
Journal of Computational Physics 334 (2017) 327–348
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

An interface-fitted mesh generator and virtual element

methods for elliptic interface problems ✩

Long Chen b,a, Huayi Wei c,a,∗, Min Wen b

a Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing, 100124, China
b Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
c School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, 411105, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 July 2016
Received in revised form 16 December 2016
Accepted 5 January 2017
Available online 10 January 2017

Keywords:
Elliptic interface problem
Interface-fitted mesh
Delaunay triangulation
Semi-structured
Virtual element method

A simple and efficient interface-fitted mesh generation algorithm which can produce a
semi-structured interface-fitted mesh in two and three dimensions quickly is developed
in this paper. Elements in such interface-fitted meshes are not restricted to simplices but
can be polygons or polyhedra. Especially in 3D, the polyhedra instead of tetrahedra can
avoid slivers. Virtual element methods are applied to solve elliptic interface problems
with solutions and flux jump conditions. Algebraic multigrid solvers are used to solve
the resulting linear algebraic system. Numerical results are presented to illustrate the
effectiveness of our method.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider finite element methods for solving elliptic interface problems which have a variety of applications in dif-
ferent research fields, including fluid dynamics, material science, and biological systems, etc. [20,47,55,62]. The importance
of the coupling of the complex geometry of the interface with the numerical methods has been recognized and received
rapidly increasing interest in recent years.

Let � be an open and bounded domain in Rd (d = 2, 3), and � be a continuous interface embedded in �. The interface
� separates the domain � into disjoint regions �+ and �− , where �+ denotes the exterior domain and �− is the interior
domain enclosed by �. We consider numerical methods for solving the following elliptic interface problems:

−∇ · (β(x)∇u(x)) = f (x), x ∈ �\� (1)

with prescribed jump conditions across the interface �:

[u]� = u+ − u− = q0, (2)

[βun]� = β+u+
n − β−u−

n = q1, (3)

✩ The first author was supported by the National Science Foundation (NSF) DMS-1418934 and in part by the Sea Poly Project of Beijing Overseas Talents.
The second author was supported by the NSFC, i.e., National Natural Science Foundation of China (Grant No. 11301449 and No. 91430213), and in part by
the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20134301120003). The third author was supported by the National
Science Foundation (NSF) DMS-1418934.

* Corresponding author at: School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, 411105, China.
E-mail addresses: chenlong@math.uci.edu (L. Chen), weihuayi@xtu.edu.cn (H. Wei), mwen2@uci.edu (M. Wen).
http://dx.doi.org/10.1016/j.jcp.2017.01.004
0021-9991/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2017.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:chenlong@math.uci.edu
mailto:weihuayi@xtu.edu.cn
mailto:mwen2@uci.edu
http://dx.doi.org/10.1016/j.jcp.2017.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2017.01.004&domain=pdf

328 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
and boundary condition:

u = g on ∂�. (4)

Here un denotes the normal derivative (∇u) · n with n being the unit norm direction of the interface � pointing outward
(from �− to �+). The superscripts + and − stand for the restriction of a function on �+ and �− , respectively. The diffusion
coefficient β(x) is assumed to be uniformly positive and smooth on each subdomain, but may be discontinuous across the
interface. Because of that, the solution u is piecewise smooth but the global regularity is low [27,48,49].

Numerical methods for elliptic interface problems can be roughly classified into two categories by using either an
interface-fitted (also known as body-fitted or interface conforming) mesh or an unfitted mesh (e.g. a uniform Cartesian
mesh) in the discretization of the domain. In the unfitted mesh approach, a popular way to enforce the jump conditions
is to modify the finite difference stencils or the finite element basis near the interface. A lot of numerical methods in this
direction have been proposed such as the immersed boundary method [74], the immersed interface method [58,59], im-
mersed finite element methods [37,44,54,63], ghost fluid methods [65], matched interface and boundary (MIB) methods [83,
87,90], multiscale finite element methods [27], extended finite element methods (XFEM) [36,68,69], and many others [39,
46,45,50,64,82]. The jump condition can be also imposed based on the Nitsche’s method [72] by introducing penalty terms
across interfaces, see, for example, the earlier work by Babuška [5], Barrett and Elliott [7], unfitted FEM by Hansbo and
Hansbo [41], hp-discontinuous Galerkin method [67], CutFEM [17,43], and many others [8,17–19,41–43,53,78,79]. The most
attractive feature of the unfitted mesh approach is the easiness of the mesh generation. Indeed, if the background mesh is
Cartesian, there is no need of meshing which is very convenient, especially when the interface is moving in time.

On the other hand, using unfitted mesh approach, it is difficult to capture the complex geometry of the interface and
to enforce jump conditions across the interface accurately, and the resulting linear system may not be always symmetric
which could cause problems for fast solvers. Furthermore a rigorous error analysis is difficult. Recent progress on immersed
finite element methods can be found in [40,88].

In this work, we focus on the interface-fitted mesh approach. Provided a mesh fitted to the interface, one can use
conforming finite element methods and get a symmetric system which can be solved efficiently by fast solvers such as
algebraic multigrid method. Rigorous error analysis is possible. Optimal a priori estimates of linear finite element are given
in [86,14,24] and in [60] for high order finite elements. Recent work using hybridized discontinuous Galerkin (HDG) [51]
and weak Galerkin (WG) [71] method is also based on a shape regular and body-fitted triangulation. The challenge of this
approach is quickly generating an interface-fitted mesh, especially in three dimensions (3D), which is the topic of this study.

There is a lot of work on the unstructured interface-fitted mesh generation [66,73,89]. The unstructured mesh generator
is, however, time consuming as it needs to modify the mesh for the whole domain, not just near the interface. For example,
extensive and non-trivial computational effort is needed to generate a high quality 3D finite element mesh from biomedical
image data or geological image data etc. [4,28].

We are interested in the semi-structured and body-fitted mesh generation methods [11,13,76] and will develop a simple
and effective mesh generation algorithm. As an illustrative example, to generate an interface-fitted mesh in two dimensions
(2D), we start from a uniform Cartesian mesh with N-mesh points, and apply three steps: 1) find all the intersection points,
the mesh points near the interface, and add few auxiliary points; 2) generate a Delaunay triangulation of these points; 3)
remove the unnecessary triangles and merge the regular meshes away from the interface. The resulting triangulations can
preserve the interface and the maximal angle is bounded by 135◦ . Since the Delaunay triangulations are only constructed
on a local region near the interface, the dominant cost is reduced to O(N1/2 log N). Due to the semi-structured mesh and
localization near the interface, some nice properties of structured mesh are still preserved such as superconvergence in the
energy norm and fast convergence of algebraic multigrid methods [80].

The main restriction of this approach is the quality of the generated mesh especially in 3D. Most finite element methods
require discretizing a domain into a set of shape regular tetrahedra in three dimensions. The accuracy of the simulations
and the efficiency of the solvers could deteriorate by the presence of badly-shaped elements. The problematic tetrahedra
are so-called slivers, which are a type of flat tetrahedra without small edges, but with nearly zero volume. Namely, four
vertices of a sliver are almost coplanar. Due to the presence of slivers, three-dimensional mesh generation is much harder
than the two-dimensional case, and removing slivers from a 3D tetrahedral mesh is one of the major tasks in the field of
mesh generation [32,61,70].

We propose a new way to solve this difficulty. We choose polyhedral meshes rather than tetrahedral meshes. Then
silvers will be merged into nearby polyhedra. The shape of the polyhedron or other tetrahedron could be still degenerate
but the maximal angle is bounded uniformly away from π . Notice that finite element approximation retains accurate if the
maximal angle condition [6] is satisfied. Namely tetrahedral with small volumes are allowed as long as the four vertices are
non-planar [30,56]. Similar results can be established for polyhedral meshes and theoretical justification will be reported
somewhere else.

Another difficulty is encountered in the implementation. Due to the large number of possible intersections between the
fixed mesh and the interface, a variety of interface-cells are generated leading to an equally large number of treatments,
which could result in complex coding logistics; see [75,76].

We propose an all-in-one solution. The connectedness of intersection points is obtained by the Delaunay algorithm
which is a well developed algorithm in computational geometry and efficient implementation is available in many software
packages. Our mesh generation algorithm in 3D is similar to the 2D case only different in step 3: post-processing. The

L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 329
additional work is to merge tetrahedra into polyhedra. To facilitate the merging, the polyhedra are stored in the form of
faces and the index of the elements to which the faces belong. The resulting mesh retains the following nice properties: the
interface is approximately preserved, the maximal angle condition is satisfied, and cost-efficient. The Delaunay algorithm
is only called for points near the interface and thus the dominated cost is reduced to O(N2/3) which is considerably
smaller comparing with O(N) assembling and solving of the linear algebraic system. The quality and efficiency of our mesh
generation algorithm are balanced and suitable for the finite element simulation. No additional mesh smoothing process is
needed in our algorithm. Of course, adding such a mesh smoothing process will furthermore improve the quality of the
mesh and probably improve the accuracy of the finite element approximation. However, it will destroy the structure of the
mesh. In our mesh generator, the background mesh is fixed. The Delaunay algorithm can be called element by element and
thus local modification is possible if only part of the interface is changed. These features are important for moving interface
problems, which will be explored in our future work.

A similar mesh generation approach was introduced in [38], where the authors introduced the Voronoi diagrams and
Delaunay triangulation of a point set of a surface and more focused on the surface mesh generation. Our algorithm seems
simpler and more suitable for finite element simulation as we shall discuss below.

Since elements in such interface-fitted meshes are general polyhedra, we shall apply virtual element methods (VEM) [9,
10], which can be considered as an extension of conforming finite element methods to polyhedral meshes. The resulting
linear algebraic system is symmetric and positive definite and thus can be solved efficiently using algebraic multigrid solvers.
Furthermore, according to our mesh generation algorithm, we will get polyhedra with triangular and square faces which
will be much easier to assemble the matrices in VEM compared to the original approach in [10]. Optimal second order of
convergence in the L2 and L∞ norms and a superconvergence of energy norm is observed in several numerical examples.

An outline of the paper is as follows. In Sections 2 and 3, we present the mesh algorithm for the generation of interface-
fitted meshes in two and three dimensions, respectively. In Section 4, we derive the weak formulation of the elliptic interface
problems and discuss linear virtual element methods on all elements. In Section 5, we provide numerical results to show
the effectiveness of our method. We end with several concluding remarks and future work.

2. Interface-fitted mesh generator: two dimensions

In this section, we introduce our interface-fitted mesh generator in 2D. We first describe the algorithm and then give
two examples to illustrate the algorithm. In addition, we prove the generated mesh will preserve the interface approximatly
and satisfy the maximal angle condition.

2.1. Algorithm

Let � be an interface embedded in a rectangular domain �. Assume � can be represented by the zero-level set of
a function φ(x), i.e., � = {x ∈ � : φ(x) = 0}. The interface � separates � into subdomains �+ := {x ∈ � : φ(x) > 0} and
�− := {x ∈ � : φ(x) < 0}. Note that �− could have multiple connected components when � consists of two or more closed
curves.

One can easily generate a uniform Cartesian mesh �h of � with a given mesh size h. A vertex p of �h is said to be
inside if φ(p) < 0, outside if φ(p) > 0, or on � if φ(p) = 0; an edge (p1, p2) is called a cut edge if φ(p1)φ(p2) < 0; the
point which the cut edge intersects with � is called an intersection point; a square element K of �h which intersects with
the interface �, i.e. |K̄ ∩�| �=∅, is called an interface element. We can find interface elements by using one of the following
two rules:

(1) There exists at least two vertices p and q with opposite sign, i.e., φ(p)φ(q) < 0;
(2) There exists at least two vertices on the interface, namely the value of φ on these vertices is 0.

These two rules could detect all the interface elements in Fig. 1 except case (3), which could be avoided by choosing the
initial mesh size h small enough. For disconnected interfaces (cases (6)–(9)), we assume it is described by two level set
functions (cf. Example 2.2), and the intersection points can be found by treating each level set function one by one. We
remark that it is much more difficult to modify stencils or the basis for such cases. In general, the modified finite differ-
ence stencils or modified finite element basis near the interface is to introduce additional but local degrees of freedom
near the interface and then use the jump conditions to eliminate these degree of freedom by solving a small linear system
elementwise [2,12,35,52,69,81,84]. In almost all of these work, it is assumed the intersection meets the edges of an inter-
face element at no more than two intersections and intersects at different edges for one element, cf. [44,63,64,88]. If this
condition is violated, such as those cases (6)–(9) in Fig. 1, the local system will be much more involved since it depends on
how the interface cuts the elements.

We define the interface points as the collection of intersection points, vertices of interface elements, and some auxil-
iary points explained below. When the intersection points are diagonal, we need to add the midpoints of corresponding
elements, which are called auxiliary points.

Recall that a Delaunay triangulation for a set of points P in a plane is a triangulation of the convex set of P such that
no point in P is inside the circumcircle of any triangle in this triangulation [32,57].

330 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
Fig. 1. Example of interface elements: (1)–(5) with one level set function and (6)–(9) with two level set functions.

Fig. 2. Cartesian mesh � and a circle interface �. The grayed elements are interface elements.

Our 2D interface-fitted mesh generation algorithm is described as follows:

Algorithm: 2D interface-fitted mesh generation algorithm

Input: Mesh size, h, level set function, φ(x) and square domain, �;
Output: An interface-fitted mesh of �;
1. Find all the interface points.
2. Construct a Delaunay triangulation of these points.
3. Remove triangles not in the interface elements and merge all uncut elements.

Algorithm 1: 2D mesh generator.

2.2. Examples

We give two examples to explain Algorithm 1 in detail. The first example shows the simple case when the interface is a
circle. The second example illustrates a more complex case when the interface is unconnected and some interface elements
are divided into three parts.

Example 2.1 (A circle). Consider the domain � = (−1, 1)2 and a circle interface � represented by the level set function
φ(x, y) = x2 + y2 − r2, with r = 0.5. The interface elements are shown in Fig. 2.

First, we construct a point set P which includes the intersection points between cut edges and �, the vertices of all
interface elements, and some auxiliary points. See Fig. 3(a) for the illustration. Here we use the bisection method to compute
the intersection points within the machine precision tolerance.

L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 331
Fig. 3. Three steps to generate an interface-fitted mesh.

Then we construct a Delaunay triangulation based on the point set P . In MATLAB, we just call DT = delaunay(x,y)
(see Fig. 3(b)).

In the last step, we keep the triangles in interface elements and merge the uncut elements to get the final interface-fitted
semi-structured mesh in Fig. 3(c)–(d).

Example 2.2 (Two circles). Consider the domain � = (−1, 1)2 and the unconnected interface � represented by the level set
function

φ(x, y) = min
{
(x + r)2 + y2 − (1.1r)2, (x − r)2 + y2 − (0.8r)2

}
,

with r = 0.4. We can apply the same algorithm and obtain the mesh in Fig. 4. The only difference is when computing
intersection points, we compute them for each level set function separately. We use this example to show that our algorithm
can handle unconnected interfaces.

2.3. Properties

We explore properties of the mesh obtained in Algorithm 1. A triangle is called an interior element when the barycenter
of the triangle is inside. The interface � could be approximated by the boundary of those interior elements and can be
extracted easily. The obtained discrete interface is denoted by �h .

Proposition 2.3. The interface will be approximately recovered in the triangulation generated by Algorithm 1. More precisely, we have
dist(�h, �) � h2 provided � is smooth enough and h is small enough.

332 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
Fig. 4. Interface points and interface-fitted meshes when the interface is unconnected.

Fig. 5. Add one auxiliary point when two intersection points are diagonal.

Proof. We shall use another characterization of Delaunay triangulations: a Delaunay triangulation is the projection of the
lower convex hull of points lifted to the paraboloid f (�x) = ‖�x‖2 [16,23,34].

The function values of f (�x) on the four vertices of a square will be on a plane. As the function f is strictly convex, the
function value of any intersection points which are different from the vertices of the square will be below this plane. Then
the lower convex hull when lifted to R3 will always connect the intersection points. Thus, the interface will be recovered
under this circumstance.

If there are two diagonal vertices of a square on the interface � (see Fig. 5(c)), then the Delaunay triangulation on this
square is not unique. Using either diagonal of the square is a valid Delaunay triangulation (see Fig. 5(a) and (b)). Therefore,
we introduce the center of this square as an auxiliary point to make sure the interface is preserved (see Fig. 5(d)).

In both cases, �h contains a piecewise affine approximation of � with nodes on the interface and thus the distance is in
the order of Ch2 with constant C depends on the curvature of �. �
Proposition 2.4. Assume the mesh size h is small enough such that the interior of each edge has at most one intersection point. Then
the maximal angle of the triangulation generated by Algorithm 1 is bounded by 135◦ .

Proof. Let C be a square with vertices A, B, C, D which intersects with the interface, S the points set including the vertices
of C and the intersection points, and DT the Delaunay triangulation of S .

The vertex of every angle in DT can be a vertex of the square or an intersection point. The angle at a square vertex must
be bounded by 90◦ as the two rays of the angle is inside the square. Next, let us prove that the angle at an intersection
point must be bounded by 135◦ . Let E be an intersection point on edge AB , F and G are the other two points of angle
� F EG and G is on the right of F (see Fig. 6). Here F or G can be an intersection point or a vertex of the square.

By our assumption, F or G cannot be in the interior of edge AB and F and G cannot be in the interior of edge C D
simultaneously. So either F is on the edge AD or G is on BC . Without loss of generality, we assume G is on BC . Then
the angle � F C G ≥ 45◦ since F is on the left of the diagonal AC . Note that the triangle �F C G may not be in the DT .
Nevertheless, if � F EG > 135◦ , then � F EG + � F C G > 180◦ which means the circumcircle of �F EG must include vertices
C violating the Delaunay property. So � F EG must be bounded by 135◦ . �

Let N be the number of nodes. Since we restrict the Delaunay triangulation on a local region near the interface, the
complexity of generating a Delaunay triangulation will be O(N1/2 log N) in 2D which can be ignored compared with the
O(N) complexity of assembling the matrix and solving the matrix equation. Such localization will make it possible to track
the moving interface, which will be explored in our future work.

The overall complexity of our mesh generation algorithm is: c1N + c2N1/2 log N since we need to compute the sign of
the level set function at N vertices. In practice, however, the constant c1 � c2 and the time scales like O(N1/2).

L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 333
Fig. 6. The angle � F EG at the intersection point E .

Fig. 7. Sliver exists (left) and is removed when the element is divided into polyhedra (right).

3. Interface-fitted mesh generator: three dimensions

In this section, we present a novel mesh generation algorithm to generate an interface-fitted mesh for a given smooth
interface in three dimensions. We begin with a brief review on the difficulty of 3D mesh generation and then introduce our
algorithm to overcome this difficulty.

3.1. Main difficulty

Tetrahedral meshes are frequently used in classical finite element methods. The size and shape of the tetrahedra influence
the accuracy of finite element solutions [77]. The quality of the tetrahedron’s shape can be measured by using the aspect
ratio or the radius-edge ratio. The aspect ratio of a tetrahedron is usually defined as its circumradius divided by its inradius
and the radius-edge ratio is the circumradius divided by the shortest edge length of the tetrahedron. The aspect ratio
or radius-edge ratio of a mesh is the largest corresponding ratio of all of its tetrahedral elements. If the aspect ratio or
radius-edge ratio of a mesh are small, we called the mesh well-shaped [32,61]. Ideally we expect each element in the mesh
is shape regular. But violation is allowed as long as the so-called maximal angle condition is satisfied [1,6,15,31,56].

The difficulty of mesh generation in three dimensions is due to the existence of slivers. Slivers have small radius-edge
ratio, but large aspect ratio, which are considered as bad-shaped tetrahedral elements. The results of the accuracy and
convergence of finite element methods may not hold anymore in the existence of slivers which violates the maximal angle
condition. A lot of methods have been developed to remove slivers; see e.g. [25,26,33]. Sliver removal methods, however,
involve the addition and rearrangement of points and thus destroy the semi-structure of the mesh.

We shall introduce polyhedral meshes near the interface to remove slivers. When we get the interface elements (which
is defined similarly to 2D and will be made clear later) and intersection points (the definition is the same as in 2D), we can
divide interface elements into polyhedra instead of tetrahedra. Slivers will be eliminated and part of their faces will become
the faces of polyhedral elements. For example, when the interface cuts across one element with four almost coplanar
intersection points, if we divide the element into tetrahedra, then the four intersection points could form a sliver (see
Fig. 7). If we use a polyhedral mesh, however, the two well-shaped triangles will become the boundary of two polyhedra.

3.2. Algorithm

We write down the algorithm and explain the details step by step.

Algorithm: 3D interface-fitted mesh generation algorithm

Input: Mesh size h, level set function φ(x), and a cubic domain �;
Output: Interface-fitted mesh �;
1. Find all the interface points.
2. Construct the Delaunay mesh DT on these points.
3. Post processing: remove unnecessary tetrahedra in DT , merge tetrahedra into polyhedra, and merge with uncut elements.

Algorithm 2: 3D mesh generator.

334 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
Fig. 8. The surface of the interface is embedded in the hexahedron.

Given a cubic domain � which includes the interface � described as the zero level set of φ, and a mesh size h, we first
generate the uniform Cartesian mesh of � with size h. The cubes in the Cartesian mesh in domain � could be classified
into exterior, interior, and interface elements by checking the sign of the centers of the cubes. We label them by 1, −1 and
0 respectively.

We define interface elements as elements satisfying one of the following rules:

(1) There exists at least two vertices p and q with opposite sign, namely φ(p)φ(q) < 0;
(2) There exists at least three vertices on the interface.

All interface elements will form a hexahedral mesh of a layer of the interface (see Fig. 8). All boundary faces of this
hexahedral mesh are extracted and will be used as faces of the polyhedral mesh for the interface. Note that these boundary
faces are square faces.

In step 1, similarly to two dimensions, we find cut edges and intersection points, and add auxiliary points if necessary.
The criterion of adding auxiliary points is the same as 2D: if a square face contains two opposite vertices on the interface,
we will add the center point of this square face as the auxiliary point.

In step 2, we generate a Delaunay mesh DT of P , the set of interface points, whose definition is the same as that in two
dimensions.

In step 3, we post-process DT to get a polyhedral mesh near the interface and merge all uncut cubic elements away
from the interface.

Similar to the 2D case, we only keep tetrahedra inside the interface elements, which might contain slivers, and remove
tetrahedra not in the interface elements which can be easily marked by checking the center of tetrahedra in DT .

Now we have a tetrahedral mesh of all the interface elements, and we still call this tetrahedral mesh as DT for conve-
nience. We could split the tetrahedron in DT into two categories: exterior tetrahedral set DT E and interior tetrahedral set
DT I . For a tetrahedron in DT , if the minimum of the sign function of the φ value of the four vertex nodes is −1, we put
it into DT I , otherwise, we add it into DT E . The interface � could be extracted using the boundary faces of DT I and the
normal direction of the extracted surface mesh points outside of the interface. Tetrahedra in each category will be merged
into polyhedra element by element.

Instead of storing all vertices of a polyhedron, we shall store the polyhedral mesh by the data structure face and
face2elem. The array face records indices of three (triangular face) or four (square face) vertices of all faces. The
direction of all faces follows the right-hand side rule, that is, the normal direction of each face is outwards. The array
face2elem records the index of the polyhedron to which the faces belong.

Fig. 9 is a simple example. Given a unit cube with three intersection points, it is divided into two polyhedra. Each
polyhedron is stored by faces and elements to which they belong. The values of face and face2elem in Fig. 9 are shown
in Table 1.

Notice that some face, e.g., [3 7 8 4] is stored as a square instead of two triangles since this face is shared by another
cube which is not included as an interface element. Those square faces are boundary faces of the hexahedral mesh which
consists of all interface elements. All such square faces have been extracted when we collect all interface elements.

L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 335
Fig. 9. An interface element is divided into two polyhedra.

Table 1
The face array (left) and face2elem (right) for two polyhedra in Fig. 9.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

2 9 10
2 11 9
2 10 11

11 10 9
11 1 3
5 1 11
3 4 9
3 9 11
9 4 8
5 10 6
5 11 10

10 8 6
10 9 8
11 9 10
1 5 7 3
5 6 8 7
3 7 8 4

1 2 3 4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2

1

Every interface element is divided into several polyhedra according to our method. For each polyhedron, we need to
assign a unique index. This index map from face to element, face2elem, can be generated in two stages. In most cases,
the interface element is just divided into two polyhedra. In the first stage, for the interior part, we use the original interface
element index j and for the exterior part, we append a new index j + N , where N is the number of elements in the initial
Cartesian mesh. In some cases, however, one cube could be divided into three or more polyhedra (see the three cases in
Fig. 10). In the second stage, we use Euler’s formula to check the connectedness of the obtained polyhedral mesh. If a
disconnected polyhedron is found, we group faces into different connected components which is equivalent to dividing the
original polyhedron into more polyhedra. Thanks to our data structure, we only need to change face2elem when adding
and storing the new polyhedra.

In a nutshell, we could get a polyhedral mesh near the interface by storing the triangular and square faces. The final
interface-fitted mesh consists of polyhedra near the interface and uncut (cube) elements away from the interface.

3.3. Properties

The generated Delaunay triangulation will approximately recover the interface by the lifting method. Namely Proposi-
tion 2.3 also holds for the 3D case since the characterization of a Delaunay triangulation as the projection of the lower
convex hull holds in general dimensions. We formally summarize below.

Proposition 3.1. The interface will be approximately recovered in the triangulation generated by Algorithm 2. More precisely, we have
dist(�h, �) � h2 provided � is smooth enough and h is small enough.

Next we shall show the maximum angle of the surface mesh is uniformly bounded by 144◦ . In [75], the author considers
12 types of subdivision of boundary cells (not necessarily satisfying the Delaunay property) in three dimensions and shows
the same bound.

Proposition 3.2. The maximal angle of the triangular faces of the polyhedral mesh is bounded by 144◦.

Proof. For simplicity, let C be a unit cube which intersects with the interface, and S the set of points including the eight
cube vertices and the intersection points. Let DT be the 3D Delaunay triangulation on S .

336 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
Fig. 10. A cube is divided into three parts.

For a 3D Delaunay triangulation, it satisfies the Delaunay empty sphere property such that no point in S is inside the
circumsphere of any tetrahedron of DT . Given a tetrahedron T in DT which has a triangular face τ on one (denoted as
F) of the six square faces of C . Since, on the plane spanned by F , the circumcircle of τ is also on the circumsphere of T ,
then by Delaunay empty sphere property, there is no point of S on F which is inside the circumcircle of τ , namely, the
boundary triangulation of DT on F is also Delaunay, and thus the maximal angle of these triangles is bounded by 135◦ by
Proposition 2.4.

Next we only need to consider the interface triangles with three vertices on the interface. For these interface triangles,
their angles can be divided into 16 cases (see Fig. 11).

In case (1) to (15), one can find the upper bound of the angle by calculus analysis. Here we take the case (1) as an
example to show how to find the upper bound, see Fig. 11 (1). Let v L A be the vector from point L to point A and |v L A | the
length of v L A . Similarly, we have vectors v LH , v LN , v N A, v N H , then

cos � ALH = v L A · v LH

|v L A ||v LH | = (v LN + v N A) · (v LN + v N H)√|v LN |2 + |v N A |2√|v LN |2 + |v N H |2

= |v LN |2√|v LN |2 + |v N A |2√|v LN |2 + |v N H |2 ≥ 0.

When |v LN | = 0, cos � ALH reaches the minimum value zero, namely, the maximum of � ALH is 90◦ . By the similar method,
one can get the upper bounds for other cases except case (16) in Fig. 11.

In case (16), provided �ALG is an interface triangle and � ALG is the angle bigger than 144◦ . By Algorithm 2,
there must exist a vertex of C , for example, vertex Q and ALG Q is a tetrahedron in the Delaunay triangulation. Let
(1 − h1, 0, 0), (1, 0, h2) and (1, h3, 1) be the coordinates of A, L and H , respectively. Then one can get the circumcenter O
and circumradius r of the circumsphere of ALG Q , then construct function f (h1, h2, h3) := r − |P − O |. By the assumption
� ALG > 144◦ and the 2D Delaunay empty circle property on the boundary face of C , one can show that f (h1, h2, h3) > 0,
namely P is inside of the circumsphere of tetrahedron ALG Q , which contradicts with the Delaunay empty sphere prop-
erty. �
Remark 3.3. For the proof of the 3D angle case (16), we use the region_plot function in SageMath [29] to show
f (h1, h2, h3) > 0 under the given assumptions.

Remark 3.4. We emphasize that the 16 cases plotted in Fig. 11 are used to prove the maximal angle condition. In the
algorithm, we get the mesh by directly calling Delaunay algorithm with all interface points as input.

L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 337
Fig. 11. Different angle cases in the interface triangles.

Again, we restrict the Delaunay triangulations on a local region near the interface. The overall complexity of our mesh
generation algorithm is: c1 N + c2N2/3 log N since we need to compute the sign of the level set function at N vertices but
c1 � c2. The meshing time scales like O(N2/3). See Section 5 for numerical results.

In summary, our mesh generator is simple and fast. The generated mesh is semi-structured. The interface is approxi-
mately recovered, and the maximum angle of the surface mesh is uniformly bounded.

4. Finite element methods for elliptic interface problems

We start with Sobolev spaces and the weak formulation of the elliptic interface problem (1)–(4). We then introduce the
linear virtual element methods and discuss the implementation detail.

4.1. Sobolev spaces and weak formulation

Let D denote a bounded and open set in Rd, d = 2, 3 and W m,p(D) be the usual Sobolev space with standard norm
‖ · ‖m,p,D and semi-norm | · |m,p,D . In particular, for p = 2, we denote Hm(D) = W m,p(D) and the corresponding norm
and semi-norm by ‖ · ‖m,D = ‖ · ‖m,p,D and | · |m,D = | · |m,p,D , respectively. The space H1

0(D) = {v ∈ H1(D) : v|∂ D = 0} is
the subspace of H1(D) with zero trace. Let (·, ·)D and 〈·, ·〉∂ D denote the standard L2 inner products of L2(D) and L2(∂ D)

respectively.
Domains are considered as open sets. Define �̃ = �− ∪�+ and notice that � = �− ∪� ∪�+ = �̃∪�. For v ∈ W m,p(�̃),

that is, v|�− ∈ W m,p(�−) and v|�+ ∈ W m,p(�+), v may not be in W m,p(�) due to the jump across the interface �.
To derive the weak formulation of elliptic interface problems (1)–(4), we multiply (1) with a test function v ∈ H1

0(�) and
apply integration by parts. To address the jump of function values, we choose a w− ∈ H1(�−) with w− = q0 on ∂�− . With
a slight abuse of notation, the zero extension of w− to H1(�̃) is still denoted by w− . The model (1)–(4) is equivalent to:
find p ∈ H1

g(�) = {v ∈ H1(�) : v|∂� = g} such that

(β∇p,∇v)� = (f , v)� − 〈q1, v〉� + (β∇w−,∇v)�− , ∀v ∈ H1
0(�), (5)

338 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
and set u = p − w− . It is easy to show that u solves equations (1)–(4). Even though the choice of w− is not unique,
the solution u does not depend on the choice of w− by the maximal principle. The flux jump [βun]� = q1 is imposed in
H−1/2(�) and the jump of function value is imposed in H1/2(�).

4.2. Finite element methods in 2D

In this subsection, we present the numerical analysis of the standard finite element methods on the two-dimensional
interface-fitted mesh generated by Algorithm 1.

For simplicity of exposition, we assume the function value jump condition [u]� = 0. Let Th be an interface-fitted tri-
angular mesh with maximal angles uniformly bounded away from π . For each τ ∈ Th , let hτ denote its diameter and
h = maxτ∈Th hτ . The vertices on � forms a polygon �h approximation of �. The polygon also splits � into two subdomains,
�+

h and �−
h , which are the approximations of �+ and �− , respectively. Each triangle τ ∈ Th is in either �+

h or �−
h and has

at most two vertices on �.
Let Vh be the linear finite element space on Th . The linear finite element approximation of (5) is as follows: find

uh ∈ Vh ∩ H1
0(�) such that:

(βh∇uh,∇vh)� = (f , vh)� − 〈q̄1, v〉�h , ∀vh ∈ Vh ∩ H1
0(�), (6)

where q̄1 = q1(P0(x)) and P0(x) is a well defined projection from �h to � (cf. [80]).
We can get the nearly optimal L2-norm and H1-norm estimates as the results in [24,85].

Theorem 4.1. Let u be the solution of (5) and uh be the linear finite element approximation in (6) based on the two-dimensional
interface-fitted mesh generated by Algorithm 1. We have

‖β1/2(∇u − ∇uh)‖0,� � h| log h|1/2(‖ f ‖0,� + ‖q1‖2,�), (7)

‖u − uh‖0,� � h2| log h|(‖ f ‖0,� + ‖q1‖2,�). (8)

Proof. For finite element approximation, we have the Céa’s lemma,

‖β1/2(∇u − ∇uh)‖0,� ≤ ‖β1/2(∇u − ∇uI)‖0,�.

Then the energy error estimate is reduced to the interpolation error estimate. In [6], the authors proved that the local
interpolation error estimate ‖(∇u − ∇uI)‖0,τ � h‖u‖2,τ provided the maximal angle condition is satisfied which has been
verified for the interface-fitted mesh generated by Algorithm 1; see Proposition 2.4. Another difficulty is the mismatch of
the curved interface and the discrete interface. Then following the proof in [24,85], and replacing the mesh regular condition
there by the maximal condition, we obtain the desired results. �

A mesh is O(h2σ) irregular means the total area of all adjacent triangle pairs in Th which do not form an O(h2)

approximate parallelogram is O(h2σ). For the interface-fitted mesh generated by Algorithm 1, only the adjacent triangle
pairs near the interface is not O(h2) approximate parallelogram and other adjacent triangle pairs away from the interface
can exactly form a parallelogram. That is σ = 0.5 for the mesh generated by Algorithm 1.

Then following the proof procedure in [80], we can also prove the following superconvergence result.

Theorem 4.2. If u ∈ H1(�) ∩ H3(�̃) ∩ W 2,∞ and � is of class C2 , then for all vh ∈ Vh,

‖β1/2
h (∇uh − ∇uI)‖0,� � h3/2

(
‖u‖3,�̃ + ‖u‖2,∞,�̃ + ‖u‖2,∞,�̃ + ‖q1‖0,∞,�

)
. (9)

Let hmin be the minimum element size of Th , by the discrete embedding result,

‖vh‖0,∞,� � | log hmin|1/2|vh|1,�, for all vh ∈ Vh ∩ H1
0(�), (10)

we have the error estimate for the maximal norm estimate.

Corollary 4.3. Assume the same hypothesis in Theorem 4.2. Then

‖β1/2
h (∇uh − ∇uI)‖0,∞,� � | log hmin|1/2

[
h3/2(‖u‖3,�̃ + ‖u‖2,∞,�̃ + ‖u‖2,∞,�̃ + ‖q1‖0,∞,�)

]
.

L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 339
4.3. Virtual element methods in 3D

In this subsection, we focus on solving three-dimensional elliptic equations by the virtual element methods (VEM) de-
veloped by Brezzi’s group [9,10].

Let Th be the interface-fitted polyhedral mesh generated by the algorithm in Section 3. Recall that elements near the
interface � are polyhedra with triangular or square faces and a uniform cubic mesh away from the interface. We could not
use the classical finite element methods which are not well-defined on polyhedra. Instead, we shall apply virtual element
methods [9] which can be thought of as conforming finite element spaces defined on polyhedral meshes.

A local finite-dimensional vector space Vh(E) for a polyhedron E ∈ Th is defined as

Vh(E) := {v ∈ H1(E) : �v|E = 0, v|∂ E is continuous and piecewise linear (on triangles) or bilinear (on squares)}.
As a piecewise linear or bilinear function will be uniquely determined by its value on vertices, dim Vh(E) = nv

E , where nv
E is

the number of vertices of E .
We define the global virtual element space

Vh = {vh ∈ H1(�) : vh|E ∈ Vh(E) for all E ∈ �h}.
Let N (Th) be the set of vertices of mesh Th and N = |N (Th)| be the number of vertices. We define the operator dofi
from Vh to R as dofi(vh) = vh(xi), for a vertex xi ∈ N (Th). The canonical basis {φ1, · · · , φN } ⊂ Vh is chosen as dofi(φ j) =
δi j, i, j = 1, · · · , N . And the nodal interpolation Ih : C(�̄) → Vh is defined as Ihu = ∑N

i=1 u(xi)φi and denoted by uI = Ihu.
The basis does not need to be written explicitly which is the main difference between classical finite element methods and
virtual element methods.

As mentioned before, we could extract an approximate surface �h which splits � into two subdomains: �−
h and �+

h ,
which are the approximation of �− and �+ , respectively. Similarly, βh|τ = β+ for all τ ∈ �+

h and βh|τ = β− for all τ ∈ �−
h .

Let w−
h be the nodal interpolation of w− in Vh . A simple construction is one that: interpolates q0 on �h and sets other

coefficients to zero. The linear virtual element approximation of (5) is: finding ph ∈ Vh ∩ H1
g(�) such that:

(βh∇ph,∇vh)� = (f , vh)� − 〈q1, vh〉� + (βh∇w−
h ,∇vh)�− , ∀vh ∈ Vh ∩ H1

0(�)

and taking uh = ph − w−
h . Suppose ph = ∑N

j=1 p jφ j , w−
h = ∑N

j=1 w jφ j , by linearity, we have for i ∈ 1, · · · , N ,

N∑
j=1

(βh∇φ j,∇φi)�p j = (f , φi)� − 〈q1, φi〉� +
N∑

j=1

(βh∇φ j,∇φi)�− w j. (11)

We define the matrix (A−
h)i j = (β−

h ∇φ j, ∇φi)�−
h

, (A+
h)i j = (β+

h ∇φ j, ∇φi)�+
h

and (Ah)i j = (βh∇φ j, ∇φi)�h in �h . Then Ah =
A−

h + A+
h . Define the vector b = (b1, · · · , bN)t by bi = (f , φi)� − 〈q1, φi〉� . Equation (11) is written in the matrix form as

Ah ph = b + A−
h wh, (12)

where Ah and A−
h are N × N matrices, ph = (p1

h, · · · , pN
h)t and wh = (w1, · · · , w N)t . Since the coefficient β is a positive

constant, the matrices Ah and A−
h are symmetric and positive definite. The algebraic system (12) could be solved stably and

efficiently by using algebraic multigrid methods.
For finite element methods, it suffices to compute the local stiffness matrix in each element and then, based on that, the

matrices A+
h , A−

h are assembled by summing the contribution from each element. Therefore, the major task is to compute
(∇φ j, ∇φi)E .

To do so, we introduce some projection operators at first. For each polyhedron E , the operator �∇ : Vh(E) → P1(E) is
defined as the H1 projection to P1(E) space, i.e.,

(∇pk,∇�∇ vh)E = (∇pk,∇vh)E for all pk ∈ P1(E),

where P1(E) is the space of linear polynomials. It can be easily seen that the above condition defines �∇ vh only up to a
constant. This can be fixed by prescribing a projection operator onto constants P0 : Vh(E) → P0(E) and requiring

P0(�
∇ vh − vh) = 0.

One such choice is P0 vh = ∑nv
E

i=1 vh(xi)/nv
E = ∑nv

E
i=1 dofi(vh)/nv

E .
Using the projection �∇ , we write the basis function φi ∈ Vh(E) as �∇φi + (I − �∇)φi and split the entry of the local

stiffness matrix as

(∇�∇φi,∇�∇φ j)E + (∇(I − �∇)φi,∇(I − �∇)φ j)E .

340 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
Again the second term is not computable since the basis φi is not known point-wise. Instead we replace by a so-called
stabilization term S E (·, ·)

(∇�∇φi,∇�∇φ j)E + S E((I − �∇)φi, (I − �∇)φ j).

Let hE be |E|1/3, where |E| means the volume of E . We use a scaled l2 inner product in the stabilization term

S E((I − �∇)φi, (I − �∇)φ j) = hE

nv
E∑

r=1

dofr((I − �∇)φi)dofr((I − �∇)φ j)

in order to satisfy the assumption of S E

c1(∇v,∇v) ≤ S E(v, v) ≤ c2(∇v,∇v), ∀v ∈ Vh(E) and �∇ v = 0

for some positive constants c1 and c2 independent of E and hE . The explicit expression of the local stiffness matrix of the
virtual element method is:

(K E
h)i j := (∇�∇φi,∇�∇φ j)E + hE

nv
E∑

r=1

dofr((I − �∇)φi)dofr((I − �∇)φ j).

We now give concrete formulae on the computation of the matrix representation of the operator �∇ . Let xE =
(xE , yE , zE) be the center of E , i.e. xE = 1/nv

E

∑nv
E

i=1 xi . We choose a scaled monomial basis of P1(E) as m1 = 1, m2 =
(x − xE)/hE , m3 = (y − yE)/hE , m4 = (z − zE)/hE .

Let G4×4 be defined as

G :=

⎛
⎜⎜⎜⎝

P0m1 P0m2 · · · P0m4
0 (∇m2,∇m2)0,E · · · (∇m4,∇m2)0,E
...

...
. . .

...

0 (∇m2,∇m4)0,E · · · (∇m4,∇m4)0,E

⎞
⎟⎟⎟⎠ =

(
1 0
0 hE I 3

)

where I3 is a 3 × 3 identity matrix.
Let B4×nv

E
be a matrix defined as:

B :=

⎛
⎜⎜⎜⎝

P0φ1 · · · P0φnv
E

(∇m2,∇φ1)E · · · (∇m2,∇φnv
E
)E

...
. . .

...

(∇m4,∇φ1)E · · · (∇m4,∇φnv
E
)E

⎞
⎟⎟⎟⎠ .

The formulae for the first row of B is P0φ1 = P0φ2 = . . . = P0φnv
E

= 1/nv
E . For the other components (∇m j, ∇φi)E , j =

2, 3, 4, we have (∇m j, ∇φi)E = −
∫

E �m jφi + ∫
∂ E

∂m j
∂n φi by integration by parts. The first term is zero as �m j = 0 for linear

polynomials. We only need to compute the second term. Due to our data structure, all the faces on the ∂ E are either
triangles or squares. Then

∫
∂ E

∂m j

∂n
φi =

∑
i∈triangular face f n j

f | f |
3hE

+
∑

i∈square face f n j
f | f |

4hE
, (13)

where n f = (nx
f , n

y
f , n

z
f) = (n2

f , n
3
f , n

4
f) is an outward unit normal direction on each face f and | f | is the area for each

face f .

Remark 4.4. Using our mesh generation algorithm in Section 3, we store the polyhedron in the form of either triangles or
squares which leads to the simple formula (13). When the faces are general polygons, additional projection operators are
needed in order to compute the integral

∫
f

∂m j
∂n φi (see [9,10]). �

To compute the stabilization term, we need one more matrix Dnv
E ×4

D := (
dofi(m j)

) = h−1
E

⎛
⎜⎜⎝

hE x1 − xE y1 − yE z1 − zE

hE x2 − xE y2 − yE y2 − zE

· · · · · · · · · · · ·
hE xnv

E
− xE ynv

E
− yE znv

E
− zE ,

⎞
⎟⎟⎠

where (xi, yi, zi), i = 1, · · · , nv are vertices in each polyhedron E .
E

L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 341
By definition, �∇ vh = ∑4
α=1 sαmα and the coefficients (sα) are determined by the following linear systems

(∇mα,∇(�∇ vh − vh))E = 0 α = 1, . . . ,4.

The matrix representation of �∇ : Vh(E) → P1(E) relative to the basis (mα) is �∇ = G−1 B .

We will also need the matrix representation of �∇ in the canonical basis {φi}. Let �∇φi = ∑nv
E

j=1 dof j(�
∇φi)φ j, i =

1, · · · , nv
E , then the matrix representation �∇∗ of the operator �∇ : Vh(E) → Vh(E) in the canonical basis is given by �∇∗ =

DG−1 B = D�∇ .
Finally the matrix formulation of K E

h could be written as

K E
h = [�∇]T G̃�∇ + hE [I − �∇∗]T [I − �∇∗],

where G̃ is the same with G except that the elements in the first row are all zeros.
For the first term of bi in (12), we approximate f by a piecewise constant and approximate

(f , φi)� =
∑

E∈�h

(f , φi)E ≈
∑

E∈�h

|E| f (xE , yE , zE)/nv
E .

The second term of bi could be computed by Gauss quadrature on surface mesh �h .

Remark 4.5. An abstract error estimate of VEM has been given in [9]. With a type of Céa’s lemma, the convergence analysis
is reduced to the interpolation error estimate |u − uI |1 and |u − uπ |1,E , where uI is the nodal interpolation and uπ is a local
approximation of u. Notice that uI ∈ Vh is continuous but uπ is most likely discontinuous. To obtain optimal order of the
interpolation and approximation error, the authors in [9] further assume the shape-regular condition: there exists a γ > 0
such that each domain E is star-shaped with respect to a ball of radius ρ ≥ γ hE , where hE = diam(E). This shape regularity
assumption will rule out elements generated by our algorithm.

As we mentioned before, for linear finite element space defined on triangles, a refined analysis shows that the optimal
first order interpolation error estimate still holds if the maximum angle is uniformly bounded away from π as h → 0 [6].
Such angle condition is generalized to three dimensions, and to high order elements in [3,30,56]. Generalization to polyhe-
dra, however, is unknown and under investigation. �
5. Numerical experiments

In this section, we present numerical results for the elliptic interface problems in three dimensions. We implement
mesh generation and VEM based on the MATLAB� package iFEM [22]. We also solve the algebraic system by an algebraic
multigrid (AMG) solver implemented in iFEM [22]. We start with a simple spherical interface and then consider more
complex geometric shapes, including two spheres, an orthocircle shape and 12 intersecting spheres. We shall report the
following errors:

‖uI − uh‖A =
(
‖β1/2

h ∇(u−
I − u−

h)‖2
�−

h
+ ‖β1/2

h ∇(u+
I − u+

h)‖2
�+

h

)1/2
,

‖uI − uh‖∞ = max
{
‖u−

I − u−
h ‖∞,�−

h
,‖u+

I − u+
h ‖∞,�+

h

}
,

‖uI − uh‖0,h = h3/2

⎛
⎜⎝ ∑

xi∈N (�−
h)

(u−
I (xi) − u−

h (xi))
2 +

∑
xi∈N (�+

h)

(u+
I (xi) − u+

h (xi))
2

⎞
⎟⎠

1/2

,

where uh is the numerical solution obtained by the linear virtual element methods; u+
I and u−

I are the nodal interpolation
of the exact solution u in �+

h and �−
h respectively. Note that the squared energy norm ‖uI − uh‖2

A can be computed by
(u−

I − u−
h)T A−

h (u−
I − u−

h) + (u+
I − u+

h)T A+
h (u+

I − u+
h) and ‖ · ‖0,h is a good approximation of L2-norm. The rate is obtained

by the least square fitting of the errors in the log log scale.

Example 5.1 (One sphere). The domain � is (−1, 1)3 and the interface is defined by φ(x, y, z) = x2 + y2 + z2 − r2 with radius
r = 0.75. The coefficient β is piecewise constant. The analytic solution is given by u+ = 10(x + y + z) and u− = 5 exp(x2 +
y2 + z2) + 20. In this case, the solution is discontinuous and the flux jump across the interface is also non-homogeneous.

Fig. 12 shows the surface mesh extracted from the volume mesh generated by our algorithm for the spherical interface.
The maximal interior angle of triangular faces on the surface mesh is bounded by 112.8104◦ . Tables 2 and 3 show the
error for β− = 1, β+ = 10 and β− = 1, β+ = 100, respectively. It can be seen that near second order accuracy is attained
in both ‖ · ‖0,h and ‖ · ‖∞ norms. The convergence rate in the energy norm is near 1.5, which is consistent with the

342 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
Fig. 12. An interface mesh with maximal angle 112.8104◦ .

Table 2
Errors for Example 5.1: β− = 1 and β+ = 10.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

10,323 0.1 4.45798e−01 5.24227e−02 3.62347e−02
72,713 0.05 1.64215e−01 1.81762e−02 8.97415e−03
547,881 0.025 6.62120e−02 5.09725e−03 2.62269e−03
4,240,529 0.0125 2.43899e−02 1.37664e−03 7.05429e−04

Rate 1.4 1.8 1.9

Table 3
Errors for Example 5.1: β− = 1 and β+ = 100.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

10,323 0.1 6.65319e−01 5.14276e−02 3.40871e−02
72,713 0.05 2.41564e−01 1.84007e−02 8.42552e−03
547,881 0.025 8.98117e−02 5.21504e−03 2.50271e−03
4,240,529 0.0125 3.21041e−02 1.42298e−03 6.80724e−04

Rate 1.5 1.7 1.9

Table 4
CPU time (in seconds) for Example 5.1: β− = 1 and β+ = 10.

#dof Assemble Solve Mesh
10,323 0.228973 0.47 0.21165
72,713 0.970122 2.59 0.4854
547,881 6.99419 13.55 1.8981
4,240,529 62.1644 121.59 8.0172

Table 5
Example 5.1: Iteration steps of AMG with fixed β− = 1 and various β+ .

#dof β+

10−3 10−2 10−1 1 10 102 103 104

7,921 10 10 10 9 9 9 9 9
63,111 11 11 11 11 11 10 10 10
509,479 12 12 12 12 14 13 13 13
4,086,927 13 12 13 15 17 16 16 16

superconvergence result obtained in [21]. This superconvergence occurs due to the nice properties of our semi-structured
mesh. It seems that the convergence rate is robust to the variation of β .

From Table 4, we can conclude that the runtimes of the mesh generation part can be ignored compared with the
assembling and solving parts. In Table 5, we present the variation of iteration steps of the algebraic multigrid method with
respect to the number of degrees of freedom (#dof) and to the variation of jump coefficients (fix β− = 1 and change β+).
It indicates that the algebraic multigrid method is a robust and efficient solver: robust to the number of degrees of freedom
and to the variation of jump coefficients.

Example 5.2 (Two spheres). The domain � is (−1, 1)3 and the interface is defined by

φ(x, y, z) = min {φ1, φ2}
where

L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 343
Fig. 13. Two balls are embedded in the unit cube. The maximal angle is 130.4665◦ .

Table 6
Errors for Example 5.2: β− = 1 and β+ = 1.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

9,789 0.1 3.76723e−01 1.08148e−01 6.52076e−02
71,225 0.05 1.32276e−01 2.82699e−02 1.74225e−02
540,945 0.025 4.52335e−02 7.30380e−03 4.28321e−03
4,211,729 0.0125 1.60165e−02 1.92081e−03 1.11271e−03

Rate 1.5 1.9 2

Table 7
Errors for Example 5.2: β− = 1 and β+ = 100.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

9,789 0.1 3.67145e+00 1.15596e−01 5.54995e−02
71,225 0.05 1.35081e+00 3.08549e−02 1.51136e−02
540,945 0.025 4.78640e−01 8.22331e−03 3.74778e−03
4,211,729 0.0125 1.72934e−01 2.25395e−03 9.77991e−04

Rate 1.5 1.9 2

Table 8
CPU time (in seconds) for Example 5.2: β− = 1 and β+ = 1.

#dof Assemble Solve Mesh
9,789 0.160716 1.01 0.259938
71,225 0.706959 5.84 0.36018
540,945 6.32812 27.26 1.78691
4,211,729 52.7369 133.86 10.067

φ1 = (x + 0.5r)2 + (y + 0.5r)2 + (z + 0.75r)2 − r2,

φ2 = (x − 0.25r)2 + (y − 0.75r)2 + (z − r)2 − r2,

with radius r = 0.4. The coefficient β is piecewise constant. The analytic solution is given by u+ = 10(x2 + y2 + z2) and
u− = 5 cos (x2 + y2 + z2).

Fig. 13 shows that two spheres are embedded in the unit cube. When h = 0.1, i.e., the background Cartesian mesh is
not fine enough, there exists an interface element which is divided into three parts by these two spheres. The maximal
interior angle of triangular faces on the surface mesh is bounded by 130.4665◦ . Tables 6 and 7 show the numerical results
for β− = 1, β+ = 1 and β− = 1, β+ = 100, respectively. Table 8 shows how the computational time grows with respect to
the number of degrees of freedom. Table 9 shows the number of iterations taken by the algebraic multigrid method for
various values of input parameters.

All results are consistent with our conclusion. It indicates that our algorithm works in a case when the interface is
unconnected.

344 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
Table 9
Example 5.2: Iteration steps of AMG with fixed β− = 1 and various β+ .

#dof β+

10−3 10−2 10−1 1 10 102 103 104

7,387 10 11 10 9 9 9 9 9
61,623 11 11 11 10 10 10 10 10
502,543 12 12 12 12 12 11 12 11
4,058,127 13 13 13 12 13 13 13 13

Fig. 14. The interface is an orthocircle with maximal angle 132.4673◦ .

Table 10
Errors for Example 5.3: β− = 1 and β+ = 1.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

11,145 0.12 2.93834e−01 5.50055e−02 5.14120e−02
76,469 0.06 7.95795e−02 1.05921e−02 4.18525e−03
561,957 0.03 2.35627e−02 2.22961e−03 9.17810e−04
4,295,165 0.015 7.80143e−03 6.05301e−04 2.15878e−04

Rate 1.7 2.1 2.1

Table 11
Errors for Example 5.3: β− = 1 and β+ = 100.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

11,145 0.12 3.44042e+00 9.63266e−02 1.24556e−01
76,469 0.06 7.72426e−01 1.21513e−02 1.56542e−02
561,957 0.03 2.06488e−01 3.04186e−03 3.34684e−03
4,295,165 0.015 6.30787e−02 7.45803e−04 8.10506e−04

Rate 1.8 2 2.1

Table 12
CPU time (in seconds) for Example 5.3: β− = 1 and β+ = 1.

#dof Assemble Solve Mesh
11,145 0.493225 0.75 0.383038
76,469 1.41325 1.72 0.857616
561,957 8.1635 12.05 3.48605
4,295,165 62.6127 97.92 13.8495

Example 5.3 (An orthocircle). The domain � is (−1.2, 1.2)3 and the interface is defined by φ(x, y, z) = [
(x2 + y2 − 1)2 + z2

]×[
(x2 + z2 − 1)2 + y2

] [
(y2 + z2 − 1)2 + x2

] − 0.0752
[
1 + 3(x2 + y2 + z2)

]
. The coefficient β is piecewise constant. The ana-

lytic solution is given by u+ = 1 − x2 − y2 − z2 and u− = sin(πx) sin(π y) sin(π z).

Fig. 14 shows the interface-fitted mesh extracted as the boundary of �−
h . The maximal angle of triangular faces of the

interface mesh is bounded by 132.4673◦ . Tables 10 and 11 show the numerical results for β− = 1, β+ = 1 and β− = 1, β+ =
100, respectively. Table 12 shows the computational time accordingly. The mesh part is still quick even the interface with
complex geometry. Table 13 is the number of iterations of the algebraic multigrid solver.

These test results indicate that the proposed interface problem solver works well even for complex surfaces. Note that
the maximal angles of the surface mesh in our examples are uniformly bounded by 144◦ , then there is no need to apply
mesh smoothing as a post-processing step.

L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 345
Table 13
Example 5.3: Iteration steps of AMG with fixed β− = 1 and various β+ .

#dof β+

10−3 10−2 10−1 1 10 102 103 104

8,743 15 14 15 13 11 10 10 10
66,867 13 12 11 11 11 11 11 11
523,555 13 12 12 12 12 12 12 12
4,141,563 13 13 13 13 13 13 13 13

Fig. 15. Twelve balls are embedded in the cube. The maximal angle is 131.3925◦ .

Fig. 16. Part of the interface-fitted mesh with sharp edges.

Example 5.4 (12 intersecting spheres). In this example, we consider a more complicated interface formed by 12 intersecting
spheres, which has many one-dimension sharp features. The domain � is (−3, 3)3 and the interface is defined by

φ(x, y, z) = min {φ1, φ2, · · · , φ12}
where φi, i = 1, . . . , 12 are equal radius balls with centers

(1.0,0,0), (−1.0,0,0), (0.5,0.866025403784439,0), (−0.5,0.866025403784439,0),

(0.5,−0.866025403784439,0), (−0.5,−0.866025403784439,0), (2.0,0,0), (−2.0,0,0),

(1.0,1.73205080756888,0), (−1.0,1.73205080756888,0), (−1.0,−1.73205080756888,0),

(1.0,−1.73205080756888,0)

and radius r = 0.7. The coefficient β is a piecewise constant. The analytic solution is given by u+ = 10(x2 + y2 + z2) and
u− = 5 cos (x2 + y2 + z2).

Fig. 15 shows the interface-fitted mesh extracted as the boundary of �−
h , which did not capture the sharp one-dimension

features of the interface, and this will lead to a loss of the solution accuracy. From part of the interface-fitted mesh, there are
geometric singularities with sharp edges at the intersection of balls. See Fig. 16 for an illustration. In order to capture the
features of complicated interface and improve the solution accuracy, one need to use adaptive mesh near the geometric
features, and this will be our future work. But the maximal angle condition is still satisfied as the maximal angle of
triangular faces on the surface mesh is bounded by 131.3925◦ . Tables 14 and 15 show the numerical results for β− =
1, β+ = 1 and β− = 1, β+ = 10, respectively. It can be seen that the convergence rate in the energy norm is still near 1.5.
But the convergence rates in the ‖ · ‖0,h and ‖ · ‖∞ norms are not second order due to geometric singularities. Table 16
shows how the computational time grows with respect to the number of degrees of freedom. Table 17 shows the number
of iterations taken by the algebraic multigrid method for various values of input parameters.

346 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
Table 14
Errors for Example 5.4: β− = 1 and β+ = 1.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

2,527 0.48 2.27225e+01 3.60464e+00 6.97070e+00
18,960 0.24 1.18700e+01 2.24845e+00 4.20002e+00
138,051 0.12 3.99601e+00 8.79537e−01 9.22094e−01
1,051,665 0.06 1.57695e+00 2.91154e−01 3.92484e−01

Rate 1.4 1.2 1.6

Table 15
Errors for Example 5.4: β− = 1 and β+ = 10.

#dof h ‖uI − uh‖A ‖uI − uh‖∞ ‖uI − uh‖0

2,527 0.48 8.71247e+01 5.29705e+00 8.63843e+00
18,960 0.24 3.90973e+01 3.07134e+00 4.54532e+00
138,051 0.12 1.38105e+01 1.37945e+00 1.15474e+00
1,051,665 0.06 5.49027e+00 4.88589e−01 3.78441e−01

Rate 1.3 1.1 1.6

Table 16
CPU time (in seconds) for Example 5.4: β− = 1 and β+ = 1.

#dof Assemble Solve Mesh
2,527 0.213214 0.29 0.3674
18,960 0.431979 1.81 0.61863
138,051 2.22761 4.88 2.4452
1,051,665 29.9028 42.76 6.8316

Table 17
Example 5.4: Iteration steps of AMG with fixed β− = 1 and various β+ .

#dof β+

10−2 10−1 1 10 102 103 104

1,611 11 10 9 8 9 8 8
15,208 12 11 10 10 10 10 10
123,049 12 12 11 11 11 11 11
991,663 14 12 12 12 12 12 12

6. Conclusion and future work

We have developed a simple interface-fitted mesh generator in both two and three dimensions. Near the interface, we
generate a Delaunay triangulation and merge tetrahedra into polyhedra to avoid sliver tetrahedra. We then use virtual
element methods as a substitution of classical finite element methods to solve the elliptic interface problems and use the
algebraic multigrid solvers for the resulting linear algebraic system. Finally, we show some numerical results to confirm the
effectiveness of our method.

Our interface-fitted mesh generator is based on a uniform Cartesian mesh. So it cannot capture the sharp features of
complicated interfaces very well. In the future work, we will combine our algorithm and adaptive mesh refinement together.
We will also present the convergence analysis in a forthcoming paper and explore high order virtual element methods with
curved surfaces. Furthermore, we plan to apply our algorithm to solve moving interface problems for engineering and
biological applications.

Acknowledgements

We would like to thank the unknown referees for their valuable suggestions and careful reading which have helped us
to improved the paper. The work is mainly done when the first two authors visit BISEC (Beijing Institute for Scientific and
Engineering Computing, Beijing University of Technology) and we thank BISEC for the support and hospitality.

References

[1] G. Acosta, R.G. Durán, The maximum angle condition for mixed and nonconforming elements: application to the stokes equations, SIAM J. Numer. Anal.
37 (1) (1999) 18–36.

[2] L. Adams, Z. Li, The immersed interface/multigrid methods for interface problems, SIAM J. Sci. Comput. 24 (2) (2002) 463–479.
[3] Al Shenk, Uniform error estimates for certain narrow Lagrangian finite elements, Math. Comput. 63 (207) (1994) 105–119.
[4] L. Antiga, J. Peiró, D.A. Steinman, From image data to computational domains, in: Cardiovascular Mathematics, Springer, 2009, pp. 123–175.
[5] I. Babuška, The finite element method for elliptic equations with discontinuous coefficients, Computing 5 (3) (1970) 207–213.
[6] I. Babuška, A.K. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13 (2) (1976) 214–226.

http://refhub.elsevier.com/S0021-9991(17)30014-1/bib61636F737461313939396D6178696D756Ds1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib61636F737461313939396D6178696D756Ds1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6164616D7332303032696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib416C5368656E6B31393934s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib616E7469676132303039696D616765s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib42616275736B612E4931393730s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6261627576736B6131393736616E676C65s1

L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348 347
[7] J.W. Barrett, C.M. Elliott, Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal. 7 (1987) 283–300.
[8] R. Becker, E. Burman, P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity,

Comput. Methods Appl. Mech. Eng. 198 (41–44) (2009) 3352–3360.
[9] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci.

23 (01) (2013) 199–214.
[10] L. Beirao da Veiga, F. Brezzi, L. Marini, A. Russo, The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci. 24 (08) (2014)

1541–1573.
[11] B. Bejanov, J.-L. Guermond, P.D. Minev, A grid-alignment finite element technique for incompressible multicomponent flows, J. Comput. Phys. 227 (13)

(2008) 6473–6489.
[12] P.A. Berthelsen, A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solutions, J.

Comput. Phys. 197 (1) (2004) 364–386.
[13] C. Börgers, A triangulation algorithm for fast elliptic solvers based on domain imbedding, SIAM J. Numer. Anal. 27 (5) (1990) 1187–1196.
[14] J.H. Bramble, J.T. King, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math. 6 (1)

(1996) 109–138.
[15] J. Brandts, S. Korotov, M. Křížek, et al., A geometric toolbox for tetrahedral finite element partitions, in: Efficient Preconditioned Solution Methods for

Elliptic Partial Differential Equations, 2011, pp. 103–122.
[16] K.Q. Brown, Voronoi diagrams from convex hulls, Inf. Process. Lett. 9 (5) (1979) 223–228.
[17] E. Burman, S. Claus, P. Hansbo, M.G. Larson, A. Massing, CutFEM: discretizing geometry and partial differential equations, Int. J. Numer. Methods Eng.

104 (2015) 472–501.
[18] E. Burman, P. Hansbo, Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. Methods Appl.

Mech. Eng. 199 (41–44) (2010) 2680–2686.
[19] E. Burman, P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math. 62 (4) (2012)

328–341.
[20] D. Chen, Z. Chen, C. Chen, W. Geng, G.-W. Wei, MIBPB: a software package for electrostatic analysis, J. Comput. Chem. 32 (4) (2011) 756–770.
[21] L. Chen, Superconvergence of tetrahedral linear finite elements, Int. J. Numer. Anal. Model. 3 (3) (2006) 273–282.
[22] L. Chen, iFEM: An Integrated Finite Element Methods Package in Matlab, University of California at Irvine, 2009.
[23] L. Chen, J. Xu, Optimal Delaunay triangulations, J. Comput. Math. 22 (2) (2004) 299–308.
[24] Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (2) (1998) 175–202.
[25] S.-W. Cheng, T.K. Dey, H. Edelsbrunner, M.A. Facello, S.-H. Teng, Silver exudation, J. ACM 47 (5) (Sept. 2000) 883–904.
[26] L.P. Chew, Guaranteed-quality Delaunay meshing in 3D (short version), in: Proceedings of the Thirteenth Annual Symposium on Computational Geom-

etry, ACM, 1997, pp. 391–393.
[27] C.C. Chu, I.G. Graham, T.Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comput. 79 (2010)

1915–1955.
[28] F. Dassi, S. Perotto, L. Formaggia, P. Ruffo, Efficient geometric reconstruction of complex geological structures, Math. Comput. Simul. 106 (2014)

163–184.
[29] T.S. Developers, SageMath, the Sage Mathematics Software System (Version 7.2), 2016, http://www.sagemath.org.
[30] R.G. Duran, Error estimates for 3-D narrow finite elements, Math. Comput. 68 (225) (1999) 187–199.
[31] R.G. Durán, A.L. Lombardi, Error estimates for the Raviart–Thomas interpolation under the maximum angle condition, SIAM J. Numer. Anal. 46 (3)

(2008) 1442–1453.
[32] H. Edelsbrunner, Triangulations and meshes in computational geometry, Acta Numer. 9 (2000) 133–213.
[33] H. Edelsbrunner, X.-Y. Li, G. Miller, A. Stathopoulos, D. Talmor, S.-H. Teng, A. Üngör, N. Walkington, Smoothing and cleaning up slivers, in: Proceedings

of the 32nd Annual ACM Symposium on the Theory of Computing, ACM, 2000, pp. 273–277.
[34] H. Edelsbrunner, R. Seidel, Voronoi diagrams and arrangements, Discrete Comput. Geom. 1 (1) (1986) 25–44.
[35] T.-P. Fries, T. Belytschko, The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns, Int. J. Numer. Methods Eng. 68 (13)

(2006) 1358–1385.
[36] T.-P. Fries, T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Methods Eng.

84 (April 2010) 253–304.
[37] Y. Gong, B. Li, Z. Li, Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions, SIAM J. Numer.

Anal. 46 (1) (2008) 472–495.
[38] S. Goswami, A. Gillette, C. Bajaj, Efficient Delaunay mesh generation from sampled scalar functions, in: Proceedings of the 16th International Meshing

Roundtable, Springer, 2008, pp. 495–512.
[39] G. Guyomarc’h, C.-O. Lee, K. Jeon, A discontinuous Galerkin method for elliptic interface problems with application to electroporation, Commun. Numer.

Methods Eng. 25 (10) (2009) 991–1008.
[40] J. Guzman, M. Sánchez, M. Sarkis, On the accuracy of finite element approximations to a class of interface problems, Math. Comp. 85 (2016) 2071–2098.
[41] A. Hansbo, P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech.

Eng. 191 (47–48) (2002) 5537–5552.
[42] A. Hansbo, P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. Methods Appl. Mech.

Eng. 193 (2004) 3523–3540.
[43] P. Hansbo, M.G. Larson, S. Zahedi, A cut finite element method for a Stokes interface problem, Appl. Numer. Math. 85 (2014) 90–114.
[44] X. He, T. Lin, Y. Lin, Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal.

Model. 8 (2) (2011) 284–301.
[45] S. Hou, X.-D. Liu, A numerical method for solving variable coefficient elliptic equation with interfaces, J. Comput. Phys. 202 (2) (2005) 411–445.
[46] S. Hou, P. Song, L. Wang, H. Zhao, A weak formulation for solving elliptic interface problems without body fitted grid, J. Comput. Phys. 249 (2013)

80–95.
[47] T.Y. Hou, Z. Li, S. Osher, H. Zhao, A hybrid method for moving interface problems with application to the Hele–Shaw flow, J. Comput. Phys. 134 (2)

(1997) 236–252.
[48] J. Huang, J. Zou, Some new a priori estimates for second-order elliptic and parabolic interface problems, J. Differ. Equ. 184 (2) (2002) 570–586.
[49] J. Huang, J. Zou, Uniform a priori estimates for elliptic and static Maxwell interface problems, Discrete Contin. Dyn. Syst., Ser. B 7 (1) (2007) 145–170.
[50] J.-S. Huh, J.A. Sethian, Exact subgrid interface correction schemes for elliptic interface problems, Proc. Natl. Acad. Sci. 105 (2008) 9874–9879.
[51] L.N.T. Huynh, N.C. Nguyen, J. Peraire, B.C. Khoo, A high-order hybridizable discontinuous Galerkin method for elliptic interface problems, Int. J. Numer.

Methods Eng. 93 (2) (2013) 183–200.
[52] H. Ji, J. Dolbow, On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method, Int. J.

Numer. Methods Eng. 61 (14) (2004) 2508–2535.
[53] A. Johansson, M.G. Larson, A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary, Numer. Math. 123 (2013)

607–628.

http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4261727265747431393837s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4265636B657232303039s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4265636B657232303039s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib62656972616F323031336261736963s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib62656972616F323031336261736963s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib62656972616F32303134686974636868696B6572s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib62656972616F32303134686974636868696B6572s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib42656A616E6F76323030384A6F4350s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib42656A616E6F76323030384A6F4350s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6265727468656C73656E323030346465636F6D706F736564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6265727468656C73656E323030346465636F6D706F736564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib426F726765727331393930534A6F4E41s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4272616D626C6531393936s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4272616D626C6531393936s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6272616E6474733230313167656F6D6574726963s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6272616E6474733230313167656F6D6574726963s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib62726F776E31393739766F726F6E6F69s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4275726D616E32303135s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4275726D616E32303135s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4275726D616E32303130s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4275726D616E32303130s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4275726D616E32303132s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4275726D616E32303132s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6368656E323031316D69627062s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4368656E2E4C32303036s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6368656E323030396966656Ds1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4368656E2E4C3A3A58752E4A32303034s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6368656E3139393866696E697465s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4368656E673A323030303A53453A3335353438332E333535343837s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib636865773139393767756172616E74656564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib636865773139393767756172616E74656564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4368752E433A3A47726168616D2E493A3A486F752E5432303130s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4368752E433A3A47726168616D2E493A3A486F752E5432303130s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib446173736932303134s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib446173736932303134s1
http://www.sagemath.org
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib447572616E2E5231393939s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib647572616E323030386572726F72s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib647572616E323030386572726F72s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4564656C736272756E6E657232303030s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6564656C736272756E6E657232303030736D6F6F7468696E67s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6564656C736272756E6E657232303030736D6F6F7468696E67s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6564656C736272756E6E657231393836766F726F6E6F69s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib667269657332303036696E7472696E736963s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib667269657332303036696E7472696E736963s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib467269657332303130s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib467269657332303130s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib676F6E6732303038696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib676F6E6732303038696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib676F7377616D6932303038656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib676F7377616D6932303038656666696369656E74s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6775796F6D61726332303039646973636F6E74696E756F7573s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6775796F6D61726332303039646973636F6E74696E756F7573s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib47757A6D616Es1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib48616E73626F2E413A3A48616E73626F2E5032303032s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib48616E73626F2E413A3A48616E73626F2E5032303032s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib48616E73626F32303034s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib48616E73626F32303034s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib48616E73626F32303134s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib686532303131696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib686532303131696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib686F75323030356E756D65726963616Cs1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib686F75323031337765616Bs1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib686F75323031337765616Bs1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib686F7531393937687962726964s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib686F7531393937687962726964s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4875616E672E4A3A3A5A6F752E4A32303032s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4875616E6732303037s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib48756832303038s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4875796E6832303133s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4875796E6832303133s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6A693230303473747261746567696573s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6A693230303473747261746567696573s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4A6F68616E73736F6E32303133s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4A6F68616E73736F6E32303133s1

348 L. Chen et al. / Journal of Computational Physics 334 (2017) 327–348
[54] R. Kafafy, T. Lin, Y. Lin, J. Wang, Three-dimensional immersed finite element methods for electric field simulation in composite materials, Int. J. Numer.
Methods Eng. 64 (7) (2005) 940–972.

[55] B. Khoo, Z. Li, P. Lin, Interface Problems and Methods in Biological and Physical Flows, World Scientific, 2009.
[56] M. Krizek, On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer. Anal. 29 (2) (1992) 513–520.
[57] D.-T. Lee, B.J. Schachter, Two algorithms for constructing a Delaunay triangulation, Int. J. Comput. Inf. Sci. 9 (3) (1980) 219–242.
[58] R.J. Leveque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal.

31 (4) (1994) 1019–1044.
[59] R.J. Leveque, Z. Li, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput. 18 (3) (1997) 709–735.
[60] J. Li, J.M. Melenk, B. Wohlmuth, J. Zou, Optimal convergence of higher order finite element methods for elliptic interface problems, Appl. Numer. Math.

60 (2010) 19–37.
[61] X.-Y. Li, S.-H. Teng, Generating well-shaped Delaunay meshed in 3D, in: Proceedings of the Twelfth Annual ACM–SIAM Symposium on Discrete Algo-

rithms, SODA ’01, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001, pp. 28–37.
[62] Z. Li, K. Ito, The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, vol. 33, SIAM, 2006.
[63] Z. Li, T. Lin, X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math. 96 (1) (2003) 61–98.
[64] T. Lin, Y. Lin, X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal. 53 (2) (2015)

1121–1144.
[65] X.-D. Liu, T.C. Sideris, Convergence of the ghost fluid method for elliptic equations with interfaces, Math. Comput. 72 (244) (2003) 1731–1746.
[66] R. Löhner, J.R. Cebral, F.E. Camelli, S. Appanaboyina, J.D. Baum, E.L. Mestreau, O.A. Soto, Adaptive embedded and immersed unstructured grid techniques,

Comput. Methods Appl. Mech. Eng. 197 (25) (2008) 2173–2197.
[67] R. Massjung, An unfitted discontinuous Galerkin method applied to elliptic interface problems, SIAM J. Numer. Anal. 50 (6) (2012) 3134–3162.
[68] J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Eng. 139 (1) (1996)

289–314.
[69] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1) (1999) 131–150.
[70] R. Moore, S. Saigal, Eliminating slivers in three-dimensional finite element models, Comput. Model. Eng. Sci. 7 (3) (2005) 283–291.
[71] L. Mu, J. Wang, X. Ye, S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys. 325 (2016) 157–173.
[72] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen

sind, Abh. Math. Semin. Univ. Hamb. 36 (2) (1971) 9–15.
[73] P.-O. Persson, G. Strang, A simple mesh generator in Matlab, SIAM Rev. 46 (2) (2004) 329–345.
[74] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.
[75] C. Pflaum, Subdivision of boundary cells in 3d, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.5035, 2000.
[76] C. Pflaum, Semi-unstructured grids, Computing 67 (2) (2001) 141–166.
[77] G. Strang, G.J. Fix, An Analysis of the Finite Element Method, vol. 212, Prentice-Hall, Englewood Cliffs, NJ, 1973.
[78] E. Wadbro, S. Zahedi, G. Kreiss, A uniformly well-conditioned, unfitted Nitsche method for interface problems, BIT Numer. Math. 53 (2013) 791–820.
[79] F. Wang, Y. Xiao, J. Xu, High-order extended finite element methods for solving interface problems, arXiv:1604.06171, 2016, pp. 1–25.
[80] H. Wei, L. Chen, Y. Huang, B. Zheng, Adaptive mesh refinement and superconvergence for two-dimensional interface problems, SIAM J. Sci. Comput.

36 (4) (2014) A1478–A1499.
[81] A. Wiegmann, K.P. Bube, The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions, SIAM J.

Numer. Anal. 37 (3) (2000) 827–862.
[82] H. Wu, Y. Xiao, An unfitted hp-interface penalty finite element method for elliptic interface problems, arXiv:1007.2893, 2010.
[83] K. Xia, M. Zhan, G.-W. Wei, MIB Galerkin method for elliptic interface problems, J. Comput. Appl. Math. 272 (7) (2014) 195–220.
[84] H. Xie, Z. Li, Z. Qiao, A finite element method for elasticity interface problems with locally modified triangulations, Int. J. Numer. Anal. Model. 8 (2)

(2011) 189.
[85] J. Xu, Error estimates of the finite element method for the 2nd order elliptic equations with discontinuous coefficients, J. Xiangtan Univ. 1 (1982) 1–5.
[86] J. Xu, Estimate of the convergence rate of finite element solutions to elliptic equations of second order with discontinuous coefficients, Nat. Sci. J.

Xiangtan Univ. 1 (1) (1982) 1–5.
[87] S. Yu, G.W. Wei, Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities, J. Comput. Phys. 227 (1) (2007)

602–632.
[88] X. Zhang, Nonconforming Immersed Finite Element Methods for Interface Problems, PhD thesis, Virginia Polytechnic Institute and State University,

2013.
[89] X. Zheng, J. Lowengrub, An interface-fitted adaptive mesh method for elliptic problems and its application in free interface problems with surface

tension, Adv. Comput. Math. (2016) 1–33.
[90] Y.C. Zhou, S. Zhao, M. Feig, G.W. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and

singular sources, J. Comput. Phys. 213 (1) (2006) 1–30.

http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6B6166616679323030357468726565s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6B6166616679323030357468726565s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4B686F6F4C694C696E32303039s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6B72697A656B313939326D6178696D756Ds1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6C65653139383074776Fs1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6C65766571756531393934696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6C65766571756531393934696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4C65766571756531393937s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4A2E4C693A3A4D2E4D656C656E6B3A3A422E576F686C6D7574683A3A4A2E5A6F7532303038s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4A2E4C693A3A4D2E4D656C656E6B3A3A422E576F686C6D7574683A3A4A2E5A6F7532303038s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4C6954656E6732303031s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4C6954656E6732303031s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6C6932303036696D6D6572736564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4C692E5A3A3A4C696E2E543A3A57752E5832303033s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6C696E323031357061727469616C6C79s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6C696E323031357061727469616C6C79s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4C69752E583A3A536964657269732E5432303033s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6C6F686E6572323030386164617074697665s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6C6F686E6572323030386164617074697665s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4D6173736A756E6732303132s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6D656C656E6B31393936706172746974696F6Es1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6D656C656E6B31393936706172746974696F6Es1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4D6F657331393939s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib6D6F6F726532303035656C696D696E6174696E67s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4D7532303136s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4E69747363686531393731s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib4E69747363686531393731s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib646973746D657368s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib5065736B696E2E4332303032s1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.5035
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib50666C61756D32303031s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib737472616E6731393733616E616C79736973s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib57616462726F32303133s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib57616E6732303136s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib776569323031346164617074697665s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib776569323031346164617074697665s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib776965676D616E6E323030306578706C69636974s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib776965676D616E6E323030306578706C69636974s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib777532303130756E666974746564s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib58696132303134s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib7869653230313166696E697465s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib7869653230313166696E697465s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib7875313938326572726F72s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib787531393832s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib787531393832s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib597532303037s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib597532303037s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib5A68616E67s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib5A68616E67s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib7A68656E6732303136696E74657266616365s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib7A68656E6732303136696E74657266616365s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib5A686F752E593A3A5A68616F2E533A3A466569672E4D3A3A5765692E4732303036s1
http://refhub.elsevier.com/S0021-9991(17)30014-1/bib5A686F752E593A3A5A68616F2E533A3A466569672E4D3A3A5765692E4732303036s1

	An interface-ﬁtted mesh generator and virtual element methods for elliptic interface problems
	1 Introduction
	2 Interface-ﬁtted mesh generator: two dimensions
	2.1 Algorithm
	2.2 Examples
	2.3 Properties

	3 Interface-ﬁtted mesh generator: three dimensions
	3.1 Main difﬁculty
	3.2 Algorithm
	3.3 Properties

	4 Finite element methods for elliptic interface problems
	4.1 Sobolev spaces and weak formulation
	4.2 Finite element methods in 2D
	4.3 Virtual element methods in 3D

	5 Numerical experiments
	6 Conclusion and future work
	Acknowledgements
	References

