MATH 2A: SAMPLE MIDTERM \#1

- This exam consists of 7 questions and 100 total points.
- Read the directions for each problem carefully and answer all parts of each problem.
- Please show all work needed to arrive at your solutions (unless instructed otherwise). Label graphs and define any notation used. Cross out incorrect scratch-work.
- No calculators or other forms of assistance are allowed. Do not check your cell phones during the exam.
- Clearly indicate your final answer to each problem.

1. (10 points) The following limit represents the slope of the tangent line to a curve $y=f(x)$ at the point $(a, f(a))$. Determine the function f and the number a, then calculate the limit.

$$
\lim _{x \rightarrow 3} \frac{\frac{1}{x+1}-\frac{1}{4}}{x-3}
$$

2. (7 points each) Evaluate each of the following limits.
a. $\lim _{x \rightarrow 2} \frac{\sqrt{x+7}+3}{5 x+1}$
b. $\lim _{x \rightarrow 2} \frac{x^{2}-6 x+8}{x^{2}-4}$
c. $\lim _{x \rightarrow 3^{+}} f(x)$ where $f(x)=\left\{\begin{array}{cl}x^{2}+1 & \text { if } x \leq 0 \\ 1 & \text { if } 0<x \leq 3 \\ 4 x & \text { if } x>3 .\end{array}\right.$
d. $\lim _{x \rightarrow 4^{-}} \frac{1-2 x}{x-4}$
e. $\lim _{x \rightarrow 0^{+}} \tan ^{-1}\left(\frac{1}{x}\right)$
3. (3 points each) Find all the values at which each function is discontinuous, if any. No work needs to be shown in this problem.
a. $f(x)=\frac{x-5}{(x-5)(x-2)}$
b. $f(x)=\left|\frac{1}{\sqrt{x}-4}\right|$
c. $f(x)=\frac{1}{\cos (x)-1}$
d. $f(x)=\left\{\begin{array}{cl}x^{2} & \text { if } x \leq 0 \\ \tan (x) & \text { if } 0<x \leq 2 \\ 3 x & \text { if } x>2\end{array}\right.$
e. $f(x)=\left\{\begin{array}{cc}x+4 & \text { if } x<2 \\ 6 & \text { if } x=2 \\ x^{-2} & \text { if } x>2\end{array}\right.$
4. (10 points) Show that there is a root of the equation $\cos (\pi \sqrt{x})=e^{x}-2$ in the interval $(0,1)$.
5. (10 points) A movie theater has a differentiable function $t=g(c)$ which models the number of movie tickets sold, t, when the cost of a ticket is c, measured in dollars.
a. What is the meaning of the derivative $g^{\prime}(c)$? What are its units?
b. Do you expect $g^{\prime}(10)$ to be positive or negative? Briefly explain.
6. (10 points) Find the inverse of the function $f(x)=\frac{e^{x}}{3-5 e^{x}}$.
7. (10 points) Find all horizontal and vertical asymptotes for the following functions.
a. $f(x)=\frac{x^{2}-x-6}{x^{2}-2 x-3}$
b. $g(x)=\tan (x)$
c. $h(x)=\frac{x}{x^{2}-2 x-3}$
d. $m(x)=\frac{x^{2}-x-6}{x}$
e. $n(x)=\ln x$
