(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which satisfies the equation $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$. Prove the following statements:
(a) If f is positive at one point of \mathbb{R}, then f is positive at every point of \mathbb{R}.
(b) If f is differentiable at one point of \mathbb{R}, then f is differentiable at every point of \mathbb{R}.
(2) Let $f_{n}, n=1,2, \ldots$ and f be Riemann integrable real-valued functions defined on $[0,1]$. For each of the following statements, determine whether the statement is true or not; prove your claims:
(a) If $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=0$, then $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right|^{2} d x=0$.
(b) If $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right|^{2} d x=0$, then $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=0$.
(3) Suppose that $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the vector-valued function defined by

$$
f(x, y, z)=\left(x+y^{2}+100 z, x+3 y-100 z, e^{-z+100 y^{2}}\right) \text { for all }(x, y, z) \text { in } \mathbb{R}^{3} .
$$

(a) Compute the determinant of the Jacobian matrix of f at the point $(0,0,0)$.
(b) Is there an open neighborhood of $(0,0,0)$ such that f is one-to-one in this neighborhood? If your answer is 'Yes', please give the reason and find an explicit example of an open neighborhood of $(0,0,0)$ on which f is one-to-one.
(4) Let $f:[a, b] \rightarrow \mathbb{R}$ be a real-valued function defined on a closed bounded interval $[a, b]$ in \mathbb{R}. We define the graph of the function f to be set Γ_{f} of points (x, y) in \mathbb{R}^{2} such that $x \in[a, b]$ and $y=f(x)$.

Prove or Disprove The function f is continuous on $[a, b]$ if, and only if, the set Γ_{f} is a closed subset of $\overline{\mathbb{R}^{2}}$.
(5) Prove that the set \mathbf{N} of all positive integers has the same cardinality as the Cartesian product $\mathbf{N} \times \mathbf{N}$. (As usual, \mathbf{N} is the set of all positive integers. Also, to say that a set X has the same cardinality as a set Y means that there is a one-to-one map $\varphi: X \rightarrow Y$ of X onto Y.)

NOTE: In order to get full credit for this problem, you should construct an explicit example of a one-to-one map of \mathbf{N} onto $\mathbf{N} \times \mathbf{N}$.
(6) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuously differentiable on the closed interval $[a, b]$ in \mathbb{R}, and suppose that $g:[a, b] \rightarrow \mathbb{R}$ is a monotonic function such that $g(a)=f(a)$ and $g(b)=f(b)$.

Prove or Disprove: There exists a constant M such that $|f(x)-g(x)| \leq M \cdot|b-a|$ for all x in $[a, b]$.
(7) Define a sequence $\left(a_{1}, a_{2}, \ldots a_{n}, \ldots\right)$ recursively by setting $a_{1}=1, a_{2}=3$, and $a_{n+2}=\left(a_{n+1}+2 a_{n}\right) / 3$ for $n \geq 1$. Prove that the sequence (a_{n}) converges, and compute its limit.
(8) Let f be a real-valued function defined on the real line.
(a) Prove or Disprove If f is uniformly continuous on \mathbb{R} then f^{2} is uniformly continuous on \mathbb{R}.
(b) Prove or Disprove If f is uniformly continuous on \mathbb{R} then $f^{2} /\left(1+f^{2}\right)$ is unifomly continuous on \mathbb{R}.
(9) Suppose f is a Riemann integrable function on $[0,1]$. Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1} x^{n} f(x) d x=0$.

