Algebra Qualifying Exam , September 2009 (10 points each problem)

Prove that there are precisely four groups of order 28 up to isomorphism.
How many of them are non-abelian?

2 Prove that there are no simple groups of order 30.
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(a) Give an example of an infinite group in which every element has finite
order.

(b) How many solutions does the equation ™ + ---+ x + 1 = 0 have in
a finite field F,?

Let A be a commutative ring with identity. Let S be a non-empty mul-
tiplicative subset of A such that 0 ¢ S. Let P be an ideal of A, which is
maximal in the set of all ideals that do not intersect S. Prove that P is a
prime ideal.

Let R be a commutative ring with identity. Let A, B be two n X n square
matrices with entries in R. Show that for variable ¢,

det(I — ABt) = det(I — BAL).

Let p > 2 be a prime number. Let T be a linear operator on a finite
dimensional vector space V over Q of dimension not divisible by p — 1.
Show that TP~1 4 ... + T + I # 0, where I is the identity map on V.

Let K7 and K5 be two extension fields of a given field K. Assume that
K, is a finite and separable extension of K. Show that K; ®x Ks is a
direct sum of fields as K-algebra.

Consider complex representations of the finite group G up to isomorphism.

(a) Show that if G is abelian, then every irreducible representation of G
has degree 1.

(b) Show that the number of degree 1 representations of G is equal to
G/|G, G], where [G, G| denotes the commutator subgroup of G.

Suppose that F' is an algebraically closed field. Find all monic separable
polynomials f(x) € F[z] such that the set of zeros of f(z) in F is closed
under multiplication.

Compute the Galois group of the polynomial f(z) = 2° — 42 + 2 over Q.



