$$
\text { Print Your Name: } \begin{aligned}
& \text { last } \\
& \text { first }
\end{aligned}
$$

Print Your I.D. Number: \qquad

Qualifying Examination for Complex Analysis
September 15, 2011
9:00am-11:300am
Room: RH 114

Table of your scores

Notations. Let $D(a, r)$ be the disc in the complex plane \mathbb{C} with center at a and radius r; and $\partial D(a, r)=\{z \in \mathbb{C}:|z-a|=r\}$.

1. Describe all entire holomorphic functions f and g such that (a) $f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n^{2}}$ for all positive integers n. Show your work.
(b) $g\left(\frac{1}{n}\right)=g\left(-\frac{1}{n}\right)=\frac{1}{n^{3}}$ for all positive integers n. Show your work.
2. Let $f(z)$ be an entire holomorphic function such that

$$
\lim _{z \rightarrow \infty} \frac{|f(z)|}{|z|}=0
$$

Prove that f is a constant.
3. Evaluate

$$
\int_{0}^{\infty} \frac{d x}{x^{1 / 3}(1+x)}
$$

4. (a) Show that there is an analytic function defined in $\Omega=\{z \in \mathbb{C}| | z \mid>4\}$ whose derivative is

$$
f(z)=\frac{z}{(z-1)(z-2)(z-3)} .
$$

(b) Does there exist an analytic function in Ω with the derivative

$$
g(z)=\frac{z^{2}}{(z-1)(z-2)(z-3)} ?
$$

5. Let $f:[0,1] \rightarrow \mathbb{C}$ be a continuous function. Define the function F : $\mathbb{C} \backslash[0,1] \rightarrow \mathbb{C}$ by

$$
F(z)=\int_{0}^{1} \frac{f(t)}{t-z} d t, \quad z \in \mathbb{C} \backslash[0,1]
$$

Prove that F is holomorphic on $\mathbb{C} \backslash[0,1]$.
6. Prove the Schwarz-Pick lemma: Let $f: D(0,1) \rightarrow D(0,1)$ be holomorphic. Then

$$
\left|\frac{f(z)-f(a)}{1-\overline{f(a)} f(z)}\right| \leq\left|\frac{z-a}{1-\bar{a} z}\right|, \quad a, z \in D(0,1) .
$$

7. Let f be holomorphic in $D(0,1)$ and let

$$
M(r, f)=\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta
$$

Prove that $M(r, f)$ is an increasing convex function of r on $[0,1)$.
8. Let f be meromorphic in $D(0,1) \backslash\{0\}$ such that

$$
\int_{D(0,1) \backslash\{0\}}|f(z)|^{3} d A(z) \leq 1
$$

Prove $z=0$ is a removable singularity of f.

