MATH 2B: SAMPLE FINAL \#1

- This exam consists of 14 questions and 100 total points.
- Read the directions for each problem carefully and answer all parts of each problem.
- Please show all work needed to arrive at your solutions (unless instructed otherwise). Label graphs and define any notation used. Cross out incorrect scratch-work.
- No calculators or other forms of assistance are allowed. Do not check your cell phones during the exam.
- Clearly indicate your final answer to each problem.

1. (6 points) Suppose that $\int_{-1}^{1} f(x) d x=6, \int_{1}^{4} f(x) d x=-2$ and $\int_{-1}^{1} h(x) d x=9$. Use this information to compute the following.
a. $\int_{4}^{1} 6 f(x) d x$
b. $\int_{-1}^{1}[2 f(x)+3 h(x)] d x$
c. $\int_{-1}^{4} f(x) d x$
2. (6 points)
a. Evaluate the following derivative

$$
\frac{d}{d x} \int_{\sin (x)}^{x^{2}} t^{3} \tan (t) d t
$$

b. Let $r(t)$ be the rate at which the world's oil is consumed, where t is measured in years starting at $t=0$ representing January 1,2000 , and $r(t)$ is measured in barrels per year. What does $\int_{0}^{13} r(t) d t$ represent and what are its units?
3. (6 points) Evaluate $\int x^{2} \tan ^{-1} x d x$
4. (6 points) Evaluate $\int \frac{1}{x \ln (3 x)} d x$
5. (6 points) Evaluate $\int \sin ^{5}(x) \cos ^{2}(x) d x$
6. (6 points) Evaluate $\int \frac{\sqrt{x^{2}-25}}{x} d x$, where $x>5$
7. (6 points) Determine whether each of the following improper integrals are convergent or divergent. Evaluate the integral if it is convergent.
a. $\int_{0}^{2} \frac{1}{(x-2)^{2}} d x$
b. $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$

8. (6 points)

a. Find the average value of the function $f(x)=\sec ^{2}(x)$ on the interval $\left[0, \frac{\pi}{4}\right]$.
b. Find the arc length of the curve given by $y=2 x^{3 / 2}$ from $x=0$ to $x=1$.
9. (6 points) Find the first 5 non-zero terms in the Maclaurin series for $f(x)=(1-x)^{-2}$. Find the associated radius of convergence of this power series.
10. (6 points) Determine whether each of the following sequences converges or diverges. If it converges, find the limit.
a. $a_{n}=\left(\frac{2}{3}\right)^{n}+3$
b. $b_{n}=n^{3} e^{-n}$
c. $c_{n}=\tan ^{-1}(\ln (n))$
11. (10 points) Find the area of the region(s) bounded by the curves $y=x^{3}$ and $y=4 x$.
12. (10 points)
a. The region bounded by the curve $y=x^{2}+1$ and the line $y=-x+3$ is revolved about the line $y=5$ to generate a solid. Find the volume of that solid.
b. Let R be the region bounded by the curve $y=x^{2}+1$ and the line $y=-x+3$. Find the volume of the solid with base R and cross-sections perpendicular to the x-axis are squares.
13. (10 points) Answer True or False to each of the following and briefly explain your answers. a. True/False: We have $\int_{0}^{5}\left|x^{2}-3 x-4\right| d x \geq 0$.
b. True/False: We have $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} \pi^{2 k}=-1$.
c. True/False: We have

$$
\frac{d}{d x}\left(\int_{0}^{\pi / 4} \cos (x) d x\right)=\frac{\sqrt{2}-2}{2}
$$

d. True/False: There is a positive integer m such that $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{m-1}+\frac{1}{m}>20$.
14. (10 points) Determine whether each of the following series is convergent or divergent. Indicate test used.
a. $\sum_{n=1}^{\infty} \frac{n}{n^{3}+1}$
b. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$
c. $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$
d. $\sum_{n=1}^{\infty} n^{2} e^{-n^{3}}$
e. $\sum_{n=1}^{\infty} \frac{1}{3^{n}-1}$

