Complex Analysis

Qualifying Exam

Tuesday, September 16, 2010 - 1:00pm - 3:30pm, Rowland Hall 114

Problem	1	2	3	4	5	6	7	8	Σ
Points									

Student's name:

Problem 1.

Let z_{1}, \ldots, z_{n} be distinct complex numbers contained in the disk $|z|<R$. Let f be analytic in the closed disk $|z| \leq R$. Let $Q(z)=\left(z-z_{1}\right) \ldots\left(z-z_{n}\right)$. Prove that

$$
P(z)=\frac{1}{2 \pi \mathrm{i}} \int_{|\zeta|=R} f(\zeta) \frac{1-\frac{Q(z)}{Q(\zeta)}}{(\zeta-z)} \mathrm{d} \zeta
$$

is a polynomial of degree $n-1$ having the same values as f at the points z_{1}, \ldots, z_{n}.

Problem 2.

Show that $\sum_{n=1}^{\infty} \frac{1}{z^{2}+n^{2}}$ is meromorphic function on \mathbb{C}.

Problem 3.

Let \mathcal{F} be a family of holomorphic functions on the unit disc so that for any $f \in \mathcal{F}$, one has

$$
\int_{D}|f(z)|(1-|z|)^{2} d A(z) \leq 1
$$

Prove \mathcal{F} is a normal family.

Problem 4.

Find an explicit conformal transformation of an open set $U=\{|z|>1\} \backslash[1,+\infty)$ to the unit disc.

Problem 5.

Find the integral (where $a>b>0$)

$$
\int_{0}^{\infty} \frac{\cos x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} d x
$$

Problem 6.

Let U be an open subset of $\mathbb{C}, f: U \rightarrow \mathbb{C}$, and $z_{0} \in U$. Write $f=u+i v$, i.e. u, v are the real and imaginary parts of f. We say that f is complex differentiable at z_{0} if $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists.
(i) Prove that if f is complex differentiable at z_{0}, then u, v satisfy the Cauchy-Riemann equations.
(ii) Prove that if f is complex differentiable and $f^{\prime}(z) \neq 0$ in U then f is an orientation preserving conformal map, i.e. for any two differentiable curves α, β in U with $\alpha(0)=\beta(0)$ the angle from $\alpha^{\prime}(0)$ to $\beta^{\prime}(0)$ is equal to the angle from $(f \circ \alpha)^{\prime}(0)$ to $(f \circ \beta)^{\prime}(0)$.

Problem 7.

(i) State the Mean Value Theorem for analytic functions and use the Cauchy integral formula to prove it.
(ii) Prove that if $f=u+i v$ is an analytic function from an open subset U of \mathbb{C} then the real and imaginary parts u and v of f are harmonic, i.e., $\Delta u=\Delta v=0$.
(iii) Let U be an open subset of \mathbb{R}^{2}, and $u: U \rightarrow \mathbb{R}$ a harmonic function. Prove that if there is $p_{0} \in U$ such that $u\left(p_{0}\right)=\inf _{x \in U} u(x)$, then u is a constant.

Problem 8.

Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with the radius of convergence $R=64$. Determine the region of convergence of the Laurent series

$$
\sum_{n=-\infty}^{-1} a_{2|n|} z^{3 n}+\sum_{n=0}^{\infty} a_{3 n} z^{2 n}
$$

