Math 2A: Sample Final 3

- Turn off your cell phone and do not check it during the exam.
- No calculators or other forms of assistance allowed.
- This exam consists of 14 questions for 100 total points. Points per question are in brackets.
- Read the directions for each problem carefully and answer all parts of each problem.
- Unless instructed otherwise, show all work for full credit.
- Define any notation used and label any sketches/graphs.

1. Compute the following derivatives:
(a) $f^{\prime}(x)$ where $f(x)=\sin \left(x^{2}+2\right)$
(b) $\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}$ where $s=25 t+t^{3 / 2}$
(c) $\frac{\mathrm{d}}{\mathrm{d} z} \tan ^{-1}(\sqrt{z})$
(4)
(d) $f^{\prime}(x)$ where $f(x)=x^{\sin x}$
(5)
2. Find the equation of the tangent line to the curve $x^{3}+x y+y^{2}=1$ at the point $(-1,2)$.
3. Show that the equation $2^{-x}=\frac{x-1}{x+1}$ has at least one solution in the interval $[1,3]$. Explain your answer and state what theorem you are using.
4. Compute the limits.
(a) $\lim _{x \rightarrow 3^{+}} \frac{2-x}{\sqrt{x-3}}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{1 / 3}}{\ln x}$
5. An equilateral triangle $\triangle A B C$ (see picture) initially has sides of length 10 in . Suppose that the side lengths shrink at a constant rate of $2 \mathrm{in} / \mathrm{sec}$.
(You may use the fact that the area of an equilateral triangle with side length ℓ is $\frac{\sqrt{3}}{4} \ell^{2}$)

How rapidly is the area of the triangle changing when its area is $4 \sqrt{3}$ in 2 ?
6. Use a linear approximation (or differentials) to estimate $\sqrt[3]{9}$.
(Hint: Let $f(x)=\sqrt[3]{x}$ and recall that $\sqrt[3]{8}=2$)
7. Find the anti-derivative $F(x)$ of the function $f(x)=3 x^{2}+e^{x}$ which satisfies $F(1)=e$.
8. You are given the following graphs for functions f and g.

(a) State the following limits. Write DNE if the limit does not exist. (No working required)
i. $\lim _{x \rightarrow 3} f(x)$
ii. $\lim _{x \rightarrow 3^{+}} \frac{f(x)}{g(x)}$
(b) Define the function $h(x)=2 f(x)-3 g(x)$. Is h continuous or discontinuous at $x=3$? Explain.
9. Consider the function $f(x)=2 x e^{-x}$ with domain $[0, \infty)$.
(a) Compute the first two derivatives $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(b) Complete the following table. State 'none' if applicable. No working necessary.

Absolute/local minima	
Absolute/local maxima	
Interval(s) of increase	
Interval(s) of decrease	
Inflection point(s)	
Interval(s) of upwards concavity	
Interval(s) of downwards concavity	
Horizontal Asymptote(s)	
Vertical Asymptote(s)	

(c) Sketch the curve $y=f(x)$ on the axes below.
(2)

10. Use the limit definition to compute the derivative of $f(x)=\frac{1}{x}$
11. The profit made by EZ-motors when it sells n cars is given by a function $P(n)$. Suppose, when $n=100$, that $\mathrm{d} P=\$ 1,000$. Which of the following sentences must be true? Circle all that apply.
(a) If EZ-motors sells 102 cars, then it will make exactly $\$ 2,000$ profit.
(b) If EZ-motors sells 97 cars, then it will make approximately $\$ 3,000$ less profit than if it sold 100 cars.
(c) If $P(100)=\$ 50,000$, then $P(104) \approx \$ 54,000$.
(d) The rate of change of $P(n)$ is $\frac{1000}{100}=10 \$ / \mathrm{car}$.
12. Answer true or false to each of the following and give a short explanation. Unjustified answers will receive no credit.
(a) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{6}+5 x+9}}{3 x^{3}+2}=\frac{1}{3}$
(b) Let $f(x)=x^{2}$. Then there exists some $c \in(2,4)$ for which $f^{\prime}(c)=6$.
13. The rate of change of the temperature ($T^{\circ} \mathrm{F}$) of a cup of coffee is proportional to the temperature difference between the coffee and the surrounding air $\left(70^{\circ} \mathrm{F}\right)$. Suppose, at time $t=0$ minutes, that the coffee has temperature $180^{\circ} \mathrm{F}$, and is decreasing at a rate of $5^{\circ} \mathrm{F} / \mathrm{min}$. Which of the following is a correct model for the temperature of the coffee?
(No working necessary)
(a) $\frac{\mathrm{d} T}{\mathrm{~d} t}=-22(T-70)$
(b) $\frac{\mathrm{d} T}{\mathrm{~d} t}=22(T-70)$
(c) $\frac{\mathrm{d} T}{\mathrm{~d} t}=-\frac{1}{22}(T-70)$
(d) $\frac{\mathrm{d} T}{\mathrm{~d} t}=\frac{1}{22}(T-70)$
14. A cylinder has base radius r and height h. Its volume and surface area are given by the formulas

$$
\begin{equation*}
V=\pi r^{2} h \quad \text { and } \quad A=2 \pi r(r+h) \tag{8}
\end{equation*}
$$

Find the dimensions of the cyclinder with maximum volume if its surface area is $A=6 \pi$.

