Math 2B: Sample Final 3

- Turn off your cell phone and do not check it during the exam.
- No calculators or other forms of assistance allowed.
- This exam consists of 12 questions for 100 total points. Points per question are in brackets.
- Read the directions for each problem carefully and answer all parts of each problem.
- Unless instructed otherwise, show all work for full credit.
- Define any notation used and label any sketches/graphs.
- 1. For the function drawn, estimate the area under the curve using a Riemann sum with four subintervals and midpoints. Sketch the Riemann sum by drawing rectangles on the picture. (5)

2. Evaluate the following integrals

(a)
$$\int \sin \theta \cos^2 \theta \, d\theta$$
 (3)

(b)
$$\int \frac{x-7}{(x+1)(x-3)} \, \mathrm{d}x$$

3. Compute the average value f_{av} of the function $f(x) = x \cos x$ on the interval $[0, \frac{\pi}{2}]$. (7)

4. A particle has velocity $v(t) = 2^t - 5$ ft/s at time t seconds.

v

(a) Compute the *displacement* of the particle over the time interval t = 0 to t = 3.

(2)

(b) The distance travelled by the particle over the same time interval is given by

$$\int_{0}^{a} (5 - 2^{t}) dt + \int_{a}^{3} (2^{t} - 5) dt$$

where a is a constant. What is the value of a?

5. A region *R* is drawn.

(a) Find the area of *R*.

(b) Set up, but don't compute, an integral for the volume when R is rotated around the line x = -2.

6. Compute the integral
$$\int \frac{9}{(9+x^2)^{3/2}} dx$$
 (8)

7. You are given the following information about a function f.

$$f(0) = 5$$
, $f(2) = 3$, $\int_0^2 f(x) dx = -1$

Compute the following:

(Hint: You may find it convenient to use techniques like substitution or integration by parts)

(a)
$$\int_0^2 (3f(x) + 4) dx$$
 (2)

(b)
$$\int_0^1 f(2x) \, \mathrm{d}x$$

(c)
$$\int_0^2 x f'(x) \, \mathrm{d}x \tag{4}$$

8. Decide whether each of the following series converges or diverges. Make sure you state which test you are using.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \left(3 + \frac{1}{n} \right)$$
 (3)

(b)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1} \right)^n \tag{4}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1 + n^{-1}}$$
 (4)

$$\sum_{n=2}^{\infty} \frac{(x-3)^n}{2^n \sqrt{n}}$$

10. Compute the first three terms of the Taylor series of the function $f(x) = \sqrt{x}$ centered at x = 4.

11. Answer *true* or *false* to each of the following and give a short explanation. Unjustified answers will receive no credit.

(a)
$$\int_{-2}^{2} \sin(x^3) + x^2 dx = \frac{16}{3}$$
 (3)

(b)
$$\int_0^2 \frac{1}{x-1} \, \mathrm{d}x = 0$$
 (3)

(c)
$$\frac{d}{dx} \int_3^{x^2} \cos(t^2) dt = \cos(x^4) - \cos 9$$
 (3)

(d) The function
$$f(x) = \frac{4}{4+x^2}$$
 may be represented by the power series $\sum_{n=0}^{\infty} \left(-\frac{1}{4}\right)^n x^{2n}$. (4)

12. Define a sequence $(x_n)_{n=1}^{\infty}$ as follows

$$\begin{cases} x_1 = 1 \\ x_{n+1} = \frac{n^2}{n^2 + 1} x_n \end{cases}$$

We therefore have $x_2 = \frac{1^2}{1^2 + 1} x_1 = \frac{1}{2}$.

(a) Compute
$$x_3$$
 and x_4 .

(b) Use a Theorem to show that the sequence (x_n) converges to a limit. (*Do not try to compute the limit!*)