Print Your Name: ———	last	first
Print Your I.D. Number:		

Qualifying Examination/ Complex Analysis

September 18, 2006

Notation:
$$D(z_0, r) = \{z \in \mathbf{C} : |z - z_0| < r\} \text{ and } \overline{D}(z_0, r) = \{z \in \mathbf{C} : |z - z_0| \le r\}.$$

1. Show that $\sum_{n=1}^{\infty} \frac{1}{z^2+n^2}$ is meromorphic function on **C**.

2. Show that for a > 0,

$$\int_0^\infty \frac{\cos ax}{(1+x^2)^2} dx = \frac{\pi(1+a)}{4e^a}.$$

3. Let P(z) be a polynomial in z. Assume that $P(z) \neq 0$ for Re(z) > 0. Show that $P'(z) \neq 0$ for Re(z) > 0.

4. Let z_1, \ldots, z_n be distinct complex numbers contained in the disk D(0, R). Let f be analytic in the closed disk $\overline{D}(0, R)$. Let

$$Q(z) = (z - z_1) \dots (z - z_n).$$

Prove that

$$P(z) = \frac{1}{2\pi i} \int_{|\zeta|=R} f(\zeta) \frac{1 - \frac{Q(z)}{Q(\zeta)}}{\zeta - z} d\zeta$$

is a polynomial of degree n-1 having the same values as f at the points z_1,\ldots,z_n .

5. Let f be a function analytic in the unit disc D(0,1) and $|f(z)-z| \le 1$ on the unit circle $\partial D(0,1)$. Show that $\left|f'\left(\frac{1}{2}\right)\right| \le 7/3$.

6. Let real a > 1. Prove that the equation $ze^{a-z} = 1$ has a single solution in the closed unit disk $\overline{D}(0,1)$ which is real and positive.

7. Let Ω be a bounded domain in \mathbb{C} , and let $\{f_j\}_{j=1}^{\infty}$ is a sequence of analytic functions on Ω such that

$$\int_{\Omega} |f_j(z)|^2 dA(z) \le 1.$$

Prove that $\{f_j\}_{j=1}^{\infty}$ is a normal family in Ω .

8. Let $f:D(0,1)\to {\bf C}$ be a bounded analytic function. Let a_n be the non-zero zeros of f in D counted according to multiplicity. Prove

$$\sum_{n=1}^{\infty} (1 - |a_n|) < \infty$$