Algebra Qualifying Exam, September 2009 (10 points each problem)

- 1 Prove that there are precisely four groups of order 28 up to isomorphism. How many of them are non-abelian?
- 2 Prove that there are no simple groups of order 30.
- 3 (a) Give an example of an infinite group in which every element has finite order.
 - (b) How many solutions does the equation $x^n + \cdots + x + 1 = 0$ have in a finite field \mathbb{F}_a ?
- 4 Let A be a commutative ring with identity. Let S be a non-empty multiplicative subset of A such that $0 \notin S$. Let P be an ideal of A, which is maximal in the set of all ideals that do not intersect S. Prove that P is a prime ideal.
- 5 Let R be a commutative ring with identity. Let A, B be two $n \times n$ square matrices with entries in R. Show that for variable t,

$$\det(I - ABt) = \det(I - BAt).$$

- 6 Let p > 2 be a prime number. Let T be a linear operator on a finite dimensional vector space V over \mathbb{Q} of dimension not divisible by p-1. Show that $T^{p-1} + \cdots + T + I \neq 0$, where I is the identity map on V.
- 7 Let K_1 and K_2 be two extension fields of a given field K. Assume that K_1 is a finite and separable extension of K. Show that $K_1 \otimes_K K_2$ is a direct sum of fields as K-algebra.
- 8 Consider complex representations of the finite group G up to isomorphism.
 - (a) Show that if G is abelian, then every irreducible representation of G has degree 1.
 - (b) Show that the number of degree 1 representations of G is equal to G/[G,G], where [G,G] denotes the commutator subgroup of G.
- 9 Suppose that F is an algebraically closed field. Find all monic separable polynomials $f(x) \in F[x]$ such that the set of zeros of f(x) in F is closed under multiplication.
- 10 Compute the Galois group of the polynomial $f(x) = x^5 4x + 2$ over \mathbb{Q} .