Math 2B: Sample Final 3

- Turn off your cell phone and do not check it during the exam.
- No calculators or other forms of assistance allowed.
- This exam consists of 12 questions for 100 total points. Points per question are in brackets.
- Read the directions for each problem carefully and answer all parts of each problem.
- Unless instructed otherwise, show all work for full credit.
- Define any notation used and label any sketches/graphs.

1. For the function drawn, estimate the area under the curve using a Riemann sum with four subintervals and midpoints. Sketch the Riemann sum by drawing rectangles on the picture. (5)

2. Evaluate the following integrals
(a) $\int \sin \theta \cos ^{2} \theta \mathrm{~d} \theta$
(b) $\int \frac{x-7}{(x+1)(x-3)} \mathrm{d} x$
3. Compute the average value $f_{\text {av }}$ of the function $f(x)=x \cos x$ on the interval $\left[0, \frac{\pi}{2}\right]$.
(7)
4. A particle has velocity $v(t)=2^{t}-5 \mathrm{ft} / \mathrm{s}$ at time t seconds.
(a) Compute the displacement of the particle over the time interval $t=0$ to $t=3$.
(4)

(b) The distance travelled by the particle over the same time interval is given by

$$
\begin{equation*}
\int_{0}^{a}\left(5-2^{t}\right) \mathrm{d} t+\int_{a}^{3}\left(2^{t}-5\right) \mathrm{d} t \tag{2}
\end{equation*}
$$

where a is a constant. What is the value of a ?
5. A region R is drawn.
(a) Find the area of R.

(b) Set up, but don't compute, an integral for the volume when R is rotated around the line $x=-2$.
6. Compute the integral $\int \frac{9}{\left(9+x^{2}\right)^{3 / 2}} \mathrm{~d} x$
7. You are given the following information about a function f.

$$
f(0)=5, \quad f(2)=3, \quad \int_{0}^{2} f(x) \mathrm{d} x=-1
$$

Compute the following:
(Hint: You may find it convenient to use techniques like substitution or integration by parts)
(a) $\int_{0}^{2}(3 f(x)+4) \mathrm{d} x$
(2)
(b) $\int_{0}^{1} f(2 x) \mathrm{d} x$
(c) $\int_{0}^{2} x f^{\prime}(x) \mathrm{d} x$
8. Decide whether each of the following series converges or diverges. Make sure you state which test you are using.
(a) $\sum_{n=1}^{\infty}(-1)^{n}\left(3+\frac{1}{n}\right)$
(b) $\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n+1}\right)^{n}$
(c) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1+n^{-1}}$
(4)

$$
\sum_{n=2}^{\infty} \frac{(x-3)^{n}}{2^{n} \sqrt{n}}
$$

10. Compute the first three terms of the Taylor series of the function $f(x)=\sqrt{x}$ centered at $x=4$.
11. Answer true or false to each of the following and give a short explanation. Unjustified answers will receive no credit.
(a) $\int_{-2}^{2} \sin \left(x^{3}\right)+x^{2} \mathrm{~d} x=\frac{16}{3}$
(b) $\int_{0}^{2} \frac{1}{x-1} \mathrm{~d} x=0$
(c) $\frac{\mathrm{d}}{\mathrm{d} x} \int_{3}^{x^{2}} \cos \left(t^{2}\right) \mathrm{d} t=\cos \left(x^{4}\right)-\cos 9$
(d) The function $f(x)=\frac{4}{4+x^{2}}$ may be represented by the power series $\sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n} x^{2 n}$.
12. Define a sequence $\left(x_{n}\right)_{n=1}^{\infty}$ as follows

$$
\left\{\begin{array}{l}
x_{1}=1 \\
x_{n+1}=\frac{n^{2}}{n^{2}+1} x_{n}
\end{array}\right.
$$

We therefore have $x_{2}=\frac{1^{2}}{1^{2}+1} x_{1}=\frac{1}{2}$.
(a) Compute x_{3} and x_{4}.
(b) Use a Theorem to show that the sequence $\left(x_{n}\right)$ converges to a limit.

