Print Your Name: last - first

Print Your I.D. Number:

Qualifying Examination/ Complex Analysis

June, 2009

Table of your scores

Problem $1 — / 10$
Problem $2 \longrightarrow / 10$
Problem $3 — / 10$
Problem $4 — / 10$
Problem $5 — / 10$
Problem $6 \longrightarrow / 10$
Problem $7 \longrightarrow / 10$
Problem $8 \longrightarrow / 10$

Total $\quad / 80$

Notation: Let $D\left(z_{0}, r\right)$ be the disk centered at z_{0} and radius r in the complex plane \mathbf{C}, \mathbf{N} is the set of all positive integers, let $U=\{z \in \mathbf{C}: \operatorname{Im} z>0\}$ be the upper half plane.

1. (a) State the Rouche's Theorem.
(b) Let $a>e$ be a real number. Prove that the equation

$$
a z^{4} e^{-z}=1
$$

has a single solution in $D(0,1)$, which is real and positive.
2. Suppose that a function $f(z)$ is holomorphic in the unit disc $D(0,1)$ and has the property

$$
f\left(\frac{1}{2 n}\right)=f^{(4)}\left(\frac{1}{2 n}\right) \quad \text { for all } \quad n \in \mathbf{N}
$$

Prove that f can be extended to an entire function on C. (Here $f^{(4)}=\frac{\partial^{4} f}{\partial z^{4}}$.)
3. If $f(z)$ is continuos in the region $\operatorname{Re} z \geq \sigma$ (σ is a fixed real number) and $\lim _{z \rightarrow \infty} f(z)=0$, then for any negative number t

$$
\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} e^{t z} f(z) d z=0
$$

where Γ_{R} is the arc of the circle $|z|=R, \operatorname{Re} z \geq \sigma$.
4. (a) State the Riemann mapping theorem.
(b) Find explicitly a conformal mapping of the domain

$$
\{z \in \mathbf{C}||z|<1, \operatorname{Re} z>0, \operatorname{Im} z>0\}
$$

to the unit disc.
5. Does there exist a conformal automorphism φ of the unit disc such that $\varphi(1 / 2)=0$ and $\varphi(0)=\frac{i}{3}$?

1. Find the integral $\int_{0}^{\infty} \frac{x \cos a x}{\sinh x} d x$.
2. Prove that if $|a| \neq R$, then

$$
|z|=R \frac{|d z|}{|z-a||z+a|} \leq \frac{2 \pi R}{\left|R^{2}-|a|^{2}\right|}
$$

3. Let $0<a<1$ be any real number. Then
(a) Prove the following identity:

$$
\int_{0}^{2 \pi} \frac{1}{1+a^{2}-2 a \cos \theta} d \theta=\frac{2 \pi}{1-a^{2}}
$$

(b) Find the limit

$$
\lim _{k \rightarrow+\infty} \int_{|z|=\left(k+\frac{1}{2}\right) \pi} \frac{\pi}{z^{2} \sin z} d z
$$

1. Let $f(z)$ be a non-constant entire function on \mathbf{C}. Use Liouville's Theorem to prove that the image of $f($ or $f(\mathbf{C}))$ is dense in \mathbf{C}.
2. (a) State the Schwarz reflection principle for holomorphic function on the unit disk.
(b) Let $f(z)$ be holomorphic in the unit disc $D(0,1)$ and continuous on the closed disc $\overline{D(0,1)}$. Prove or disprove there exists such f so that $f\left(e^{i \theta}\right)=e^{-i \theta}$ for $0<\theta<\pi / 4$.
3. Let D be a bounded domain in \mathbf{C} with $0 \in D$. If $f: D \rightarrow D$ is a holomorphic map so that $f(0)=0$ and $f^{\prime}(0)=1$. Show that $f(z)=z$ on D.
4. Let $f(z)$ be holomorphic on a domain D in the complex plane. If $|f(z)|^{2}$ is harmonic in D. What can you conclude on f ? (show your work.)
5. Let f be an entire function on \mathbf{C} with $|f(z)|=1$ for $|z|=1$ and $f^{\prime \prime \prime}(0)=6$ (the third order derivative of f at $z=0$). Find all such f.
