ALGEBRA

Comprehensive Exam (June 14, 2010)

Problem	1	2	3	4	5	6	7	8	9	10	Σ
Points											

Student's name:

Problem G1.

Let $G \to H$ be a surjective homomorphism of finite groups. Show that the image of a Sylow p-subgroup in G will be a Sylow p-subgroup in H.

Problem G2.

Let $\mathbb{S} \subset \mathbb{C}$ be the unit circle in the complex plane, i.e., $\mathbb{S} := \{z \in \mathbb{C} \mid |z| = 1\}$. Let G be an abelian group (written multiplicatively) and note that since \mathbb{S} is also an abelian group under complex multiplication, the set \hat{G} of group homomorphisms $\chi : G \to \mathbb{S}$ is a group under pointwise multiplication. It is called the $dual\ group$ of G and its elements χ are called characters of G. Now assume that G is finite, say of order n and define an "integral" or average value on the complex vector space of H(G) of complex-valued functions $f: G \to \mathbb{C}$ by $\int f(g) \, dg := \frac{1}{n} \sum_{g \in G} f(g)$ and use it to define an Hermitian inner-product on H(G) by $\langle f_1, f_2 \rangle := \int f_1(g) \overline{f_2(g)} \, dg$.

- a) Show that for any $f \in H(G)$ and $\gamma \in G$, $\int f(\gamma g) dg = \int f(g) dg$.
- b) Show that $\int \chi_0(g) dg = 1$ if χ_0 is the identity character; but $\int \chi(g) dg = 0$ for any other character χ of G. (Hint: Use a) and $\chi(\gamma g) = \chi(\gamma)\chi(g)$.)
- c) Deduce that the set \hat{G} of characters is an orthonormal subset of H(G). (They are in fact an orthonormal basis, but you don't have to prove that.) (Hint: Show that for any $\chi \in \hat{G}$ its inverse is given by $\chi^{-1}(g) := \overline{\chi(g)}$.)

Problem G3.

Let A be the group of rationals under addition and M the group of non-zero rationals under multiplication. Determine all homomorphisms

$$\phi:A\to M$$

Problem R4.

Find all maximal ideals in the ring

(a) \mathbb{Z} , (b) $\mathbb{R}[x]$, (c) $\mathbb{Z}/n\mathbb{Z}$.

Problem R5.

Let M be a module over the ring $R = \mathbb{Z}/p^n\mathbb{Z}$ and suppose that the number of elements |M| is finite. Show that $|M| = p^k$ for some integer $k \geq 0$.

Problem L6.

Let U,V and W be subspaces in a vector space. Is it always true that $U\cap (V+W)=U\cap V+U\cap W$? Give a proof or a counterexample.

Problem L7.

Let V be a finite dimensional vector space with an Hermitian inner-product, $A:V\to V$ a self-adjoint operator (i.e., $A=A^*$) and $v_1,v_2\in V$ two eigenvectors with distinct eigenvalues. Show that $\langle v_1,v_2\rangle=0$.

Problem L8.

Let T be a linear operator on a vector space V over a field F.

- a) Show that if v_1, \ldots, v_k are eigenvectors of T belonging to k distinct eigenvalues c_1, \ldots, c_k , then the v_i are linearly independent. (Hint: Assume inductively that v_1, \ldots, v_{j-1} are linearly independent but that v_j depends linearly on them and derive a contradiction.)
- b) Deduce that if V is n-dimensional and if $\chi(\lambda) := \det(T \lambda I)$, its characteristic polynomial, has n distinct roots in F then T is diagonalizable.

Problem F9.

Let $E \subset F$ be a field extension of degree 5 and $a \in F$ an element which is a root of some cubic polynomial $g(x) \in E[x]$. Show that $a \in E$.

Problem F10.

What is the number of irreducible degree 4 polynomials in $\mathbb{F}_p[x]$, where p is a prime?