Print Your Name: —	last	first
Print Your I.D. Numb	oer:	

Comprehensive Examination of Analysis

9:00 Am-11:30 AM, June 18, 2013

Score:----/10

Your Name: — last — first

1. Show that the sequence $\{a_n\}_{n=1}^{\infty}$ defined recursively by

$$a_1 > \frac{3}{2}, \qquad a_n = \sqrt{3a_{n-1} - 2}, \qquad n \ge 2,$$

converges and finds its limit.

Score:----/10

Your Name: — last — first

2. Show that the series

$$\sum_{n=1}^{\infty} \frac{x \sin\left(n^2 x\right)}{n^2}$$

converges pointwise to a continuous function on ${\rm I\!R}$

Score:——/10	/10	Vour Namo:		
bcore.	/ 10	Your Name: —	last	first

3. Prove the following integral test. Assume that f is a positive and decreasing function on the interval $(0, \infty)$. Then the series $\sum_{n=1}^{\infty} f(n)$ converges if and only if the the sequence $\{I_n\}$ is bounded, where $I_n = \int_1^n f(x) dx$.

Score:----/10

Your Name: — last — first

4. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and satisfy

$$\lim_{|x| \to \infty} f(x) = 0.$$

Prove or disprove f(x) is uniformly continuous on \mathbb{R} .

Score:——/10	Vour Namo		
5core.——/10	Your Name: —	last	first

5. Let f be an increasing function on [0,1]. D(f) denotes the set of all discontinuous points of f on [0,1]. Prove D(f) is at most countable.

Score:——/10

Your Name: — last — first

6. Evaluate the following integral

$$\int_{S^2} z^4 y^2 d\sigma$$

where $S^2=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=1\}$ and $d\sigma$ is the area element on S^2 .

Secret /10	/10	Vour Name		
Score:——	/10	Your Name: -	last	first

- 7. Let f be a bounded function on [a,b]. Prove or disprove

 - (a) If $f(x)^2$ is integrable on [a, b] then f is integrable. (b) If $f(x)^3$ is integrable on [a, b] then f is integrable.

Your Name: — last first

8. Let f(x) be a twice differentiabale function on [-1,1] such that

$$f(0) = 0$$
 and $f(1) = -f(-1)$

Prove there is a $x_0 \in (-1,1)$ such that $f''(x_0) = 0$.

Score:——/10

Your Name: — last — first

9. Let C[0,1] be the metric space consisting of all continuous functions on [0,1] with a metric d defined by

$$d(f,g) = \max\{|f(x) - g(x)| : x \in [0,1]\}.$$

Let h be a differentiable function on \mathbb{R} with $|h'(x)| \leq 1/2$ for all $x \in \mathbb{R}$. A map $T: C[0,1] \to C[0,1]$ is defined by

$$T(f)(x) = (h \circ f)(x)$$
, for all $x \in [0, 1]$ and $f \in C[0, 1]$.

Prove that T has a unique fixed point in C[0,1].