MATH 2B: SAMPLE MIDTERM #2

- This exam consists of 5 questions and 90 total points.
- Read the directions for each problem carefully and answer all parts of each problem.
- Please show all work needed to arrive at your solutions (unless instructed otherwise). Label graphs and define any notation used. Cross out incorrect scratch-work.
- No calculators or other forms of assistance are allowed. Do not check your cell phones during the exam.
- Clearly indicate your final answer to each problem.
- 1. (10 points each) Evaluate each of the following integrals.

a.
$$\int \frac{\ln t}{t^5} dt$$

b. $\int e^x \sin(3x) dx$

c. $\int \sin^5 \theta \, d\theta$

d.
$$\int_{2\sqrt{2}}^{4} \frac{1}{x\sqrt{x^2-4}} dx$$

2. (15 points) Determine whether the following improper integrals are convergent or divergent. Evaluate those that are convergent.

a.
$$\int_{2}^{\infty} \frac{dx}{\sqrt{x}}$$

b.
$$\int_0^3 \frac{1}{\sqrt{9-x^2}} \, dx$$

c.
$$\int_0^\infty \frac{dz}{z^2 + 3z + 2}$$

3. (10 points) Find the length of the curve $f(x) = x^3 + \frac{1}{12x}$ on the interval $[\frac{1}{2}, 2]$

- 4. (10 points) Determine whether each of the following statements is true or false. Briefly justify your answers.
 - a. True/False: If $\{a_n\}$ is decreasing and $a_n > 0$ for all n, then a_n is convergent.
 - b. True/False: If $f(x) \leq g(x)$ and $\int_0^\infty g(x) \, dx$ diverges, then $\int_0^\infty f(x) \, dx$ also diverges.
 - c. True/False: The integral $\int_{1}^{\infty} \frac{1}{x^{\pi}} dx$ converges.
 - d. True/False: $\int_0^3 e^{x^2} dx = \int_0^5 e^{x^2} dx + \int_5^3 e^{x^2} dx$.

5. (15 points) Determine whether each of the following sequences is convergent or divergent. If a sequence is convergent, find its limit.

a. $a_n = n \sin(\frac{1}{n})$

b.
$$a_n = \sin^{-1}(\frac{3n}{3n+8})$$

c.
$$a_n = -5 + (0.9)^n$$

d.
$$a_n = 4 + (-1)^n$$

e.
$$a_n = \frac{n^2 + 2n - 12}{n+2}$$