Algebra Qualifying Exam , June 2009 (10 points each problem)

1 Let $D_{2 n}$ be the dihedral group of order $2 n$.
(a) Prove that if p is an odd prime, then a Sylow p-subgroup of $D_{2 n}$ is normal and cyclic.
(b) Prove that if $2 n=2^{\alpha} \cdot k$ where k is odd then the number of Sylow 2-subgroups of $D_{2 n}$ is k. Describe all these subgroups.
2 Let G be a group such that $\operatorname{Aut}(G)$ is cyclic. Show that G is abelian.
3 Let \mathbb{Z} be the ring of integers, \mathbb{F}_{5} be the field with five elements.
(a) Determine whether the rings $\mathbb{F}_{5}[x] /\left(x^{2}+1\right)$ and $\mathbb{F}_{5}[x] /\left(x^{2}+2\right)$ are isomorphic.
(b) List all ideals in the ring $\mathbb{Z}[x] /\left(2, x^{3}+1\right)$.

4 Prove that the Galois group of the polynomial $x^{5}-2$ over \mathbb{Q} is isomorphic to the group of all matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)
$$

where $a, b \in \mathbb{F}_{5}$ and $a \neq 0$.
5 Let F be a field of characteristic not dividing n. Show that the matrix equation $X Y-Y X=I_{n}$ has no solutions, where X and Y are unknown $n \times n$ matrices with entries in F and I_{n} is the identity matrix.
6 Let T be a linear operator on a finite dimensional vector space V over \mathbb{Q} such that $T^{15}=I$. Assume that both T^{3} and T^{5} have no non-zero fixed points in V. Show that the dimension of V is divisible by 8 .
7 Let A be a finite Abelian group, p be a prime dividing $|A|$ and k be largest such that p^{k} divides $|A|$. Prove that $\mathbb{Z} / p^{k} \mathbb{Z} \otimes A$ is isomorphic to the Sylow p-subgroup of A.
8 Consider complex representations of the finite group S_{4} up to isomorphism.
(a) Show that S_{4} has exactly two one dimensional complex representations.
(b) Prove that its other pairwise non-isomorphic complex representations have dimensions 2,3 , and 3 .
9 Let R be a commutative local ring with maximal ideal M.
(a) Show that if $x \in M$, then $1-x$ is invertible.
(b) Show that if in addition that R is Noetherian and I is an ideal satisfying $I^{2}=I$, then $I=0$.
10 Let \mathbb{F}_{q} be a finite field of q elements. Show that every element $x \in \mathbb{F}_{q}$ can be written as a sum of two squares in \mathbb{F}_{q}, that is, $x=y^{2}+z^{2}$ for some $y, z \in \mathbb{F}_{q}$.

