Comprehensive exam - June 2004

Do each problem on a separate page. Write your name on every page.
You have to justify your answers.

1. $y=\left(y_{1}, y_{2}\right)$ is a function if x, defined by a system of equations

$$
\left\{\begin{array}{c}
x y_{1}^{2}+y_{2}-y_{1} y_{2}=1 \\
x^{2}+y_{1}^{2} y_{2}=2 .
\end{array}\right.
$$

Compute $d y_{1} / d x$ at the point where $x=y_{1}=y_{2}=1$. Justify the existence of this derivative.
2. Suppose $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, and assume that this series converges whenever $0 \leq x \leq 2$.
(a) Prove that the series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for $x=-3 / 2$.
(b) Prove that there exists a constant C such that $\left|a_{n}\right|<C(2 / 3)^{n}$ for any $n \geq 0$.
(c) Prove that there exists a constant C^{\prime} such that $\left|f^{(n)}(1)\right| \leq C^{\prime} 2^{n} n$! for any $n \geq 0$.
3. (a) Define a contractive mapping. State the Contractive Mapping Principle.
(b) For $f \in C([1,2])$, define $T f \in C([1,2])$ by setting

$$
T f(x)=2 x+1+\int_{1}^{x} \frac{f(t)}{t} d t
$$

for $x \in[1,2]$. Prove that T is a contractive mapping on $C([1,2])$.
(c) Use the Contractive Mapping Principle to prove that the system of equations

$$
\left\{\begin{array}{c}
x f^{\prime}(x)=f(x)+2 x \\
f(1)=3
\end{array}\right.
$$

has a unique solution on $[1,2]$.
4. State and prove the Intermediate Value Theorem (in one variable).
5. Suppose A is a subset of a complete metric space (M, d), and f is a uniformly continuous M-valued function, defined on A. Prove that there exists a uniformly continuous function $g: \bar{A} \rightarrow M$ such that $\left.g\right|_{A}=f$.
6. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on the interval $[a, b]$, and assume that there exists a positive constant c such that $f(x) \geq c$ for all $x \in[a, b]$. Prove that $1 / f$ is Riemann integrable.
7. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ define $|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}$. Suppose f maps \mathbb{R}^{n} onto \mathbb{R}^{n} in such a way that $|f(x)-f(y)| \geq|x-y|$ for any $x, y \in \mathbb{R}^{n}$. Suppose A is an open subset of \mathbb{R}^{n}. Prove that $f(A)$ is open.
8. Suppose U is an open subset of \mathbb{R}, containing a point $x_{0} . f$ and g are realvalued functions, defined on U, such that g is continuous, f is differentiable, and $f\left(x_{0}\right)=0$. Prove that the product $f g$ is differentiable at x_{0}.
9. (a) State Heine-Borel Theorem for subsets of \mathbb{R}.
(b) Construct a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of real numbers as follows: set $x_{0}=1$, and let $x_{n+1}=x_{n}+e^{-x_{n}}-1$ for $n \geq 0$. Does the sequence (x_{n}) converge? If it does, compute $\lim _{n \rightarrow \infty} x_{n}$.

