MATH 2B: SAMPLE MIDTERM \#2

- This exam consists of 5 questions and 90 total points.
- Read the directions for each problem carefully and answer all parts of each problem.
- Please show all work needed to arrive at your solutions (unless instructed otherwise). Label graphs and define any notation used. Cross out incorrect scratch-work.
- No calculators or other forms of assistance are allowed. Do not check your cell phones during the exam.
- Clearly indicate your final answer to each problem.

1. (10 points each) Evaluate each of the following integrals.
a. $\int \frac{\ln t}{t^{5}} d t$
b. $\int e^{x} \sin (3 x) d x$
c. $\int \sin ^{5} \theta d \theta$
d. $\int_{2 \sqrt{2}}^{4} \frac{1}{x \sqrt{x^{2}-4}} d x$
2. (15 points) Determine whether the following improper integrals are convergent or divergent. Evaluate those that are convergent.
a. $\int_{2}^{\infty} \frac{d x}{\sqrt{x}}$
b. $\int_{0}^{3} \frac{1}{\sqrt{9-x^{2}}} d x$
c. $\int_{0}^{\infty} \frac{d z}{z^{2}+3 z+2}$
3. (10 points) Find the length of the curve $f(x)=x^{3}+\frac{1}{12 x}$ on the interval $\left[\frac{1}{2}, 2\right]$
4. (10 points) Determine whether each of the following statements is true or false. Briefly justify your answers.
a. True/False: If $\left\{a_{n}\right\}$ is decreasing and $a_{n}>0$ for all n, then a_{n} is convergent.
b. True/False: If $f(x) \leq g(x)$ and $\int_{0}^{\infty} g(x) d x$ diverges, then $\int_{0}^{\infty} f(x) d x$ also diverges.
c. True/False: The integral $\int_{1}^{\infty} \frac{1}{x^{\pi}} d x$ converges.
d. True/False: $\int_{0}^{3} e^{x^{2}} d x=\int_{0}^{5} e^{x^{2}} d x+\int_{5}^{3} e^{x^{2}} d x$.
5. (15 points) Determine whether each of the following sequences is convergent or divergent. If a sequence is convergent, find its limit.
a. $a_{n}=n \sin \left(\frac{1}{n}\right)$
b. $a_{n}=\sin ^{-1}\left(\frac{3 n}{3 n+8}\right)$
c. $a_{n}=-5+(0.9)^{n}$
d. $a_{n}=4+(-1)^{n}$
e. $a_{n}=\frac{n^{2}+2 n-12}{n+2}$
