ALGEBRA QUALIFYING EXAM

September 17, 2008

Instructions: JUSTIFY YOUR ANSWERS. LABEL YOUR ANSWERS CLEARLY. Do as many problems as you can, as completely as you can. The exam is two and one-half hours. No notes, books, or calculators.

Notation: Let \mathbb{F}_q denote the finite field with q elements. Let \mathbb{Z} denote the integers. Let \mathbb{Q} denote the rational numbers. Let \mathbb{R} denote the real numbers. Let \mathbb{C} denote the complex numbers.

- 1. Give brief justifications for each of the following:
 - (a) Give an example of two rings that not isomorphic to each other, but whose underlying additive groups are isomorphic.
 - (b) Give an example of an integral domain R and an ideal I of R that is prime but not maximal.
 - (c) Give an example of a group G and subgroups $H \subseteq K \subseteq G$ such that K is normal in G and H is normal in K, but H is not normal in G.
- 2. For each of the following groups G, compute the number of subgroups of G (including trivial subgroups).
 - (a) G is a cyclic group of order 63.
 - (b) $G = \mathbb{F}_{17}^3$.
 - (c) $G = D_8$, the dihedral group of order 8.
- 3. Prove that there are no simple groups of order 30.
- 4. Determine the splitting field over \mathbb{Q} of $x^4 3$. Then determine the Galois group over \mathbb{Q} of $x^4 3$, both as an abstract group and as a set of automorphisms. Give the lattice of subgroups and the lattice of subfields. Make clear which subfield is the fixed field of which subgroup.
- 5. Suppose G_1 and G_2 are finite groups, and the orders of G_1 and G_2 are relatively prime.
 - (a) Prove that if H is a subgroup of $G_1 \times G_2$, then there are subgroups H_1 of G_1 and H_2 of G_2 such that $H = H_1 \times H_2$.
 - (b) Give an example to show that the assertion in (a) is false if we do not require that the orders of G_1 and G_2 are relatively prime.
- 6. Suppose that G is a finite group and suppose that $H \neq \{1\}$ is a subgroup that is contained in every subgroup $K \neq \{1\}$ of G.
 - (a) Prove that the order of G is a power of some prime p, and G has exactly p-1 elements of order p.
 - (b) Give an example of such a G and H, where G is nonabelian of order 8.
- 7. Find all prime ideals in the ring $\mathbb{Z}[X]/(X^3)$.
- 8. Suppose $L \subset \mathbb{C}$ is a finite Galois extension of \mathbb{Q} with cyclic Galois group. Suppose K is a subfield of L and $K \not\subset \mathbb{R}$. Prove that:
 - (a) $[K:\mathbb{Q}]$ is even.
 - (b) [L:K] is odd.
- 9. Suppose p is an odd prime. Show that there are exactly 5 groups of order $2p^2$, up to isomorphism.
- 10. Let A be a square matrix with entries in \mathbb{Q} and with characteristic polynomial $(x^3+2)^2(x^2-3)$.
 - (a) What are the possibilities for the minimal polynomial of A?
 - (b) What are the trace and determinant of A?
 - (c) How many distinct conjugacy classes of such matrices are there in $GL_8(\mathbb{Q})$? For each conjugacy class, give one matrix A in that conjugacy class.