## Algebra Qualifying Exam, Spring 2007

## Student Name:

Do as many problems as you can. Although some partial credits might be given, complete solutions are much preferred.

1 (10 points). Let  $\mathbf{Q}$  be the field of rational numbers. Find a field F such that  $Gal(F/\mathbf{Q}) = D_8$ , the dihedral group with 8 elements. Prove your answer.

2 (10 points). Let  $\mathbf{F}_q$  denote the finite field of q elements. Show that the order of the special linear group  $SL_n(\mathbf{F}_q)$  is

$$q^{n(n-1)/2} \prod_{i=2}^{n} (q^i - 1),$$

and the order of the projective special linear group  $PSL_n(\mathbf{F}_q)$  is

$$\frac{1}{(n,q-1)}q^{n(n-1)/2}\prod_{i=2}^n(q^i-1).$$

3 (5 points). Let p be an odd positive integer. Show that if n is an integer such that p divides  $n^2 + 1$ , then  $p \equiv 1 \pmod{4}$ .

4 (15 points). Let M be an  $8 \times 8$  matrix with entries in **Q**, with minimal polynomial  $(x^4 + 1)(x + 1)^2$ .

- a) What is the characteristic polynomial of M?
- b) What are the trace and determinant of M?
- c) How many conjugacy classes are there of matrices in  $GL_8(\mathbf{Q})$  with this minimal polynomial? Write down one matrix from each congugacy class.

5 (10 points). Prove that  $\mathbf{Z}[\sqrt{-2}]$  is an Euclidean domain with respect to the norm map  $N(a + b\sqrt{-2}) = a^2 + 2b^2$ .

6 (10 points). Prove that no group of order 105 is simple.

7 (10 points). Let F be a finite field and let K be a finite extension of F. Show that both the norm map and the trace map from K to F are surjective. Is the same statement true if K and F are number fields (finite extensions of  $\mathbb{Q}$ )?

8 (10 points). Let R be a commutative ring with identity. Let A and B be  $n \times n$  square matrices over R.

- a) Assume either A or B is invertible. Show that the characteristic polynomials of AB and BA are equal.
- b) For any A and B, not necessarily invertible, show that the characteristic polynomials of AB and BA are also equal.

9 (10 points). Let G be a finite cyclic p-group and let  $\rho: G \longrightarrow \operatorname{Aut}(V)$  be a representation on a finite dimensional vector space V over a field of characteristic p. Assume that  $\rho$  is irreducible. Prove that  $\rho$  is trivial, i.e., G acts trivially on V.

10 (10 points). Let n be a positive integer. Prove that the polynomial  $x^{4^n} + 8x + 13$  is irreducible over **Q**.