Math 2A: Sample Final 3

- Turn off your cell phone and do not check it during the exam.
- No calculators or other forms of assistance allowed.
- This exam consists of 14 questions for 100 total points. Points per question are in brackets.
- Read the directions for each problem carefully and answer all parts of each problem.
- Unless instructed otherwise, show all work for full credit.
- Define any notation used and label any sketches/graphs.

1. Compute the following derivatives:

(a)
$$f'(x)$$
 where $f(x) = \sin(x^2 + 2)$ (2)

(b)
$$\frac{d^2s}{dt^2}$$
 where $s = 25t + t^{3/2}$ (3)

(c)
$$\frac{d}{dz} \tan^{-1}(\sqrt{z})$$
 (4)

(d)
$$f'(x)$$
 where $f(x) = x^{\sin x}$ (5)

2. Find the equation of the tangent line to the curve $x^3 + xy + y^2 = 1$ at the point (-1,2).

3. Show that the equation $2^{-x} = \frac{x-1}{x+1}$ has at least one solution in the interval [1,3]. Explain your answer and state what theorem you are using.

4. Compute the limits.

(a)
$$\lim_{x \to 3^+} \frac{2-x}{\sqrt{x-3}}$$
 (3)

(b)
$$\lim_{x \to \infty} \frac{x^{1/3}}{\ln x} \tag{4}$$

5. An equilateral triangle $\triangle ABC$ (see picture) initially has sides of length 10 in. Suppose that the side lengths shrink at a constant rate of 2 in/sec.

(You may use the fact that the area of an equilateral triangle with side length ℓ is $\frac{\sqrt{3}}{4}\ell^2)$

(5)

How rapidly is the area of the triangle changing when its area is $4\sqrt{3}$ in²?

6. Use a linear approximation (or differentials) to estimate $\sqrt[3]{9}$. (*Hint: Let* $f(x) = \sqrt[3]{x}$ *and recall that* $\sqrt[3]{8} = 2$)

(6)

7. Find the anti-derivative F(x) of the function $f(x) = 3x^2 + e^x$ which satisfies F(1) = e. (5)

8. You are given the following graphs for functions f and g.

(a) State the following limits. Write DNE if the limit does not exist. (No working required)

i.
$$\lim_{x \to 3} f(x)$$

ii.
$$\lim_{x \to 3^+} \frac{f(x)}{g(x)}$$
 (2)

(b) Define the function h(x) = 2f(x) - 3g(x). Is h continuous or discontinuous at x = 3? Explain.

- 9. Consider the function $f(x) = 2xe^{-x}$ with domain $[0, \infty)$.
 - (a) Compute the first two derivatives f'(x) and f''(x).

(4)

(9)

(b) Complete the following table. State 'none' if applicable. No working necessary.

Absolute/local minima	
Absolute/local maxima	
Interval(s) of increase	
Interval(s) of decrease	
Inflection point(s)	
Interval(s) of upwards concavity	
Interval(s) of downwards concavity	
Horizontal Asymptote(s)	
Vertical Asymptote(s)	

(c) Sketch the curve y = f(x) on the axes below.

(2)

10. Use the limit definition to compute the derivative of
$$f(x) = \frac{1}{x}$$

(6)

- 11. The profit made by EZ-motors when it sells n cars is given by a function P(n). Suppose, when n = 100, that dP = \$1,000. Which of the following sentences must be true? Circle all that apply.
 - (a) If EZ-motors sells 102 cars, then it will make exactly \$2,000 profit.
 - (b) If EZ-motors sells 97 cars, then it will make approximately \$3,000 less profit than if it sold 100 cars.
 - (c) If P(100) = \$50,000, then $P(104) \approx $54,000$.
 - (d) The rate of change of P(n) is $\frac{1000}{100} = 10$ \$/car.

12. Answer *true* or *false* to each of the following and give a short explanation. Unjustified answers will receive no credit.

(a)
$$\lim_{x \to -\infty} \frac{\sqrt{x^6 + 5x + 9}}{3x^3 + 2} = \frac{1}{3}$$
 (3)

(b) Let
$$f(x) = x^2$$
. Then there exists some $c \in (2,4)$ for which $f'(c) = 6$.

13. The rate of change of the temperature (T °F) of a cup of coffee is proportional to the temperature difference between the coffee and the surrounding air (70°F). Suppose, at time t=0 minutes, that the coffee has temperature 180°F, and is decreasing at a rate of 5°F/min. Which of the following is a correct model for the temperature of the coffee? (3) (*No working necessary*)

(a)
$$\frac{dT}{dt} = -22(T - 70)$$

(b)
$$\frac{dT}{dt} = 22(T - 70)$$

(c)
$$\frac{dT}{dt} = -\frac{1}{22}(T - 70)$$

(d)
$$\frac{dT}{dt} = \frac{1}{22}(T - 70)$$

14. A cylinder has base radius r and height h. Its volume and surface area are given by the formulas

$$V = \pi r^2 h$$
 and $A = 2\pi r(r+h)$

Find the dimensions of the cyclinder with maximum volume if its surface area is $A=6\pi$. (8)