Print Your Name: —	last	first
Print Your I.D. Number:		

Qualifying Examination for Complex Analysis September 15, 2011 9:00am-11:300am Room: RH 114

Table of your scores

 Problem 1 — / 10

 Problem 2 — / 10

 Problem 3 — / 10

 Problem 4 — / 10

 Problem 5 — / 10

 Problem 6 — / 10

 Problem 7 — / 10

 Problem 8 — / 10

Total ————/ 80

Notations. Let D(a,r) be the disc in the complex plane $\mathbb C$ with center at a and radius r; and $\partial D(a,r)=\{z\in\mathbb C:|z-a|=r\}.$

1. Describe all entire holomorphic functions f and g such that (a) $f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^2}$ for all positive integers n. Show your work.

(b) $g(\frac{1}{n}) = g(-\frac{1}{n}) = \frac{1}{n^3}$ for all positive integers n. Show your work.

2. Let f(z) be an entire holomorphic function such that

$$\lim_{z \to \infty} \frac{|f(z)|}{|z|} = 0$$

Prove that f is a constant.

3. Evaluate

$$\int_0^\infty \frac{dx}{x^{1/3}(1+x)}.$$

4. (a) Show that there is an analytic function defined in $\Omega=\{z\in\mathbb{C}\mid |z|>4\}$ whose derivative is

$$f(z) = \frac{z}{(z-1)(z-2)(z-3)}.$$

(b) Does there exist an analytic function in Ω with the derivative

$$g(z) = \frac{z^2}{(z-1)(z-2)(z-3)} ?$$

5. Let $f:[0,1]\to\mathbb{C}$ be a continuous function. Define the function $F:\mathbb{C}\backslash[0,1]\to\mathbb{C}$ by

$$F(z) = \int_0^1 \frac{f(t)}{t-z} dt, \quad z \in \mathbb{C} \backslash [0,1].$$

Prove that F is holomorphic on $\mathbb{C}\setminus[0,1]$.

6. Prove the Schwarz-Pick lemma: Let $f:D(0,1)\to D(0,1)$ be holomorphic. Then

$$\left| \frac{f(z) - f(a)}{1 - \overline{f(a)}} \right| \le \left| \frac{z - a}{1 - \overline{a}z} \right|, \quad a, z \in D(0, 1).$$

7. Let f be holomorphic in D(0,1) and let

$$M(r,f) = \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta$$

Prove that M(r, f) is an increasing convex function of r on [0, 1).

8. Let f be meromorphic in $D(0,1)\setminus\{0\}$ such that

$$\int_{D(0,1)\setminus\{0\}} |f(z)|^3 dA(z) \le 1.$$

Prove z=0 is a removable singularity of f.