Print Your Name: —	lact	first
Print Your I.D. Number:	1220	

Qualifying Examination/ Complex Analysis

June 20, 2006

Table of your scores		
Problem 1 ————/ 10		
Problem 2 ————/ 10		
Problem 3 ———————————————————————————————————		
Problem 4 ————/ 10		
Problem 5 ————/ 10		
Problem 6 ————/ 10		
Problem 7 ———————————————————————————————————		
Problem 8 ————/ 10		
Total ————/ 80		

Notation: Let $D(z_0, r)$ be an open disk in the complex plane centered at z_0 with radius r.

1. Prove or disprove that there exists an analytic function f(z) in the unit disk D(0,1) such that

$$f(\frac{1}{n}) = f(-\frac{1}{n}) = \frac{1}{n^3}$$
, for all $n = 1, 2, 3, \dots$

- 2. Complete the following problems:
 - (a) State the Liouville's theorem
 - (b) Prove the Liouville's theorem by calculating the following integral

$$\int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} dz$$

and taking the limit $R \to \infty$.

3. The Bernoulli polynomials $\phi_{n}\left(z\right)$ are defined by the expansion

$$\frac{e^{tz} - 1}{e^t - 1} = \sum_{n=1}^{\infty} \frac{\phi_n(z)}{n!} t^{n-1}.$$

Prove the following two statements

- (i) $\phi_n(z+1) \phi_n(z) = nz^{n-1};$ (ii) $\frac{\phi_{n+1}(n+1)}{n+1} = 1 + 2^n + 3^n + \cdots + n^n.$

4. Let f(z) be analytic and satisfy $|f(z)| \le 100|z|^{-2}$ in the strip $\alpha_1 \le \text{Re } z \le \alpha_2$. Prove the function

$$h(x) = \int_{-\infty}^{\infty} f(x+iy)dy$$

is a constant function of $x \in [\alpha_1, \alpha_2]$.

5. Evaluate the integral:

$$\int_0^\infty \frac{\sin^2 x}{x^2} dx.$$

6. Prove or disprove that there is a sequence of analytic polynomial $\{p_n(z)\}_{n=1}^{\infty}$ so that $p_n(z) \to \overline{z}^4$ as $n \to \infty$ uniformly for $z \in \partial D(0,1) = \{z \in \mathbf{C} : |z| = 1\}$.

7. Let f be analytic in the unit disc D(0,1) and continous on $\overline{D(0,1)}$. Assume that

$$|f(z)| = |e^z|$$
 for all $z \in \partial D(0,1) = \{z \in \mathbf{C} : |z| = 1\}$

Find all such f.

8. Let f(z) be an entire analytic function and satisfy

$$f(z+1) = f(z)$$
 and $|f(z)| \le e^{|z|}$, $z \in \mathbf{C}$.

Prove that f(z) must be constant. Here ${\bf C}$ denotes the the whole complex plane.