Algebra Qualifying Exam, UCI
 Winter 2003

1. Let \mathbb{F}_{p} denote the field of p elements. Prove the following.
(a) The ring $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$ is a field.
(b) The ring $\mathbb{F}_{3}[x] /\left(x^{3}+x+1\right)$ is not a field.
2. Let G be a finite group. A character φ of G is a homomorphism $\varphi: G \rightarrow \mathbb{C}^{*}$. Prove that the following conditions are equivalent.
(a) Every element of G is conjugate to its inverse.
(b) Every character of G is real-valued.
3. Let p be a prime, V a vector space of dimension p over \mathbb{Q} and $T: V \rightarrow V$ a linear transformation such that $T^{p}=$ identity. Find all possible rational canonical forms for T and teh characteristic polynomial of each.
4. Let \mathbb{F}_{p} denote the finite field of p elements, where p is prime. Let $U T\left(n, \mathbb{F}_{p}\right)$ denote the group of $n \times n$ upper triangular matrices over \mathbb{F}_{p} with each of its diagonal entries being 1. Let G be a p-group of order n. Show that G is isomorphic to a subgroup of $U T\left(n, \mathbb{F}_{p}\right)$. (Hint: show that G is isomorphic to a subgroup of $G L\left(n, \mathbb{F}_{p}\right)$ and then use Sylow's theorem via a counting of the group orders).
5. Let V be a vector space and $T: V \rightarrow V$ a linear transformation.
(a) If $\operatorname{dim}_{V}<\infty$, prove that T is onto if and only if T is $1-1$.
(b) Show by examples that both implications are false if $\operatorname{dim}_{V}=\infty$.
6. Let N be a submodule of a module M (over an arbitrary ring R). Prove that N is a direct summand of M if and only if there is an endomorphism $f: M \rightarrow M$ such that $f \circ f=f$ and $f(M)=N$.
7. Show that the compact group $S U_{2}$ has exactly 7 complex representations of dimension 5 and write down all 7 representations in terms of the irreducible representations of $S U_{2}$. (Hint: use the fact that $S U_{2}$ has one irreducible representation of degree n for each positive integer n.)
8. Let R be the ring $\mathbb{Z}[\sqrt{-5}]$.
(a) Show that R is not a UFD.
(b) Factor the principal ideal (6) into a product of prime ideals in the ring R.
9. Let \mathbb{F}_{q} be the finite field of q elements with characteristic p. Its non-zero elements form a multiplicative group \mathbb{F}_{q}^{*} which is cyclic of order $q-1$.
(a) Let m be a positive integer. Prove that

$$
\sum_{x \in \mathbb{F}_{q}} x^{m}= \begin{cases}-1 & \text { if }(q-1) \mid m \\ 0 & \text { otherwise }\end{cases}
$$

(b) Let $n>d$ be positive integers. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial of total degree d in n-variables with coefficients in \mathbb{F}_{q}. Let $N(f)$ denote the number of solutions of the equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=0, x_{i} \in \mathbb{F}_{q}
$$

Prove that $N(f)$ is divisible by p.
10 . For $R=\mathbb{Z}$, give examples of R-modules M where
(a) M is torsion-free and no linearly independent subset generates M.
(b) M is free, $X \subset M$ is maximal linearly independent, but X does not generate M.
11. Let K be the splitting field over \mathbb{Q} of the polynomial

$$
f(x)=\left(x^{2}-2 x-1\right)\left(x^{4}-1\right) .
$$

Determine the Galois group G of $f(x)$ and determine all the intermediate fields explicitly.

