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Real Analysis Qualifying Exam
September 19, 2008
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Instructions. Do all problems if possible. Use
only one side of each sheet. Do at most one
problem on each page. Write your name on
every page. Justify your answers. Where ap-
propriate, state without proof results that you
use in your solutions.




1. Let f be a Lebesgue integrable function of the real line. Prove that

(e o]

lim f(z) sin(nz) de = 0.

=
n—oo [_

2. Let ¢ be an absolutely continuous monotone function on [0, 1]. Prove that,
if £ C[0,1] is a set of Lebesgue measure zero, then the set
g(F) = {g(z); x € E} C R is also a set of Lebesgue measure zero.

3. Let v be a finite Borel measure on the real line, and set F(z} = v{(—o0, z]}.
Prove that v is absolutely continuous with respect to the Lebesgue mea-
sure py, if and only F is an absolutely continuous function. In this case
show that its Radon-Nikodym derivative is the derivative of F', that is,

: d(}l-L_UL = F’ almost everywhere.

4. Let p be a measure and let A\, A1, Ay be signed measures on the measurable
space (X, A). Prove:

(a) f A L pand A < pthen A =0.

(b) If A\ L pwand Ag L g, then, if we set A = c1 A1 + ¢z X9 with ¢, ¢o real
numbers such that A is a signed measure, we have A L p.

(b) If Ay « pand Ay < p, then, if we set A = 1A + 29 with ¢p, ¢p real
numbers such that A is a signed measure, we have A < p.

5. Let (X, A, 1) be a measure space. Let {fn}nen and f be extended real-
valued A-measurable functions on a set D € A such that lim, . frn = f
on D. Then for every a € R we have
(1) M{D > a} < liminf, o /L{D S fn > a}

(2) w{D: f < a} <lminfpoepu{D: frn < a}.

6. Let (X,A, 1) be a measure space. Let{f,}nen and f be a sequence
of extended real-valued A-measurable functions on a set D € A with

u{D) < oo. Show that f, converges to 0 in measure on D if and only if

limy, e fD —lyl'}tldu =0.



