COMPLEX ANALYSIS

Qualifying Exam

Tuesday, September 16, 2010 — 1:00pm - 3:30pm, Rowland Hall 114

Problem	1	2	3	4	5	6	7	8	Σ
Points									

Student's name:

Problem 1.

Let z_1, \ldots, z_n be distinct complex numbers contained in the disk |z| < R. Let f be analytic in the closed disk $|z| \le R$. Let $Q(z) = (z - z_1) \ldots (z - z_n)$. Prove that

$$P(z) = \frac{1}{2\pi i} \int_{|\zeta|=R} f(\zeta) \frac{1 - \frac{Q(z)}{Q(\zeta)}}{(\zeta - z)} d\zeta$$

is a polynomial of degree n-1 having the same values as f at the points z_1, \ldots, z_n .

Problem 2.

Show that $\sum\limits_{n=1}^{\infty} rac{1}{z^2+n^2}$ is meromorphic function on \mathbb{C} .

Problem 3.

Let $\mathcal F$ be a family of holomorphic functions on the unit disc so that for any $f\in\mathcal F$, one has

$$\int_{D} |f(z)| (1 - |z|)^{2} dA(z) \le 1.$$

Prove \mathcal{F} is a normal family.

Problem 4.

Find an explicit conformal transformation of an open set $U=\{|z|>1\}\backslash[1,+\infty)$ to the unit disc.

Problem 5.

Find the integral (where a > b > 0)

$$\int_0^\infty \frac{\cos x}{(x^2 + a^2)(x^2 + b^2)} dx$$

Problem 6.

Let U be an open subset of \mathbb{C} , $f:U\to\mathbb{C}$, and $z_0\in U$. Write f=u+iv, i.e. u,v are the real and imaginary parts of f. We say that f is complex differentiable at z_0 if $f'(z_0)=\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$ exists.

- (i) Prove that if f is complex differentiable at z_0 , then u, v satisfy the Cauchy-Riemann equations.
- (ii) Prove that if f is complex differentiable and $f'(z) \neq 0$ in U then f is an orientation preserving conformal map, i.e. for any two differentiable curves α, β in U with $\alpha(0) = \beta(0)$ the angle from $\alpha'(0)$ to $\beta'(0)$ is equal to the angle from $(f \circ \alpha)'(0)$ to $(f \circ \beta)'(0)$.

Problem 7.

- (i) State the Mean Value Theorem for analytic functions and use the Cauchy integral formula to prove it.
- (ii) Prove that if f=u+iv is an analytic function from an open subset U of $\mathbb C$ then the real and imaginary parts u and v of f are harmonic, i.e., $\Delta u=\Delta v=0$.
- (iii) Let U be an open subset of \mathbb{R}^2 , and $u:U\to\mathbb{R}$ a harmonic function. Prove that if there is $p_0\in U$ such that $u(p_0)=\inf_{x\in U}u(x)$, then u is a constant.

Problem 8.

Let $\sum_{n=0}^{\infty} a_n z^n$ be a power series with the radius of convergence R=64. Determine the region of convergence of the Laurent series

$$\sum_{n=-\infty}^{-1} a_{2|n|} z^{3n} + \sum_{n=0}^{\infty} a_{3n} z^{2n}.$$