COMPLEX ANALYSIS

Qualifying Exam

Thursday, September 18, 2008 — 10:00 am - 12:30 pm, Rowland Hall 306

Problem	1	2	3	4	5	6	7	8	Σ
Points									

Student's name:

Problem 1.

Compute the area of the image of the unit disc $D=\{z\mid |z|<1\}$ under the map $f(z)=z+\frac{z^2}{2}.$

Problem 2.

Find all entire functions f(z) that satisfy

$$f''\left(\frac{1}{n}\right) = 4f\left(\frac{1}{n}\right)$$
 for all $n \in \mathbb{N}$.

Problem 3.

Let $L \subset \mathbb{C}$ be the line $L = \{z = x + iy \mid x = y\}$. Assume that $f : \mathbb{C} \to \mathbb{C}$ is an entire function such that for any $z \in L$ we have $f(z) \in L$. Assume that f(1) = 0. Prove that f(i) = 0.

Problem 4.

Find the largest disk centered at 1 in which the Taylor series for

$$\frac{1}{1+z^2} = \sum a_k (z-1)^k$$

will converge. (Hint: you do not actually have to find the coefficients a_k nor the full series to answer this question.)

Problem 5.

Evaluate the integral

$$\int_0^{+\infty} \left(\frac{\sin x}{x}\right)^2 dx$$

Problem 6.

Suppose a function $f:D\to D$, where $D=\{|z|<1\}$ is the unit disc, is holomorphic and $f(0)=\alpha\neq 0$. Show that f cannot have a zero in the open disk $D(0,|\alpha|)=\{|z|<|\alpha|\}$.

Problem 7.

Let u be a harmonic function on \mathbb{R}^2 that does not take zero value (i.e. $u(x) \neq 0 \ \forall x \in \mathbb{R}^2$). Show that u is constant.

Problem 8.

How many zeros does the function $f(z)=14z^{100}-5e^z$ have in the unit disc? What are the multiplicities of zeros?