MATH 2B: SAMPLE FINAL \#2

- This exam consists of 13 questions and 100 total points.
- Read the directions for each problem carefully and answer all parts of each problem.
- Please show all work needed to arrive at your solutions (unless instructed otherwise). Label graphs and define any notation used. Cross out incorrect scratch-work.
- No calculators or other forms of assistance are allowed. Do not check your cell phones during the exam.
- Clearly indicate your final answer to each problem.

1. (8 points) Consider continuous functions f and f^{\prime} (where f^{\prime} denotes the derivative of f) with values given by the following table:

x	0	1	2	3	4	5
$f(x)$	3	4	6	9	13	18
$f^{\prime}(x)$	1	2	4	6	7	5

a. Find $\int_{0}^{4} f^{\prime}(x) d x$
b. Estimate $\int_{1}^{4} f(x) d x$ Using a left-hand Riemann sum with 3 equal subintervals.
c. Evaluate the following derivative at the point $x=3$

$$
\frac{d}{d x}\left(\int_{2}^{x} f(t) d t\right)
$$

d. Suppose $f(x)$ gives the height of a rocket, measured in yards, x minutes after its launch. What are the units of $\int_{0}^{4} f^{\prime}(x) d x$ and what does this quantity represent.
2. (7 points) Evaluate $\int \frac{x}{1+x^{4}} d x$
3. (7 points) Evaluate $\int \frac{x^{2}}{e^{2 x}} d x$
4. (7 points) Evaluate $\int \sin ^{3}(4 t) d t$
5. (7 points) Evaluate the following integral by making an appropriate trigonometric substitution.

$$
\int \frac{d x}{x^{2} \sqrt{x^{2}-9}}
$$

6. (8 points) Determine whether the following integral is convergent or divergent. Evaluate the integral if it convergent. If it is divergent, explain why.

$$
\int_{0}^{\infty} \frac{d z}{z^{2}+3 z+2}
$$

7. (10 points) Find the area of the region bounded by the curves $y=\frac{3}{2}-\frac{x^{2}}{2}$ and $y=|x|$.
8. (10 points) Find the volume of the solid obtained by rotating about the x-axis the region bounded by the curves $y=\sqrt{4-x^{2}}$ and $y=2-x$.
9. (6 points) Determine whether each of the following sequences is convergent or divergent. Find the limit of the convergent sequences.
a. $a_{n}=\frac{e^{2 n}}{\sqrt{n}}$
b. $a_{n}=\frac{(-1)^{n}}{n!}$
c. $a_{n}=\tan ^{-1}(n)$
10. (6 points) Compute the arc length of the curve $y=\ln (\cos (x))$ over the interval [$0, \frac{\pi}{4}$]. (Hint. $\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C$.)
11. (12 points) Use the indicated test to determine whether the given series is convergent or divergent.
a. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}}$ (integral test)
b. $\sum_{n=1}^{\infty} \frac{100^{n}}{n!}$ (ratio test)
c. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{2 n+5}$ (alternating series test)
d. $\sum_{n=2}^{\infty} \frac{n^{2}}{n^{3}-1}$ (comparison test or limit comparison test)
12. (6 points) Find the sum of the following convergent series.
a. $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n+1}}$
b. $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$
13. (6 points) Find a power series representation for the function $f(x)=\frac{2}{3-x}$ and determine the interval of convergence.
