Print Your Name: —		
	last	${ m first}$
Print Your I.D. Number:		

Complex Analysis Qualifying Examination

Choose any 8 problems from 9

10:00 AM = 12: 30 PM, 9/21/2007 /:30 PM-4:10 PM

Table of your scores

Problem 1 ———————————————————————————————————
Problem 2 ————/ 10
Problem 3 ———/ 10
Problem 4 ————/ 10
Problem 5 ————/ 10
Problem 6 ————/ 10
Problem 7 ————/ 10
Problem 8 ————/ 10
Problem 9 ————/ 10
Total/ 80

1. Prove the following Jordan's lemma. Let f(z) be continuos in the region $D = \{z \in \mathbb{C} : |z| \geq R_0, \text{ Im } z \geq 0\}$ and $\lim_{z \to \infty} f(z) = 0$ uniformly on D. Then for any positive number a

$$\lim_{R \to \infty} \int_{\Gamma_R} e^{iaz} f(z) \ dz = 0,$$

where Γ_R is the arc of the circle $\{z \in \mathbf{C} : |z| = R\}$, which lies in the semi-plane $\mathrm{Im} z \geq 0$.

2. Let f(z) be holomorphic in the closed unit disc $\overline{D(0,1)}$. Prove

$$f(z) = \frac{1}{\pi} \int_{D(0,1)} \frac{f(w)}{(1-z\overline{w})^2} dA(w), \quad z \in D(0,1).$$

3. Let α, β and γ are positive real numbers. Then find the radius of convergence for the series

$$\sum_{n=0}^{\infty} \frac{\alpha (\alpha + 1) \dots (\alpha + n - 1) \beta (\beta + 1) \dots (\beta + n - 1)}{n! \gamma (\gamma + 1) \dots (\gamma + n - 1)} z^{n}.$$

4. Show that

$$F(z) = \int_0^1 \frac{e^{tz}}{1+t} dt$$

is holomorphic in C.

5. Let $f: D(0,1) \to D(0,1)$ be holomorphic. Prove

$$\left|\frac{|f(z)-f(w)|}{1-f(z)\overline{f(w)}}\right| \le \left|\frac{z-w}{1-z\overline{w}}\right|, \quad z, w \in D(0,1).$$

6. Let $\Omega \neq \mathbb{C}$ be a simply connected domain in \mathbb{C} . Let $f: \Omega \to \Omega$ be a holomorphic mapping which fixes two distinct points in Ω (i.e. there are $p, q \in \Omega$ so that f(p) = p and f(q) = q). Show that $f(z) \equiv z$ on Ω .

. Let a be a real number, evaluate the following integral

$$\int\limits_0^\infty \frac{\sin ax}{\sinh x} dx.$$

8. Let f(z) be analytic on $\mathbb{C}\setminus\{1\}$ and have a simple pole at z=1 with residue λ . Prove that for every R>0,

$$\lim_{n \to +\infty} R^n \left| (-1)^n \frac{f^{(n)}(2)}{n!} - \lambda \right| = 0.$$

9. Suppose that f(z) is an entire function such that

$$|f(z)| \le Be^{A|z|}, \quad z \in \mathbf{C}$$

for some positive numbers A, B. Let $\omega_1, \omega_2, \cdots$ be the zeros of f listed with appropriate multiplicity. Prove that

$$\sum_{n=1}^{\infty} (1 + |\omega_n|)^{-\alpha} < \infty$$

for all $\alpha > 1$.