Algebra Qualifying Exam , September 2009 (10 points each problem)

1 Prove that there are precisely four groups of order 28 up to isomorphism. How many of them are non-abelian?
2 Prove that there are no simple groups of order 30 .
3 (a) Give an example of an infinite group in which every element has finite order.
(b) How many solutions does the equation $x^{n}+\cdots+x+1=0$ have in a finite field \mathbb{F}_{q} ?
4 Let A be a commutative ring with identity. Let S be a non-empty multiplicative subset of A such that $0 \notin S$. Let P be an ideal of A, which is maximal in the set of all ideals that do not intersect S. Prove that P is a prime ideal.
5 Let R be a commutative ring with identity. Let A, B be two $n \times n$ square matrices with entries in R. Show that for variable t,

$$
\operatorname{det}(I-A B t)=\operatorname{det}(I-B A t)
$$

6 Let $p>2$ be a prime number. Let T be a linear operator on a finite dimensional vector space V over \mathbb{Q} of dimension not divisible by $p-1$. Show that $T^{p-1}+\cdots+T+I \neq 0$, where I is the identity map on V.
7 Let K_{1} and K_{2} be two extension fields of a given field K. Assume that K_{1} is a finite and separable extension of K. Show that $K_{1} \otimes_{K} K_{2}$ is a direct sum of fields as K-algebra.
8 Consider complex representations of the finite group G up to isomorphism.
(a) Show that if G is abelian, then every irreducible representation of G has degree 1 .
(b) Show that the number of degree 1 representations of G is equal to $G /[G, G]$, where $[G, G]$ denotes the commutator subgroup of G.
9 Suppose that F is an algebraically closed field. Find all monic separable polynomials $f(x) \in F[x]$ such that the set of zeros of $f(x)$ in F is closed under multiplication.
10 Compute the Galois group of the polynomial $f(x)=x^{5}-4 x+2$ over \mathbb{Q}.

