961e−03 9.17810e−04
4,295,165 0.015 7.80143e−03 6.05301e−04 2.15878e−04

Rate 1.7 2.1 2.1

Table 11
Errors for Example 5.3: β− = 1 and β+ = 100.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

11,145 0.12 3.44042e+00 9.63266e−02 1.24556e−01
76,469 0.06 7.72426e−01 1.21513e−02 1.56542e−02
561,957 0.03 2.06488e−01 3.04186e−03 3.34684e−03
4,295,165 0.015 6.30787e−02 7.45803e−04 8.10506e−04

Rate 1.8 2 2.1

Table 12
CPU time (in seconds) for Example 5.3: β− = 1 and β+ = 1.

#dof Assemble Solve Mesh
11,145 0.493225 0.75 0.383038
76,469 1.41325 1.72 0.857616
561,957 8.1635 12.05 3.48605
4,295,165 62.6127 97.92 13.8495

Example 5.3 (An orthocircle). The domain � is (−1.2, 1.2)3 and the interface is defined by φ(x, y, z) = [
(x2 + y2 − 1)2 + z2

]×[
(x2 + z2 − 1)2 + y2

] [
(y2 + z2 − 1)2 + x2

] − 0.0752
[
1 + 3(x2 + y2 + z2)

]
. The coefficient β is piecewise constant. The ana-

lytic solution is given by u+ = 1 − x2 − y2 − z2 and u− = sin(πx) sin(π y) sin(π z).

Fig. 14 shows the interface-fitted mesh extracted as the boundary of �−
h . The maximal angle of triangular faces of the 

interface mesh is bounded by 132.4673◦ . Tables 10 and 11 show the numerical results for β− = 1, β+ = 1 and β− = 1, β+ =
100, respectively. Table 12 shows the computational time accordingly. The mesh part is still quick even the interface with 
complex geometry. Table 13 is the number of iterations of the algebraic multigrid solver.

These test results indicate that the proposed interface problem solver works well even for complex surfaces. Note that 
the maximal angles of the surface mesh in our examples are uniformly bounded by 144◦ , then there is no need to apply 
mesh smoothing as a post-processing step.



L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 345
Table 13
Example 5.3: Iteration steps of AMG with fixed β− = 1 and various β+ .

#dof β+

10−3 10−2 10−1 1 10 102 103 104

8,743 15 14 15 13 11 10 10 10
66,867 13 12 11 11 11 11 11 11
523,555 13 12 12 12 12 12 12 12
4,141,563 13 13 13 13 13 13 13 13

Fig. 15. Twelve balls are embedded in the cube. The maximal angle is 131.3925◦ .

Fig. 16. Part of the interface-fitted mesh with sharp edges.

Example 5.4 (12 intersecting spheres). In this example, we consider a more complicated interface formed by 12 intersecting 
spheres, which has many one-dimension sharp features. The domain � is (−3, 3)3 and the interface is defined by

φ(x, y, z) = min {φ1, φ2, · · · , φ12}
where φi, i = 1, . . . , 12 are equal radius balls with centers

(1.0,0,0), (−1.0,0,0), (0.5,0.866025403784439,0), (−0.5,0.866025403784439,0),

(0.5,−0.866025403784439,0), (−0.5,−0.866025403784439,0), (2.0,0,0), (−2.0,0,0),

(1.0,1.73205080756888,0), (−1.0,1.73205080756888,0), (−1.0,−1.73205080756888,0),

(1.0,−1.73205080756888,0)

and radius r = 0.7. The coefficient β is a piecewise constant. The analytic solution is given by u+ = 10(x2 + y2 + z2) and 
u− = 5 cos (x2 + y2 + z2).

Fig. 15 shows the interface-fitted mesh extracted as the boundary of �−
h , which did not capture the sharp one-dimension 

features of the interface, and this will lead to a loss of the solution accuracy. From part of the interface-fitted mesh, there are 
geometric singularities with sharp edges at the intersection of balls. See Fig. 16 for an illustration. In order to capture the 
features of complicated interface and improve the solution accuracy, one need to use adaptive mesh near the geometric 
features, and this will be our future work. But the maximal angle condition is still satisfied as the maximal angle of 
triangular faces on the surface mesh is bounded by 131.3925◦ . Tables 14 and 15 show the numerical results for β− =
1, β+ = 1 and β− = 1, β+ = 10, respectively. It can be seen that the convergence rate in the energy norm is still near 1.5. 
But the convergence rates in the ‖ · ‖0,h and ‖ · ‖∞ norms are not second order due to geometric singularities. Table 16
shows how the computational time grows with respect to the number of degrees of freedom. Table 17 shows the number 
of iterations taken by the algebraic multigrid method for various values of input parameters.
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Table 14
Errors for Example 5.4: β− = 1 and β+ = 1.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

2,527 0.48 2.27225e+01 3.60464e+00 6.97070e+00
18,960 0.24 1.18700e+01 2.24845e+00 4.20002e+00
138,051 0.12 3.99601e+00 8.79537e−01 9.22094e−01
1,051,665 0.06 1.57695e+00 2.91154e−01 3.92484e−01

Rate 1.4 1.2 1.6

Table 15
Errors for Example 5.4: β− = 1 and β+ = 10.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

2,527 0.48 8.71247e+01 5.29705e+00 8.63843e+00
18,960 0.24 3.90973e+01 3.07134e+00 4.54532e+00
138,051 0.12 1.38105e+01 1.37945e+00 1.15474e+00
1,051,665 0.06 5.49027e+00 4.88589e−01 3.78441e−01

Rate 1.3 1.1 1.6

Table 16
CPU time (in seconds) for Example 5.4: β− = 1 and β+ = 1.

#dof Assemble Solve Mesh
2,527 0.213214 0.29 0.3674
18,960 0.431979 1.81 0.61863
138,051 2.22761 4.88 2.4452
1,051,665 29.9028 42.76 6.8316

Table 17
Example 5.4: Iteration steps of AMG with fixed β− = 1 and various β+ .

#dof β+

10−2 10−1 1 10 102 103 104

1,611 11 10 9 8 9 8 8
15,208 12 11 10 10 10 10 10
123,049 12 12 11 11 11 11 11
991,663 14 12 12 12 12 12 12

6. Conclusion and future work

We have developed a simple interface-fitted mesh generator in both two and three dimensions. Near the interface, we 
generate a Delaunay triangulation and merge tetrahedra into polyhedra to avoid sliver tetrahedra. We then use virtual 
element methods as a substitution of classical finite element methods to solve the elliptic interface problems and use the 
algebraic multigrid solvers for the resulting linear algebraic system. Finally, we show some numerical results to confirm the 
effectiveness of our method.

Our interface-fitted mesh generator is based on a uniform Cartesian mesh. So it cannot capture the sharp features of 
complicated interfaces very well. In the future work, we will combine our algorithm and adaptive mesh refinement together. 
We will also present the convergence analysis in a forthcoming paper and explore high order virtual element methods with 
curved surfaces. Furthermore, we plan to apply our algorithm to solve moving interface problems for engineering and 
biological applications.
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