MATH 2B: SAMPLE MIDTERM \#1

- This exam consists of 5 questions and 85 total points.
- Read the directions for each problem carefully and answer all parts of each problem.
- Please show all work needed to arrive at your solutions (unless instructed otherwise). Label graphs and define any notation used. Cross out incorrect scratch-work.
- No calculators or other forms of assistance are allowed. Do not check your cell phones during the exam.
- Clearly indicate your final answer to each problem.

1. (15 points)
a. Estimate the area under the graph of $f(x)=x^{2}+x$ from $x=0$ to $x=3$ using 3 approximating rectangles and left endpoints.
b. Estimate the area under the graph of $f(x)=x-1$ from $x=0$ to $x=6$ using 3 rectangles and midpoints.
c. Find an expression for the area under the graph of $f(x)=x^{2}+x$ from $x=2$ to $x=5$ as a limit of Riemann sums. (You do not need to evaluate the limit.)
2. (15 points) Evaluate each of the following indefinite integrals.
a. $\int x \sqrt{3 x^{2}-1} d x$
b. $\int \frac{1-\sin ^{2}(x)}{\cos x} d x$
c. $\int \sin (7 \theta+5) d \theta$
3. (15 points)
a. Find the average value of the function $f(x)=\tan ^{3}(x) \sec ^{2}(x)$ on the interval $\left[0, \frac{\pi}{4}\right]$.
b. A particle moves along a line so that its velocity at time t is $v(t)=|2-t|$. Find the displacement of the particle during the time period $0 \leq t \leq 3$.
4. (20 points)
a. Complete the blanks in the following statement of the Fundamental Theorem of Calculus.

Fundamental Theorem of Calculus:

Suppose f is continuous on $[a, b]$. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=$ \qquad and $\int_{a}^{b} f(x) d x=$ \qquad , where F is any antiderivative of f.
b. Use the Fundamental Theorem of Calculus to evaluate the following.
i. $\frac{d}{d y} \int_{2}^{y} \frac{\sin (t)}{t^{2}+3} d t$
ii. $\frac{d}{d x} \int_{x}^{x^{4}} \sqrt{t} d t$
c. Answer each of the following questions. No work or explanation is needed.
i. If $f(t)$ is measured in dollars per year and t in years, what are the units of $\int_{0}^{10} f(t) d t$?
ii. True/False: All continuous functions have derivatives.
iii. True/False: All continuous functions have antiderivatives.
iv. Below is the graph of a function $v(t)$. Let $g(x)=\int_{0}^{x} v(t) d t$.

Find each of the following:
$g(0)=$ \qquad , $g(2)=$ \qquad , $g^{\prime}(1)=$ \qquad , $g^{\prime}(4)=$ \qquad
5. (20 points) Let S be the region bounded by $y=x^{3}$ and $y=\sqrt{x}$.
a. Find the area of the region S.
b. i. Find the volume of the solid obtained by revolving the region S about the x-axis.
ii. Set up an integral to find the volume obtained by revolving S about the y-axis. (You do not need to evaluate the integral.)
iii. Set up an integral to find the volume obtained by revolving S about the line $y=5$. (You do not need to evaluate the integral.)

